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ABSTRACT The evaluation of auto insurance risks is a fundamental task for financial institutions, crucial
for setting equitable premiums and managing risks effectively. Traditional machine learning algorithms
often struggle to capture the intricate relationships necessary for accurate risk assessment. In contrast,
deep learning methods, while capable of processing complex data structures, lack the ability to model
feature interactions and provide interpretability, which are essential for transparent decision-making in the
insurance industry. To address these challenges, we introduce the Actuarial Transformer (AT)–a pioneering
model that leverages the self-attention mechanism of the Transformer architecture to meticulously map
feature interactions. The AT integrates advanced residual models with tree-based methods, enhancing
its predictive accuracy. Additionally, it incorporates the SHAP (SHapley Additive exPlanations) model,
which uses Shapley values from cooperative game theory to ensure interpretability and transparency in
its risk assessments. Our empirical analysis, conducted on a representative dataset of auto insurance risks,
demonstrates the AT’s superior performance in risk prediction. The SHAP analysis further validates the
model’s ability to prioritize features logically, providing clear insights into the decision-making process. The
AT not only improves the precision of auto insurance risk evaluations but also enhances the interpretability
of these evaluations, making it a valuable tool for both industry practitioners and clients.

INDEX TERMS Auto insurance, risk evaluation, deep learning.

I. INTRODUCTION
Property and casualty (P & C) insurance, particularly auto
insurance, faces intense competition and low growth in the
insurance sector industry. According to the National Associ-
ation of Insurance Commissioners (NAIC) annual report [1],
the overall industry profit ratio has fluctuated around −3%
to 3% over the past decade. This challenging environment
necessitates precise insurance pricing, considering numerous
rate-making factors and their complex relationships.

Auto insurance risk evaluation is a fundamental task for
financial institutions, crucial for setting equitable premiums
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and managing risks effectively. The process typically
involves three levels: actuaries predicting pure risk premium,
underwriters deciding on price strategy, and sales analysis
of customer preferences [2], [3], [4]. Among these, the
actuaries’ task of pure risk premium prediction, also known as
ratemaking, forms the foundation of pricing and significantly
impacts company revenue.

Traditional machine learning algorithms, while improving
upon simple mathematical models, face several chal-
lenges in practice. These include the need for peri-
odic algorithm upgrades to match evolving data, the
potential for misclassification by individual models,
and the complexity of hyperparameter optimization [5].
Moreover, many advanced models lack interpretability,
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creating a trade-off between predictive accuracy and model
explainability.

To address these challenges, we introduce the Actuarial
Transformer (AT) - a pioneering model that leverages the
self-attention mechanism of the Transformer architecture
to meticulously map feature interactions in auto insurance
risk evaluation. The AT integrates advanced residual models
with tree-based methods, enhancing its predictive accuracy
while maintaining interpretability through the incorporation
of SHAP (SHapley Additive exPlanations) analysis.

Our contributions in this paper are summarized as follows:
• We propose the Actuarial Transformer model to conduct
the auto insurance risk evaluation.

• We utilize the self-attention mechanism within the trans-
former architecture to model the relationships and interac-
tions among the policyholder features.

• We design a residual modeling structure, which refines
the modeling residual errors of transformer with the tree
model, thus combining the advantages of them.

• We incorporate the SHAP method to analyze the feature
importance for the ultimate model evaluation, enhancing
the interpretability of this process.

• We perform detailed experiments on a representative auto
insurance risk dataset and demonstrate the effectiveness of
our proposed method.
The aim of this work is to develop a more accurate

and interpretable model for auto insurance risk evaluation.
We chose the Transformer architecture as the foundation
of our model due to its proven ability to capture complex
relationships in sequential data [6], whichwe hypothesize can
be effectively applied to the multifaceted nature of insurance
risk factors. The addition of tree-based residual modeling
aims to capture any remaining patterns that the Transformer
might miss, addressing the potential limitations of a single
model approach [5].

The use of SHAP values addresses the critical need
for interpretability in insurance applications, providing a
method to explain model decisions in a way that is both
mathematically sound and intuitively understandable [7].
This approach has the potential to benefit both insurance
companies, by enabling more precise risk assessment and
pricing, and policyholders, by ensuring fairer and more
transparent premium calculations.

Our empirical analysis, conducted on a representative
dataset of auto insurance risks obtained from the Casualty
Actuarial Society (CAS) [8], demonstrates the AT’s supe-
rior performance in risk prediction. The SHAP analysis
further validates the model’s ability to prioritize features
logically, providing clear insights into the decision-making
process.

In the following sections, we will discuss related work in
the field of auto insurance risk evaluation and deep learning
(Section II), detail our proposed methodology (Section III),
present our experimental results (Section IV), and conclude
with a discussion of our findings and future directions
(Section V).

II. RELATED WORKS
A. WIDE APPLICATION OF MACHINE LEARNING
APPROACHES IN AUTO INSURANCE INDUSTRY
In the past decade, artificial intelligence has revolutionized
the insurance industry, particularly in auto insurance. As syn-
thesized byHanafy and Ruixing [9], three key areas have seen
significant impact:
• Insurance process rebuilding: Companies like Lemonade
have digitized entire business operations, applying AI from
quote assessment to claim filing.

• Behavior detection: Approximately 10% of companies
now use machine learning techniques to detect fraudulent
insurance claims [9].

• Predictive analytics: Paredes’s research on reducing auto
insurance attrition using econometrics demonstrated an
additional USD 750,000 in revenue [10].

These advancements underscore AI’s pivotal role in reshap-
ing the insurance landscape, particularly in risk evaluation
and pricing.

B. TRADITIONAL MACHINE LEARNING ALGORITHMS IN
RATEMAKING
Several traditional machine learning algorithms have been
widely adopted in the Property and Casualty (P & C) industry
for ratemaking and claim number prediction:
• Accurate Generalized Linear Model (AGLM): Based
on GLM and equipped with recent data science tech-
niques, AGLMachieves high interpretability and predictive
accuracy compared to other GLMs (GLM, GAM, and
GBM) [11].

• Extreme Gradient Boosting (XGBoost): Widely used in
claims occurrence prediction, XGBoost has shown superior
performance in car insurance claim number prediction
classification compared to Neural Networks, Logistic
Regression, and Naive Bayes [12], [13].

• Random Forest (RF): RF has demonstrated high accuracy
in predicting claim severity, producing comparable results
to using all features while only utilizing 1/3 of the overall
features [14].

• Neural Networks (NN): Artificial Neural Networks (ANN)
have shown promising results in auto insurance claims
prediction, outperforming Decision Trees and Multinomial
Logistic Regression with 61.71% overall classifier accu-
racy [5].

C. ACCURACY AND ROBUSTNESS PERFORMANCE OF
TRADITIONAL MACHINE LEARNING
While machine learning algorithms have improved ratemak-
ing accuracy compared to simple mathematical algorithms,
they face three main challenges in practice:
• Performance dependence on data quantity and integrity,
necessitating periodic algorithm updates.

• Complementary nature of different models, suggesting that
a combination of models could result in better prediction
performance [5].
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• Sensitivity to hyperparameter settings, especially in Neural
Networks, requiring expertise in AI engineering and
algorithm optimization.

D. EXPLAINABILITY OF TRADITIONAL MACHINE
LEARNING
Among traditional machine learning algorithms, only GLMs
achieve high interpretability. XGBoost, RF, and NNs present
challenges in explaining their decision-making process to
stakeholders. To address this, the SHAP (SHapley Additive
exPlanations) algorithm has been proposed to provide a
detailed understanding of feature contributions to predic-
tions [7], [16].

E. DEEP LEARNING IN INSURANCE RISK EVALUATION
Recent years have seen an increasing interest in applying
deep learning techniques to insurance risk evaluation. Some
notable works include:
• Ying [15] proposed a deep learning approach for insurance
premium pricing, demonstrating improved accuracy over
traditional methods.

• Wüthrich and Merz [17] explored the use of neural
networks for claims reserving in non-life insurance.

• Gabrielli et al. [18] introduced a neural network approach
for individual claims reserving in insurance.

• Spedicato et al. [19] reviewed machine learning meth-
ods for actuarial applications, including deep learning
approaches.

F. RESEARCH GAP AND PROPOSED APPROACH
To better illustrate the research gap and justify our proposed
Actuarial Transformer (AT) approach, we present a compari-
son of related works in Table 1. As shown in Table 1, existing
methods face trade-offs between accuracy, interpretability,
and the ability to model complex feature interactions. Our
proposed Actuarial Transformer (AT) aims to address these
limitations by combining the strengths of deep learning
(specifically, the Transformer architecture) with tree-based
models and SHAP analysis.

The AT leverages the self-attention mechanism of Trans-
formers to capture complex feature interactions, which is
crucial in auto insurance risk evaluation where multiple
factors interact in non-linear ways. By incorporating tree-
based residual modeling, we aim to capture any remaining
patterns that the Transformer might miss, thereby enhancing
overall prediction accuracy. The use of SHAP analysis
addresses the interpretability challenge, providing clear
insights into the model’s decision-making process.

This approach is justified by the need for a method that can
simultaneously achieve high accuracy, maintain interpretabil-
ity, and effectively model complex feature interactions in
auto insurance risk evaluation. The AT’s design specifically
addresses these requirements, filling a gap in the existing
literature and potentially advancing the state-of-the-art in this
field.

III. METHODOLOGY
A. PROBLEM FORMULATION
The aim of insurance risk evaluation is to predict the expected
risk ŷi for each policyholder i. In this work, the risk for
each policyholder is quantified as the number of claims.
Mathematically, our objective is to predict the conditional
mean E(Yi|Xi) of the risk variable Yi, where Xi denotes the
feature vector of policyholder i.

Formally, we model the functional relationship between
the feature vector Xi and the resultant risk Yi as:

Ŷi = f (Xi; θ ), (1)

where f (·) represents the modeling function parameterized
by θ , designed to capture the intricate relationship between
policyholder characteristics Xi and their corresponding risk
Yi. To ease the understanding to this paper, we summarize
the notations in the following Table 2.

B. DATA PREPROCESSING
In this section, we detail the preprocessing steps for the
Actuarial Transformer (AT) model, which is designed to
analyze and quantify complex interactions among policy-
holder attributes, including both continuous and categorical
variables, for insurance risk evaluation.

1) FEATURE ENCODING
Consider a dataset of N policyholders, each described by M
features:

X = {x1, x2, . . . , xi, . . . , xN }, (2)

where xi ∈ RM represents the feature vector of the i-th
policyholder, encompassing both continuous and categorical
attributes. To efficiently process these heterogeneous data
types, we apply:

1) An embedding layer for categorical features, translating
them into dense vectors of fixed size [20]. 2) A normalization
layer for continuous features, ensuring a uniform scale.

This preprocessing step transforms xi into a uniform
representation:

x′i = Embedding(xcati )⊕ Normalize(xconti ), (3)

where ⊕ denotes concatenation, xcati and xconti correspond to
categorical and continuous parts of xi, respectively.

2) DATA NORMALIZATION
The Normalize operation in Equation 3 is achieved through:

Normalize(xconti ) =
xconti − µcont

σ cont
, (4)

where µcont and σ cont are the mean and standard deviation
vectors of the continuous features across the dataset,
respectively.
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TABLE 1. Comparison of Related Works.

TABLE 2. Summary of Notations.

C. ACTUARIAL TRANSFORMER ARCHITECTURE
The Actuarial Transformer (AT) is an adaptation of the
original Transformer architecture [6] for insurance risk
evaluation. It utilizes a self-attention mechanism to model
the relationships and interactions between features. This
approach has shown great promise in capturing complex
dependencies in various domains [21], [22].

1) SELF-ATTENTION MECHANISM
For an encoded and normalized input feature vector x′i, the
self-attention mechanism operates as follows:

1) Linear Transformation: The input vector x′i is linearly
transformed into three different vectors known as Query (Q),
Key (K ), and Value (V ) through learned weight matrices:

Q = x′iW
Q, K = x′iW

K , V = x′iW
V , (5)

where WQ,WK ,WV
∈ Rd×d are the weight matrices for

queries, keys, and values, respectively, and d is the dimension
of the input features.

2) Attention Scoring: The attention score between two
features p and q within x′i is computed by taking the dot
product of their respective query and key vectors, followed

by a softmax operation to ensure scores are normalized:

Apq = softmax

(
QpKT

q
√
dk

)
, (6)

where dk is the scaling factor equal to the dimension of the
key vectors, ensuring stability in the dot products [6].

3) Feature Interaction: The output representation capturing
the interaction between features is obtained by a weighted
summation of the value vectors V , weighted by the attention
scores A:

I =
∑
q

ApqVq. (7)

The resultant interaction representation, denoted as I ,
augments the model’s understanding of the intricate relation-
ships between features, which is essential for precise risk
evaluation.

D. RESIDUAL LEARNING FOR EVALUATION PRECISION
ENHANCEMENT
To further enhance the precision of insurance risk evaluation,
we adopt a residual learning approach [23]. This technique
not only improves predictive performance but also addresses
potential overfitting that might emerge when modeling
complex interactions among diverse policyholder features.

Our AT model employs tree models as a robust base for
initial assessments, complemented by a transformer architec-
ture to model and rectify residual errors. The procedure is as
follows:

1) Initial Tree-based Evaluation: We begin with an
ensemble of tree models, which are adept at handling
heterogeneous feature types. The tree models provide a set
of initial evaluations ŷtreei :

ŷtreei = Tree(xi), (8)

where Tree represents the function encapsulating the learning
process of Gradient Boosting over decision trees [24].

2) Residual Computation: We compute the residuals–the
difference between the actual target values yi and the
tree-predicted values ŷtreei :

ri = yi − ŷtreei . (9)

3) Transformer-based Residual Modeling: The AT model
processes the features x′i to predict these residuals more
effectively:

x
′,t
i = Transformer(x′i), (10)
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where Transformer represents the operations described in
Section III-C. We then model the residuals using this refined
feature x

′,t
i , employing a link function f , which is learned

during the training process:

r̂i = f (x
′,t
i ). (11)

4) Final Evaluation: The final refined evaluation ŷfinali is
the sum of the initial evaluations provided by the tree models
and the residual evaluations modeled by the transformer:

ŷfinali = ŷtreei + r̂i. (12)

E. MODEL TRAINING
The model is trained using an optimization objective
that incorporates both the initial tree evaluations and the
transformer-modeled residuals:

L =
1
N

N∑
i=1

LPD(yi, ŷ
final
i )+ λ||θ ||22, (13)

where LPD denotes the Poisson deviance loss function, which
is suitable for count data in insurance risk evaluation [25].
θ represents the parameters of both tree and transformer
models, and λ is the regularization strength.

This approach to residual modeling enables the AT
model to capture fine-grained patterns in the data, offering
interpretable insights into the critical factors driving risk, and
representing a significant advancement toward more precise
insurance risk assessments. To facilitate the comprehension
and reproduction of our proposed Actuarial Transformer
framework, we provide the pseudocode as follows:

IV. EXPERIMENTS
In our study, we pose several research questions (RQs) to
assess the capabilities of our Actuarial Transformer (AT)
model in the context of auto insurance risk evaluation:
• RQ1: How does the AT model’s risk evaluation accuracy
compare with existing benchmarks?

• RQ2: Does each module within the AT model contribute
to enhancing the overall performance of risk evaluation?

• RQ3:How consistent is the ATmodel’s performance when
subject to varying hyperparameter configurations?

• RQ4: Does the AT model exhibit stable and rapid
convergence during the training process?

• RQ5:Can the feature importance rankings produced by the
AT model be justified in the final evaluation?

A. EXPERIMENT SETUP
1) DATASETS
a: OVERALL INTRODUCTION
In the experiments, we utilize the French Motor
Third-Party Liability Claims (MTPL) [26]1: to evaluate
the effectiveness of our proposed model AT compare with
other representative baselines. In this dataset, risk features

1https://www.kaggle.com/datasets/floser/french-motor-claims-datasets-
fremtpl2freq

Algorithm 1 Actuarial Transformer (AT) Framework
Require: Dataset X = {x1, x2, . . . , xN }, Target values Y =
{y1, y2, . . . , yN }

Ensure: Predictions Ŷfinal
= {ŷfinal1 , ŷfinal2 , . . . , ŷfinalN }

1: function PreprocessFeatures(X)
2: for each xi in X do
3: xcati ← CategoricalFeatures(xi)
4: xconti ← ContinuousFeatures(xi)
5: xcati ← Embedding(xcati )
6: xconti ← Normalize(xconti )
7: x′i← xcati ⊕ xconti
8: end for
9: return X′ = {x′1, x

′

2, . . . , x
′
N }

10: end function
11: function TreeModel(X,Y)
12: Train tree ensemble on X and Y
13: Ŷtree

← TreeEnsemblePredictions(X)
14: return Ŷtree

15: end function
16: function TransformerModel(X′,R)
17: for each x′i in X′ do
18: Q,K ,V ← LinearTransform(x′i)
19: A← SoftMax(QK

T
√
dk
)

20: I ← AV
21: x

′,t
i ← TransformerLayers(I )

22: r̂i← f (x
′,t
i )

23: end for
24: return R̂ = {r̂1, r̂2, . . . , r̂N }
25: end function
26: X′← PreprocessFeatures(X)
27: Ŷtree

← TreeModel(X,Y)
28: R← Y− Ŷtree

29: R̂← TransformerModel(X′,R)
30: Ŷfinal

← Ŷtree
+ R̂

31: Train model by minimizing:
32: Loss = 1

N

∑N
i=1 LPD(yi, ŷ

final
i )+ λ||θ ||22

33: return Ŷfinal

and evaluation labels (claim numbers) were collected for
677,991 motor third-party liability policies over a one-year
observation period. The table contains 12 columns: IDpol,
ClaimNb, Exposure, Area, VehPower, VehAge, DrivAge,
BonusMalus, VehBrand, VehGas, Density, Region, where
ClaimNb is the label. Exposure measures the exposure
period. Among other columns, the VehBrand and Region are
pre-processed as categorical features while the remaining
columns are transformed to be continuous ones. The
corresponding descriptions for each feature are provided in
the Table 3. We split the overall dataset randomly into the
training set and test set with a ratio of 4:1.

b: DETAILED DATA ANALYSIS
Before delving into the performance evaluation of various
methods, we first conduct a detailed data analysis to the
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TABLE 3. The features and their corresponding descriptions in the auto
insurance risk dataset: MTPL.

dataset to better illustrate the pattern in the real-world auto
insurance industry. First, we calculate the distribution for the
claim number and exposure per policy. We visualize them
via the histograms in Figure 1. First, we can easily notice
that the claim numbers for most policies are limited to 0-2,
which indicates that most policies will not trigger a claims
or just trigger a small number of claims. Meanwhile, the
distribution for the exposures is a little bit more balanced,
while most policies are still exposed for the whole study
period, i.e., corresponding to the exposure value of 1.0. Then,
we discuss the exposure and claim frequency distribution
according to the different Bonus-Malus groups. The related
visualization has been provided in the Figure 2. From the
left subfigure, we can find that low-bonus policies occupied
the most exposure. Meanwhile, from the right subfigure,
we can observe that as the malus value improves (<100means
bonus, >100 means malus), the claim frequency within the
certain confidence interval will also increase. This is actually
with the specific situations in the insurance industry, where
the malus amount is directly related to the historical claim
number. In the insurance industry, the term Bonus-Malus
refers to a system that adjusts policyholders’ premiums
based on their claims history. The system is designed to
incentivize safe driving behavior by offering a ‘‘bonus’’
or discount to those who haven’t filed any claims within
a specified period, while imposing a ‘‘malus’’ or penalty
on those who have. If a policyholder has no claims over
a certain period, typically a year, they receive a bonus
in the form of a reduced premium rate for the following
period. The longer the policyholder goes without filing a
claim, the larger the bonus and, consequently, the lower
their future premiums may become. The bonus encourages
drivers to avoid risky behavior that could lead to accidents
and claims. Conversely, if a policyholder files a claim, they
can expect an increase in their premium rates–a malus, which
reflects their higher perceived risk. Subsequent premiums can
continue to increase with each claim filed, which discourages
the making of frivolous or fraudulent claims. The malus
component of the system attempts to equitably distribute the
cost of insurance across all policyholders based on individual
risk. The Bonus-Malus system, also known as a no-claims
discount (NCD) or no-claims bonus (NCB) in some markets,

acts as a merit-based pricing strategy in auto insurance,
although it can also be found in other types of insurance.
The exact rules, percentage discounts, and surcharges under
the Bonus-Malus system can vary widely among insurers and
across different regions. The system is transparently outlined
in insurance policies, ensuring that policyholders are aware
of the financial implications of their driving habits.

2) BASELINES
In experiments, we use following models as our baselines:
• Generalized Linear Model(GLM) [27]: GLM extends
traditional linear regression to models with a non-normal
error distribution, accommodating various types of
response variables through different link functions and
distribution assumptions.

• XGBoost [28]: XGBoost, short for Extreme Gradient
Boosting, is a highly efficient and flexiblemachine learning
library implementing the gradient boosting framework,
known for its speed and performance, with built-in
regularization to avoid overfitting.

• LightGBM [29]: LightGBM distinguishes itself through
its Lightweight implementation that uses a histogram-based
algorithm and gradient-based one-side sampling, optimiz-
ing both memory usage and speed for large datasets.

• CatBoost [30]: CatBoost is a fast, scalable, high-
performance Gradient Boosting on Decision Trees library,
with particular effectiveness in handling categorical fea-
tures directly, hence reducing data preprocessing time.
Besides, it introduces ordered boosting to overcome the
target leakage in gradient boosting.

• NNemb: This model incorporates embedding layers to
transform categorical inputs into continuous vectors before
processing them through a neural network, enhancing the
model’s ability to capture deep, nonlinear relationships
within the data.

• TabNet [31]: TabNet relies on the multi-step feature
selection with sequential attention to conduct the deep
insurance risk evaluation. It uses a unique instance-wise
feature selection property, which helps in understanding the
decision-making process by allowing inspection of which
features are used for evaluations. It should be noted that
TabNet is one of the most state-of-the-art (SOTA) approach
in this area.

3) EVALUATION METRICS
• Poisson Deviance: It measures the discrepancy between
risk label yi and the risk ŷi predicted by the model M for
each policy i via a log-likelihood-based scoring rule:

PD(M ) = 2
N∑
i=1

yilog(
yi
ŷi
)− (yi − ŷi). (14)

Poisson deviance is deployed as a robust assessment metric
for insurance risk evaluation, where the target indicator is
the count of claims. Here, Poisson Deviance is preferred
over MSE or MAE for several reasons:
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FIGURE 1. The histograms for the number of claims and the exposure in the dataset to visualize their distribution.

FIGURE 2. The summation of exposure in each BonusMalusGroup and the claim frequency (sum of claim numbers / sum of exposure) in each
BonusMalusGroup with 90% confidence interval (1.645 sigma).

1) It is derived from the likelihood function of the Poisson
distribution, which naturally models count data [25].

2) It can handle zero-inflated data, common in insurance
claims, without the need for data transformation [32].

3) It is scale-invariant, meaning it gives equal weight to
relative errors across different magnitudes of the target
variable [33].

4) It is particularly adept at dealing with over-dispersion,
a condition where variance exceeds the mean, which is
common in insurance risk data [34].

In the Motor Third Party Liability (MTPL) dataset, dif-
ferent exposures for each insurance policy are considered.
To achieve equitable comparison, we employ exposure-
weighted Poisson deviance (E-WPD):

E −WPD(M ) =
2∑N
i=1 ei

N∑
i=1

ei(yilog(
yi
ŷi
)− (yi − ŷi)),

(15)

where ei indicates the exposure period of each policy i.
• Improvement Index: It measures the relative improve-
ment over the baseline model GLM:

II (M ) =
PD(M )− PD(INT)

PD(GLM)− PD(INT)
, (16)

where PD(INT) indicates the Poisson Deviance of the
intercept (i.e. no model, just mean risk value of training
data).
The Improvement Index is advantageous because:
1) It provides a normalized measure of improvement,

allowing for easier interpretation and comparison across
different datasets or model iterations [35].

2) It accounts for the difficulty of the prediction task by
considering the performance gap between the baseline
GLM and the intercept-only model.

3) It is particularly useful in the insurance industry
where GLMs are widely used and often serve as a
benchmark [36].
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4) IMPLEMENTATION DETAILS
Our method is executed using PyTorch and is operational
on an NVIDIA GeForce RTX 4090 furnished with 24GB
memory. In terms of implementation, we conduct each exper-
iment three times utilizing distinct seeds and present themean
result as the ultimate performance. During each standalone
experiment, the model assigned to evaluate insurance risk
undergoes training for a cumulative 100 epochs. To mitigate
overfitting, we have incorporated an early stopping scheme.
The learning rate in the model training phase is set as 1e-4.
As for the optimizer which conducts the gradient descent,
we choose the Adam optimizer.

B. EVALUATION PERFORMANCE (RQ1)
In response to Q1, we juxtapose our Actuarial Transformer
(AT) model’s performance against linear models, tree-based
models, and deep models in auto insurance risk evaluation,
deployed with the Poisson Deviance (PD) and Inconsistency
Index (II) metrics. As proposed in Table 4, it is evident
that both tree-based and deep models (comprising NNemb,
TabNet, and various AT variants) outperform the linear
model, Generalized Linear Model (GLM). This suggests
that the conventional linear model may fall short in
navigating complex relationships and interactions among
input features and risk. Yet, it’s noteworthy that previous
deep models such as NNemb and TabNet don’t demon-
strate significant advantages over tree-based models like
XGBoost, LightGBM, and CatBoost. Though deep models
have seen success in various scenarios, their application
to auto insurance risk evaluation still demands substantial
improvement and customization. Furthermore, AT versions
integrated with different tree models in the residual learning
module consistently exhibit significant advances compared
to various traditional tree-based and deep model baselines.
This substantiates that our introduced approach effectively
escalates performance in auto risk evaluation on both PD
and II metrics, suggesting its potential for broader application
within the auto insurance sector.

TABLE 4. The evaluation performance of various baselines and our AT’s
different versions with different tree models on the auto insurance
dataset.

C. ABLATION STUDY (RQ2)
To address Research Question 2 (RQ2), we investigate the
impact and contribution of each module in our proposed

framework by sequentially excluding them and observing the
resultant performance alteration. The findings are showcased
in Table 5, where ‘‘SA’’ represents the self-attention module
and ‘‘RM’’ denotes the residual modeling module. Analysis
of the table reveals that for any AT variant integrated
with a specific tree model, the exclusion of either SA
or RM leads to an increase in Poisson Deviance (PD)
and a decrease in Inconsistency Index (II), indicating a
deterioration in auto risk evaluation performance. This
highlights the critical role both the self-attention module,
responsible for capturing feature interactions, and the residual
modeling module, aimed at further reducing evaluation error,
play in enhancing performance. Furthermore, the results
indicate a more pronounced decline in performance upon the
removal of the RMmodule, suggesting its substantial positive
influence on final evaluation accuracy.

TABLE 5. The ablation study results for different versions of AT with
different tree models.

D. HYPERPARAMETER ROBUSTNESS (RQ3)
To address Research Question 3 (RQ3), we examine the
impact of three hyperparameters–embedding size, batch size,
and regularization weight–on the precision of auto risk
evaluation in our framework. Initially, the embedding size
within our Actuarial Transformer (AT) model is varied
from 2 to 30, with experiments conducted accordingly.
Empirical results, as depicted in Table 6, indicate that, despite
the model’s version or the tree models it is combined with,
changes in embedding size do not significantly alter the final
performance. For instance, in the AT(XGBoost) model, the
PD metric fluctuates minimally between 28.90 Similarly,
Table 7 explores the effect of varying batch sizes on AT
model performance, illustrating negligible variations in PD
and II metrics across AT(XGBoost), AT(LightGBM), and
AT(CatBoost) in comparison to their baseline improvements.
Remarkably, adjustments in the batch size for AT(CatBoost),
ranging from 1,000 to 20,000, consistently surpassed the
140 Moreover, we probe the AT model’s robustness against
alterations in the regularization weight, set between 1e-5 to
1e-3, to counteract or mitigate overfitting during training. The
outcomes, presented in Table 8, affirm the model’s stability
against diverse regularization weight settings. However, it is
essential to recognize that both excessively high and low
regularization weights can diminish performance, notably
for AT(LightGBM). Excessive regularization can dominate
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the loss function, leading to model oversimplification and
underfitting, thus impairing its predictive accuracy. Con-
versely, overly low regularization weights result in under-
regularization, risking overfitting as the model becomes too
tailored to the training data, capturing noise as patterns
and showing high variance, thereby affecting its reliability
and performance on new data. This issue is particularly
pronounced in self-attention-based transformer models like
ours.

TABLE 6. The hyperparameter robustness analysis on the embedding size.

TABLE 7. The hyperparameter robustness analysis on the batch size.

TABLE 8. The hyperparameter robustness analysis on the regularization
weight.

E. CONVERGENCE ANALYSIS (RQ4)
To address Research Question 4 (RQ4), we monitoring
the training progression of our Actuarial Transformer (AT)
model, specifically the AT(CatBoost) variant, and juxtapose
its behavior against the NNemb baseline. The associated
training trajectories are illustrated in Figure 3. Analysis
of these curves reveals that the smoothness of our AT
model’s training process is somewhat inferior to that of
the NNemb baseline, suggesting a lesser degree of stability.
However, the training loss of AT model diminishes at a
consistent rate, in contrast to the NNemb, which exhibits
an initial rapid decline that gradually tapers off. Yet, both
models approximately converge at the 500-epoch mark.
Furthermore, upon achieving convergence, our AT model
records a stable loss value of 0.1516, notably outperforming
the NNemb baseline’s 0.1545. This superior margin aligns
with our AT model’s enhanced performance on the test set,
as corroborated by the data in Table 4.

F. INTERPRETABILITY ANALYSIS (RQ5)
1) INTRODUCTION TO THE SHAP TOOLBOX
The SHAP (SHapley Additive exPlanations) framework,2

introduced by Lundberg and Lee (2017), is a robust set of
tools designed to enhance the interpretability of machine
learning models. Rooted in game theory, specifically the
concept of Shapley values, SHAP quantifies the contribu-
tion of each feature to individual model predictions. This
approach facilitates a nuanced understanding of complex
model decision-making processes. SHAP conceptualizes
each feature value of an instance as a ‘‘player’’ in a
cooperative game, with the model’s prediction serving as
the ‘‘payout.’’ The Shapley value methodology ensures an
equitable distribution of this ‘‘payout’’ among the features,
thereby elucidating their individual contributions to the
model’s output. Widely adopted across diverse domains
including finance, healthcare, and marketing, SHAP pro-
vides transparent explanations for predictions generated
by sophisticated machine learning algorithms. This trans-
parency not only fosters trust among practitioners and
stakeholders but also underscores the framework’s robust
theoretical foundations and its practical efficacy in elucidat-
ing complex models for both technical and non-technical
audiences.

2) ANALYSIS OF FEATURE IMPORTANCE
We employed the SHAP framework to ascertain the relative
importance of different features in our Actuarial Transformer
(AT) model, as illustrated in Figure 4. The analysis reveals
that the BonusMalus feature exhibits the most significant
positive importance, making the largest contribution to the
model’s performance. Conversely, the importance of other
features to the final prediction in our AT model is notably
weaker, and in some cases, negative. This stark contrast can
be attributed to several underlying factors that underscore
the significance of BonusMalus in predicting insurance risk
levels.

3) THE NATURE OF BONUSMALUS
The Bonus-Malus system [37], a cornerstone in automobile
insurance risk assessment, is a merit-based rating mechanism
designed to adjust policyholders’ premiums based on their
driving history and claim experience. This system operates
on a scale where policyholders receive a ‘‘Bonus’’ for
claim-free periods, resulting in reduced premiums, and a
‘‘Malus’’ for claims made, leading to increased premiums.
This mechanism serves to incentivize safer driving practices
and reward policyholders who maintain a clean driving
record, while penalizing those with a history of claims.
The Bonus-Malus system is predicated on the principle that
past behavior is a strong predictor of future risk, thereby
aligning premiums more accurately with individual risk
profiles.

2https://shap.readthedocs.io/en/latest/
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FIGURE 3. Training loss curves of NNemb baseline and our proposed AT model.

FIGURE 4. The feature importance of different features for our AT model
obtained with SHAP toolbox.

4) IMPLICATIONS WITHIN AUTO INSURANCE RISK CONTEXT
We analyze the implications of BonusMalus within the
context of auto insurance risk from the following dimensions:

• Direct Correlation with Driver Behavior: Rationale:
BonusMalus directly reflects a driver’s historical claim
behavior, encapsulating penalties (Malus) for claims made
and rewards (Bonus) for claim-free periods. Impact: Safe
driving behavior, indicated by a low BonusMalus score,
strongly correlates with a lower risk of future claims.
Conversely, a high BonusMalus score signals a history of
claims, suggesting elevated risk. This dichotomy enhances
its predictive power.

• Actuarial Foundation: Rationale: The insurance industry
extensively employs the BonusMalus system as a key
actuarial tool, grounded in the principle that past behavior
predicts future incidents. Impact: Given its widespread
acceptance and actuarial significance, models incorpo-
rating the BonusMalus feature likely align closely with

established insurance risk assessment practices, enhancing
their predictive accuracy.

• Quantification of Risk: Rationale: BonusMalus serves as
a quantifiable and dynamic metric of risk evolution over
time, adjusting as new data on driver behavior becomes
available. Impact: The dynamic nature of the BonusMalus
feature allows the model to adapt to changing risk levels
more accurately than static features, ensuring its Shapley
value remains consistently high.

• Comprehensive Risk Factor: Rationale: While many
features might indicate risk from different perspectives
(e.g., age, vehicle type), BonusMalus encapsulates the
cumulative effect of these factors as reflected in the driver’s
history. Impact: This comprehensive outlook renders
BonusMalus a condensed measure of risk, synthesizing
the effects of various underlying risk factors into a single,
impactful score.

• Enhancing Model Interpretability and Transparency:
Rationale: The clear, direct link between BonusMalus
scores and risk perception makes this feature valuable not
only for prediction but also for interpretability. Impact:
High Shapley values for BonusMalus not only underscore
its predictive power but also promote transparency in the
model’s assessment process, crucial for stakeholder trust
and regulatory compliance.

The high Shapley value of the BonusMalus feature in our
auto insurance risk evaluation model underscores its pivotal
role in capturing and quantifying driver risk. This prominence
derives from its direct reflection of driver behavior, its
foundational basis in actuarial science, the comprehensive
nature of the risk it represents, and its contribution to both
model accuracy and interpretability. By leveraging the rich,
historical context of drivers’ claims history encoded in the
BonusMalus system, our AT model is better equipped to
predict future claims accurately, rendering BonusMalus an
indispensable feature in risk evaluation.
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V. CONCLUSION AND FUTURE WORKS
A. CONCLUSION
This study presents the Actuarial Transformer (AT), a novel
model designed to improve auto insurance risk evaluation
by integrating transformer architecture with tree models. The
AT effectively handles the complexity of insurance datasets,
which include both continuous and categorical variables,
and provides an interpretable decision-making framework.
Unlike traditional models that struggle with nonlinear
relationships and variable interactions, the AT dynamically
captures these complexities through its attention attribution
mechanism, enhancing transparency and understanding for
stakeholders.

Our experiments on a representative public auto insurance
risk dataset confirm the AT’s superior accuracy in risk
assessment, outperforming existing models. The AT’s use of
SHAP values ensures that themodel’s predictions are not only
accurate but also interpretable, addressing the common issue
of black-box models in machine learning.

However, the study acknowledges limitations, including
potential overfitting on highly specific datasets and the
computational cost associated with the Transformer’s self-
attention mechanism. Future research should focus on
optimizing these aspects to enhance the model’s scalability
and efficiency.

In conclusion, the AT represents an advancement in the
field of auto insurance risk evaluation, offering both enhanced
predictive accuracy and interpretability. Its development
underscores the importance of transparent and accurate risk
assessment models in the insurance industry.

B. FUTURE WORKS
The Actuarial Transformer (AT) model presents numerous
opportunities for future research and development. These
include expanding its application to other insurance types
beyond auto insurance, advancing attention mechanisms to
incorporate temporal dynamics, integrating with emerging
technologies like IoT and telematics for real-time data
streams, enhancing algorithmic transparency and inter-
pretability, extending to multi-task learning frameworks for
simultaneous prediction of various risk aspects, improving
computational efficiency for scalability, and strengthening
robustness against overfitting. These avenues for improve-
ment underscore the ongoing journey in perfecting insurance
risk evaluation models, with AT serving as a milestone in the
application of sophisticated machine learning techniques to
actuarial science and insurance analytics.
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