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ABSTRACT 3D reconstruction of hand-object manipulations is important for emulating human actions.
Most methods dealing with challenging object manipulation scenarios focus on hands reconstruction in
isolation, ignoring physical and kinematic constraints due to object contact. Some approaches produce more
realistic results by jointly reconstructing 3D hand-object interactions. However, they focus on coarse pose
estimation or rely upon known hand and object shapes. We propose an approach for realistic 3D hand-
object shape and pose reconstruction from a single depth map. Unlike previous work, our voxel-based
reconstruction network regresses the vertex coordinates of a hand and an object and reconstructs more
realistic interaction. Our pipeline additionally predicts voxelized hand-object shapes, having a one-to-one
mapping to the input voxelized depth. Thereafter, we exploit the graph nature of the hand and object
shapes, by utilizing the recent GraFormer network with positional embedding to reconstruct shapes from
template meshes. In addition, we show the impact of adding another GraFormer component that refines
the reconstructed shapes based on the hand-object interactions and its ability to reconstruct more accurate
object shapes. From those contributions, we name our system ShapeGraFormer . We perform an extensive
evaluation on the HO-3D and DexYCB datasets and show that our method outperforms existing approaches
in hand reconstruction and produces plausible reconstructions for the objects.

INDEX TERMS Computer vision, deep learning, graph convolutional network, hand-object 3D
reconstruction, pose estimation, Transformers.

I. INTRODUCTION
Understanding and reconstructing hand and object interac-
tions in 3D is important for analyzing and imitating human
behavior. Modeling hand-object interactions realistically has
applications in several fields, including robotics, virtual
reality, and augmented reality. The last decade has witnessed
rapid advance in 3D hand pose [1], [2], [3], [4], [5],
[6], [7], [8], [9] and object [10], [11], [12], [13], [14]
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estimation in isolation. In contrast, reconstructing a hand
and an object simultaneously from a monocular image has
received lesser attention. Besides the common issues from
complex pose variation, clutter, and self-occlusion, methods
for reconstructing hands and objects that are in close contact
have to cope with mutual occlusions. Existing methods,
dealing with challenging object manipulation scenarios, tend
to focus on hand reconstruction alone [15], [16]. Recent
approaches to jointly reconstruct hand and object, often
neglect the intrinsic kinematic and physical correlation,
which exists among the two [17], [18], [19], [20]. Approaches
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exploiting that mutual relation typically focus on coarse pose
estimation or assume known hand and object shapes [21],
[22], [23], [24], [25], [26], [27].

In this paper, we propose one of the first approaches to
jointly reconstruct physically valid hand and object shapes
from a single depth map. In contrast to most methods,
ours can generalize to different hand models and unknown
object shapes, by directly regressing mesh vertices, rather
than model parameters. We avoid perspective distortion and
scale ambiguities, typical for RGB image-based methods by
working exclusively in the 3D domain. The input of our deep
network is a 3D voxelized grid of a given depth map, centered
around the hand-object interaction. The output consists of
(i) 3D heatmaps that describe the location of hand-object
pose keypoints (ii) hand-object shape predictions in voxelized
form, and (iii) the corresponding 3D hand-object mesh vertex
coordinates.

To effectively tackle the problem of simultaneous
hand-object pose and shape reconstruction, we propose a
novel architecture based on a Graph Convolutional network
andMulti-headedAttention layers. Specifically, we introduce
the following novel modules:

1) PoseNet & VoxelNet: Two 3D-to-3D voxel-based
networks for hand-object pose and shape estimation,
respectively;

2) ShapeGraFormer : State-of-the-art GraFormer (Trans-
formers with Graph Convolutional layers) for Hand-
Object shape reconstruction;

3) Positional Embedding layer based on the template
meshes for the hand and the object;

4) Topologically consistent object mesh registration for
optimal object modeling and shape prediction;

We validate our design choices and evaluate our approach
both quantitatively and qualitatively. Our approach out-
performs previous work on popular datasets [28], [29],
as also reported on the challenge website,1 with a minimal
shape reconstruction improvement of 0.43 cm over the
state-of-the-art.

II. RELATED WORK
In this section, we discuss the existing methods for joint
hand-object reconstruction from challenging monocular
objectmanipulation scenarios. For a survey ofworks focusing
on the reconstruction of hands and objects in isolation, please
refer respectively to [9] and [11].
Most methods that jointly reconstruct 3D hand-object from

monocular take single RGB [20], [23], [24], [26], [27], [30],
[31] or RGB + D input [17], [21], [22]. Very few recent
approaches consider single depth input [32], [33], [34], due
to its intrinsic challenges. Nevertheless, the availability of
depth information is a key factor in allowing proper, in-scale,
and scene-dependent 3D shape reconstruction, required for
e.g., virtual and augmented reality applications, especially
for single-frame, one-shot approaches. While RGB-based

1https://codalab.lisn.upsaclay.fr/competitions/4393#results

approaches can rely on large labeled data for training their
models [18], [23], [35], typically based on the MANO
parametric hand model (hand Model with Articulated and
Non-rigid defOrmations) [36], methods that rely on the
depth channel have access to only a limited amount of
data, because labeling of real scenes in the 3D domain are
impractical. For this reason, most depth as well as some
RGB + D approaches build their synthetic datasets in an
attempt to improve their results [17], [23], [32], [33], [34].
Recently, some datasets have been introduced to bridge the
gap between RGB and depth data availability, i.e., HO3D and
DexYCB [28], [29]. Still, they only provide limited sample
variation, especially in terms of number of objects consid-
ered. As a result, modeling and reconstructing the object
of interaction remains an underconstrained, challenging
problem. Many methods restrict themselves to objects with
known shapes [21], [22] or reconstruct them on the fly, under
certain object shape and visibility assumptions [34], [37],
[38]. The remaining approaches only output coarse object
pose, e.g., represented with bounding boxes [19], [24], [30],
[31]. Some more sophisticated methods, define a deformable
object model, typically based on a 3D sphere, capable
of coarsely adapting to virtually any convex shape [20],
[23], [37]. The resulting object reconstruction typically
lacks surface details, due to over-smoothing. Nevertheless,
we believe it to be a strong base with sufficient surface
information to reliably reconstruct interactions with the hand
surface. The remaining hand reconstruction as a standalone
problem has been largely studied in the past [39]. However,
modeling and reconstructing 3D hand-object interactions
is still very challenging, especially in a monocular setting
due to the large mutual occlusions. To simplify the task,
many approaches focus on fewer model parameter estima-
tion [23], [26]. In contrast, we directly regress hand-object
vertices, which makes our method capable to generalize
to different models or geometries. While many approaches
independently reconstruct hand and object before putting
them in context [23], [26], our approach is designed to
simultaneously regress hand-object geometries, thus allowing
us to implicitly study the underlying physical and kinematic
correlation existing among the two. Another advantage of
direct vertex regression is the possibility of reconstructing
extra, more realistic deformation, which cannot be synthe-
sized via model-parameter tuning. In this case, to avoid
distortions in the 3D reconstructions, though, particular
care has to be given to the algorithm design, especially
to the shape estimation components. To avoid perspective
distortion from the start, we convert the input depth map
to a 3D point cloud and base the remaining algorithmic
steps on the corresponding voxelized domain, following the
approach from Malik et al. [9] (HandVoxNet). The core of
our pipeline is based on a Graph Convolutional Network
(GCN), which has been shown to effectively tackle shape
reconstruction problems on graph-structured data, such as
mesh topology [40]. In contrast to the RGB-based approach
by Aboukhadra et al. [20] (THOR-Net), our depth-based
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method reconstructs hand-object geometries in one shot,
thus significantly reducing computational costs and training
time. We qualitatively and quantitatively demonstrate the
effectiveness of our ShapeGraFormer component, compris-
ing a combination of GCN and Multi-headed Attention
layers, as in [41], in the simultaneous reconstruction of hand
and object interaction as well as in shape refinement. For
the latter, we demonstrate its effectiveness in improving
physical hand-object interactions, without the explicit need
for expensive physical simulation [21] or penetration and
contact loss, as required in previous work [23], [26].

III. METHOD
We design a voxel-based 3D CNN along with a
ShapeGraFormer network to reconstruct plausible 3D hand-
object shapes in a single forward pass from an input depth
image. Our pipeline is depicted in Fig 1. In a preprocessing
step, we convert the input depth map to its voxelized form VD
by projecting the raw depth image pixels into a cubic binary
3D grid around the hand-object interaction space, similar
to [9]. Given VD, the first network component in the pipeline,
PoseNet , predicts 3D hand and object pose in the form of 3D
heatmaps, resp. P̂H and P̂O, see Section III-B. The resulting
heatmaps concatenated with VD are forwarded to the second
network component, VoxelNet , which produces a voxelized
shape representation of the hand and the object, resp. V̂H and
V̂O, see Section III-C. The voxelized depth VD along with
the intermediate voxelized representation and the features of
the VoxelNet serve as input to the next network component,
ShapeGraFormer , which regresses topologically consistent
hand and object vertices, see Section III-D. We describe our
hand and object models in the next Section.

A. HAND AND OBJECT MODELS
1) HAND MODEL
To represent hands, we use the MANO parametric hand
model [36], which maps joint angles and shape parameters
to a triangulated mesh representation SH := {vH , f H },
consisting of |vH | = 778 3D vertices, and a set of 3D hand-
skeleton joints J , where |J | = 21, representing the hand
pose.

2) OBJECT MODEL
Since objects differ greatly in terms of shape and size, direct
regression of object vertices from a set of topologically
inconsistent meshes results in strong noise in the output.
In order to bring all the known object geometries into the
same topologically consistent representation SO := {vO, f O},
we deform a source mesh via a set of vertex displacements
Dj := {d ji , ∀v

O
i }, scale cj and translation tj to approximate all

target objects S j as:

S j ∼ cj(SO + Dj) + t j, ∀j (1)

Our source mesh is a sphere obtained performing 4 subdi-
visions of a unit, i.e.,radius equals 1, regular icosahedron

centered at the origin, each subdivision generating four new
faces per face, resulting in a total of |vO| = 2562 vertices
and |f O| = 5120 faces. The object pose is defined as the 3D
bounding box, consisting of eight 3D corner coordinates.

3) OBJECT APPROXIMATION PROCEDURE
To approximate differently shaped objects, we first scale
(cj) and translate (t j) the target mesh S j to fit inside
the sphere. Then, to learn the set of displacements Dj,
we minimize the chamfer distance EC between the predicted
and target mesh computed on a total of 5, 000 surface
samples. We additionally enforce surface smoothness by
adding the following shape regularizers to the objective:
(i) surface laplacian smoothness EL which ensures smooth
vertex positions between neighboring vertices, (ii) normals
consistency EN across neighboring faces, and (iii) edge
length consistency EE across the entire deformed mesh
which minimizes the length of edges. We minimize the
weighted summation of all mentioned terms in the following
equation using stochastic gradient descent (SGD). The full
implementation of spherical object approximation can be
found in the PyTorch3D library.2

E = wCEC + wLEL + wNEN + wEEE (2)

B. PoseNet: 3D POSE ESTIMATION
The first component of our network pipeline, PoseNet ,
simultaneously estimates 3D hand joint location and 3D
bounding box corners of the object from an input voxelized
depth map. We modify the V2V-PoseNet architecture of [42]
by introducing a new 1 × 1 × 1 volumetric convolutional
back-layer, targeted to predict 3D object pose in parallel
to the 3D hand pose. The input depth map is converted
to a 3D binary voxelized representation VD of size 88 ×

88 × 88. Each voxel value is set to 1 when occupied and
0 otherwise, i.e.,VD ∈ {0, 1}. The cubic size is fixed to
the empirically found value of 200 mm. The output of the
network consists of a set of 3D heatmaps: (i) One set for each
j hand joints coordinates P̂Hj (v), and (ii) one for each b object
bounding box corners coordinates P̂Ob (v). All heatmaps are
discretized on a grid of size 44 × 44 × 44. Ground-truth
heatmaps PHj (v) and P

O
b (v) are generated by applying a 3D

Gaussian centered on the ground-truth locations with fixed
standard deviation. The training loss between the predicted
and targeted heatmaps is calculated by mean-squared error
(MSE):

Lpose =

∑
v

|J |∑
j=1

||P̂Hj − PHj || +

|B|∑
b=1

||P̂Ob − POb || (3)

where J = 21 is the number of hand joints and B = 8 is the
number of object corners In the above formula, we omitted
all dependencies on the voxels v for brevity.

2https://pytorch3d.org/tutorials/deform_source_mesh_to_target_mesh
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FIGURE 1. Overview of our pipeline. Our method takes as input a single depth image that is converted to a 3D voxelized representation and outputs 3D
realistic hand-object interactions. The input depth is first forwarded through a sequence of three components, namely PoseNet , VoxelNet , and
ShapeGraFormer , predicting respectively hand-object pose heatmaps, voxelized shape representations, and topologically-consistent shapes.

C. VoxeLNet: 3D VOXELIZED SHAPE
Given VD, P̂H and P̂O, the second component of our
pipeline, VoxelNet , predicts hand-object voxelized shapes
V̂H (v) and V̂O(v) for all existing voxels v in the grid.
The 3D CNN-based architecture of VoxelNet is inspired by
the work of Malik et al. [9]. We introduce an additional
3D convolutional layer to predict the voxelized object
shape. Our voxelized hand-object shapes are defined in the
range [0, 1], as done in the previous work. The predicted
voxelized shapes represent complete surface representation
for both the hand and the object, including both visible and
occluded surface information, as learned from the dataset.
Thus, entailing richer information for the next algorithmic
steps.

To train VoxelNet , we use the per-voxel combined sigmoid
activation function with binary cross-entropy loss for the
voxelized hand shape (similarly for the voxelized object

shape):

LHvoxel(v) = −(VH log(V̂H ) + (1 − VH )log(1 − V̂H )) (4)

where VH and V̂H are the ground truth and the estimated
voxelized hand and object shapes, respectively.

D. SHAPEGRAFORMER
To obtain topologically-coherent hand-object mesh repre-
sentation, from the voxelized hand and object predictions
obtained from VoxelNet , we train a new ShapeGraFormer
[41]. The ShapeGraFormer includes Graph Convolutional
layers and Multi-headed Attention layers to convert depth
features into a pose and a shape for both the hand and the
object. Although it was originally designed to lift 2D poses
to 3D, GraFormer’s design combines the advantages of Graph
Convolutional Networks and Transformers making it capable
of effectively solving any problem that can be represented

124024 VOLUME 12, 2024



A. T. Aboukhadra et al.: ShapeGraFormer: GraFormer-Based Network for Hand-Object Reconstruction

FIGURE 2. The complete collection of our sphere-based object
approximations used as ground-truth.

as a graph. Both the hand and the spherical objects have
consistent topology and hence can be represented as a
graph. Therefore, in our method, we utilize three separate
GraFormers, namely: hand GraFormer, object GraFormer,
and refinement GraFormer, with two feature extractors: a
hand feature extractor and an object feature extractor as
described in the following subsection.

Specifically, the network outputs hand-object vertex coor-
dinates vH and vO, respectively from the MANO hand model
SH and the sphere-based object approximated shape SO. The
hand and object vertices loss for training is defined using
MSE:

Lshape =

∑
i(v

H
i − v̂Hi )

2

|vH |
+

∑
j(v

O
j − v̂Oj )

2

|vO|
(5)

where v̂Hi and vHi are respectively the predicted and ground-
truth i-th hand vertex coordinates, and v̂Oj and vOj are predicted
and ground-truth object vertex coordinates.

1) FEATURE EXTRACTOR AND GRAPH INITIALIZATION
For the graph initialization, we use the outputs of theVoxelNet
and the raw voxelized depth as shown in Fig. 1. Namely,
we extract feature mapsFV from the VoxelNet and pass them
through an MLP that converts them into a feature vector
of size 256. Additionally, we utilize a simple 3D CNN to
extract features from the voxelized shapes and reduce them
to 128 features. Furthermore, a 3D Max Pool layer reduces
the size of the raw voxelized depth from 44 × 44 × 44 to
11 × 11 × 11 creating a 1331 feature vector. These features
are then combined to create a hand feature vectorFH

1715 of size
1715 to initialize the graph vertices as shown in Fig. 1. The
same operation is repeated for the object’s vertices resulting
in FO

1715. To initialize the adjacency matrix of the graph

FIGURE 3. Illustration of the GraFormer architecture.

layers, we use the mesh faces of theMANOmodel along with
the faces of the spherical mesh as described in Section III-A.

2) POSITIONAL EMBEDDING
In order to generate distinct features for each vertex in the
graph, we propose a positional embedding layer that converts
the vertices of the template meshes for both the hand and
object into positional vectors Epi of the same size as the
feature vector where i is the index of the ith vertex in the
combined hand-object graph. The positional vectors Epi are
then accumulated with the shared feature vectors FH

1715 and
FO
1715 depending on whether the ith vertex belongs to the

hand or the object in order to create a unique representation
for each vertex. For the hand mesh, we adopt the default
MANO hand as the template, while for the object mesh,
we use the sphere that is utilized for deforming objects, see
Section III-A.

3) GRAFORMER DETAILS
Each GraFormer consists of five consecutive GraAttention
components followed by Chebyshev Graph Convolutional
layers as described in [41] and shown in Fig. 3. A GraAt-
tention component consists of a Multi-headed Attention layer
where the hidden dimension is 128 and the number of heads
is 4, following the ablation study mentioned in [41] where
they studied the impact of hidden dimension size and number
of layers in the GraFormer on pose estimation. Compared
to normal Transformers, the last fully connected layer of
the Multi-headed Attention in the GraFormer is a graph
convolutional layer, not a feed-forward layer. The GraFormer
also contains an input layer that maps the feature vector to
the hidden dimension size and an output layer that maps the
hidden dimension into the corresponding 3D coordinate value
for each vertex in the graph.

4) REFINEMENT GRAFORMER
To enhance the realistic appearance and correct minor
shape-related artifacts in the predicted object shapes, we add
another GraFormer for refinement.We utilize the initial shape
produced by the Hand and Object GraFormer as input to
another positional embedding layer while we use FH

1715 and
FO
1715 to initialize the new graph. In the case of using a

refinement GraFormer during training, we get 2 separate
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FIGURE 4. Reconstruction results at different steps. Each row shows a different sample from Dvalid or Deval from HO-3D (v3).
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FIGURE 5. Comparison of our hand-object reconstruction with the
THOR-Net pipeline on the evaluation set Deval . Our hand-object
reconstruction approach is shown to generate more accurate hand and
object shapes.

shapes from the ShapeGraFormer and apply the same loss
function mentioned in III-D on both of them.

E. TRAINING AND IMPLEMENTATION DETAILS
We train all the components of our network on fully anno-
tated public hand-object pose and shape datasets, namely,
HO-3D [28] and DexYCB [29]. For training, we use the
Adam [43] optimizer with a learning rate set to .001. For
improved convergence, we train PoseNet separately, then
fix the obtained weights to train the remaining network
components. All learning and inference are implemented in
PyTorch and are conducted on an NVIDIA A100 GPU.

IV. EXPERIMENTS
In this section, we quantitatively and qualitatively evaluate
the effectiveness of our 3D hand-object reconstruction
pipeline on two popular datasets, namely HO-3D dataset
(version v2 and v3) [28] and DexYCB [29]. We additionally
compare our pipeline with state-of-the-art approaches in
Section IV-B. For quantitative evaluation and comparisons,
we use the following two metrics: (i) the average 3D joint
location error (J err.), and (ii) the average 3D vertex location
error (V err.) over all test frames.

A. DATASETS
1) HO-3D
The HO-3D dataset [28], is a publicly available dataset
with 3D pose annotations for hands interacting with objects
captured from third-person views. The dataset has multiple
versions and we report the results on v2 and v3 of the dataset.
For HO-3D (v3), the training set D := {Dtrain,Dvalid

}

contains annotations for |Dtrain
| = 71, 662 and

|Dvalid
| = 10, 927 images and a total of 55 sequences and

10 different objects from the YCB-Video dataset [44], 9 for
the training set and 1 (unseen) for the evaluation set. The
evaluation set Deval comprises 13 sequences with a total of
|Deval

| = 20, 137 frames addressing challenging scenarios:
namely, (i) 3 sequences with (2) seen objects and seen hands,
(ii) 5 sequences with (1) seen object but unseen hands,
and (iii) 5 sequences with seen hands but 1 unseen object.
Hands in the evaluation set are just annotated with the wrist
coordinates, while the full hand is not annotated. Object pose
and shape are annotated over all available sets.

2) DexYCB
To extend our evaluation, we also train our network on the
DexYCBdataset [29]. DexYCB contains hand pose and shape
and 6D object pose annotations for 582k frames recorded
on 10 different subjects, using 20 different objects and
8 views. We use the S1 evaluation setup as specified by the
authors where Dvalid contains 1 unseen subject and Deval

contains 2 unseen subjects and Dtrain contains 7 subjects and
all different objects. The exact split sizes are: |Dtrain

| =

407, 088, |Dvalid
| = 58, 592, and |Deval

| = 116, 288.
In the next section, we show results on Deval for both

datasets.

B. EVALUATION
In this section, we evaluate the hand-object shape and pose
reconstruction and compare it to state-of-the-art approaches
in challenging scenarios.

1) METHODS FOR COMPARISON
We compare our work on HO-3D quantitatively with six
different methods. The work of Hasson et al. [23] and THOR-
Net [20] are the most related to ours in terms of the goals.
However, as they focus on RGB inputs, comparisons are
made up to scale. Malik et al. [9] on the other hand, is based
on depth inputs and has a comparable voxel-based network
pipeline to our design. However, they ignore the presence
of an object and reconstruct hands in isolation. We include
the representative RGB-based hand reconstruction approach
of Hampali et al. [28], and ArtiBoost [31] for completeness.
For a fair comparison, all methods have been (re-)trained on
the HO-3D dataset. The first two methods provide publicly
available results (hand-only), which we report in Table 1.
We re-implemented HandVoxNet following the authors’
instructions and trained all the network components on HO-
3D. In addition to that, we also report the root-relative pose
estimation error in Table 2 and compare it to two benchmark
methods mentioned by the DexYCB authors. We also show
qualitative samples for hand reconstruction from DexYCB in
Fig. 6.

2) HAND RECONSTRUCTION
Quantitative evaluation on hand pose and shape reconstruc-
tion, shows that our method outperforms existing methods,
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FIGURE 6. Reconstruction results at different steps. Each row shows a different sample from Deval from DexYCB.

TABLE 1. Quantitative results on the evaluation set Deval of HO-3D [28]
dataset. Upper table: HO-3D (v2), lower table: HO-3D (v3).

see Table 1 and Figures 4, 5. We achieve a minimum pose and
shape prediction improvement respectively of 0.27 cm and
0.43 cm over the state-of-the-art. The experiments show that
training the network for hand reconstruction alone without
object reconstruction improves hand reconstruction and that

the refinement stage has no impact on hand reconstruction as
shown in Table 1. However, joint training for the hand and the
object outperforms other methods. Fig. 5 shows our results
on a few frames of the challenging evaluation sequence
compared to THOR-Net. In comparison to THOR-Net, our
approach reconstructs more accurate hand shapes, as it
better exploits hand-object kinematic correlation and depth
information. These are implicitly learned while predicting
both interacting shapes simultaneously. In Table 2, we show
an improvement of 0.53 cm in hand pose estimation compared
to benchmark results on the DexYCB dataset. Fig. 6 also
shows the qualitative reconstruction results on DexYCB
without the additional refinement network.

3) OBJECT RECONSTRUCTION
We found that topological consistency is the key factor
allowing ShapeGraFormer to predict smooth vertices point
clouds across all sequences, without the need for additional
smoothness constraints, see Fig. 4. After sphere-based
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TABLE 2. Root-relative hand pose estimation results on Deval of
DexYCB [29] dataset (S1) in comparison to benchmark results.

FIGURE 7. Object reconstruction error (V err. in mm) on different objects
from Dvalid and Deval of HO-3D. The results show that adding a
refinement GraFormer improves object reconstruction.

registration, all objects share the same topology and number
of vertices. We believe our choice for the sphere resolution
to be a good trade-off between approximation quality and the
number of vertices. Sphere-based approximation implicitly
repairs irregularities in the target object shapes, making
it best suited for hand-object prediction, at the cost of
over-smoothed sharp edges and tiny surface details, see
Fig. 2.

We evaluate object reconstruction on Dvalid and Deval

of HO-3D dataset, see Fig. 7 and Table 3, as well as on
the DexYCB dataset, see Fig. 6. The additional hand-object
refinement step improved object reconstruction error on all
objects. This suggests that the refinement network utilizes
hand information to improve object reconstruction.We notice
that even in the presence of inaccurate pose prediction as
input, our approach recovers smooth object shapes, see Fig. 4.
Compared to THOR-Net our approach tends to oversmooth
object edges, see Fig. 5, possibly due to the simplified
reconstruction approach.

TABLE 3. Object’s reconstruction error (V err. (cm)) on a selected set of
objects from HO-3D and DexYCB.

C. ABLATION STUDY
To validate our design choices for the ShapeGraFormer ,
we conduct an ablation study to study the modality of FH

1715
and the choice of layers within the GraFormer and study

the impact on hand reconstruction. The ablation study in
Table 4 shows that combining voxelized depth VD, FV , and
V̂H as input to the ShapeGraFormer yields the best results.
Furthermore, the mixture of graph layers with transformers in
the design of the GraFormer is critical to achieving the best
performance.

TABLE 4. Top: An ablation study on the modality of FH
1715. Bottom: An

ablation study on the GraFormer design choice.

1) CONTACT LOSS: PENETRATION AVOIDANCE AND
CONTACT ENFORCEMENT
We test the impact of differentiable contact loss, consisting
of an attraction Lattraction and a repulsion Lrepulsion term,
similar to Hasson et al. [23]. Lattraction is aimed at enforcing
hand-object contact, by penalizing the distance between the
object and the fingertips, while Lrepulsion penalizes mesh
interpenetration. As shown in Table 1, the additional loss
term does not introduce a tangible increase in performance.
Thus, suggesting our independent Refinement GraFormer
component implicitly and successfully learns valid hand-
object interactions.

V. CONCLUSION
In this paper, we propose one of the first methods for
realistic hand-object pose and shape reconstruction from a
single depth map. We introduce a novel 3D voxel-based
GraFormer network pipeline, which reconstructs detailed 3D
shapes via direct regression of mesh vertices. We conduct
an ablation study to show the effectiveness of our design
choices and the impact of utilizing the power of GCNs along
with Transformers for hand-object shape estimation and
refinement. We perform quantitative and qualitative analysis
on the HO-3D dataset [28] and DexYCB dataset [29] and
show outstanding comparative results with the state-of-the-
art. In future work, we plan to address limitations such as
inaccurate annotations. In addition, we will study RGB + D
methods to utilize the extra features found in RGB frames.
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