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ABSTRACT Probability estimation measures the likelihood of different outcomes in a statistical context.
It commonly involves estimating either the parameters or the entire distribution of a random variable.
Parametric approaches, where a specific functional form is assumed for data distribution, have been used
in various fields, particularly in computational statistics for modeling and simulating physical phenomena.
However, non-parametric methods have gained prominence, especially in machine learning and signal pro-
cessing. These methods are focused on estimating or modeling probability density functions without relying
on predefined parametric forms. It becomes crucial when faced with unknown or complex distributions,
especially if parametric assumptions do not hold. This paper deals with the non-parametric method based on
the Parzen window for probability density function estimation, a versatile approach applicable to univariate
andmultivariate data. Having a sufficient amount of data, this method provides reliable estimates, while at the
same time, it is quite suitable for implementation. Considering the advantages of hardware implementations
compared to software solutions, this paper introduces analog-digital hardware for the Parzen approach. The
proposed solution avoids the need for sorting operations, which are typically challenging to implement in
hardware. The simulation is performed using PSpice software (OrCad version 22.1) showing that the required
processing time is under 420 ns.

INDEX TERMS Analog hardware, non-parametric approach, Parzenwindow, probability density estimation.

I. INTRODUCTION
Probability density function (PDF) estimation [1], [2], [3],
[4], [5], [6], [7] plays a crucial role in various applications
related to computational statistics, from modeling and simu-
lating physical phenomena to statistical pattern recognition.
The characteristics of the unknown PDF are inferred from
available data samples before making any predictions or
inferences. Classical approaches to PDF estimation begin
with an initial screening of the data, forming a hypothesis that
the data fits a particular parametric family of density curves.
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Subsequent steps include estimating the parameters of this
density family and conducting hypothesis testing.

Generally, PDF estimation approaches are divided
into parametric and non-parametric methods. Parametric
approaches assume a data structure before estimating the PDF
of a dataset. A typical model assumes a Gaussian distribution,
allowing the construction of a relevant inference rule with two
parameters characterizing the Gaussian data structure. After
constructing the PDF, the training data is no longer needed,
and the remaining output is the inference rule.

In the absence of prior information, non-parametric
approaches for PDF estimation are used [2], [6], [7], without
making functional form assumptions. In machine learn-
ing, this implies constructing a model without a predefined

116226

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6642-9411
https://orcid.org/0000-0001-6581-3000
https://orcid.org/0000-0002-1913-4928


D. Stanković et al.: Analog-Digital Hardware for Parzen-Based Nonparametric Probability Density Estimation

data structure. Non-parametric PDF estimation approaches
are valuable in scenarios where the data distribution
may deviate from standard parametric assumptions. These
approaches, widely used in data analysis, machine learn-
ing, and signal processing, make predictions by utilizing
all available data points and applying an inference rule
that considers the relationship between a new data point
and the entire training dataset. The simplest non-parametric
approach is the histogram, employed for initial data screen-
ing, although its performance as a PDF estimate is limited.
Other commonly used nonparametric methods for PDF
estimation include k-Nearest Neighbor (kNN) methods,
Empirical Distribution Function (EDF), and Kernel Density
Estimation (KDE) [2].

Nearest neighbor methods [8], [9] estimate the value
of density at the observed point based on the distance
between the point and its k nearest neighbors. The empir-
ical Distribution Function provides a step function that
assigns a probability to each observed data point, forming
a staircase-like estimate of the cumulative distribution func-
tion (CDF).

Kernel Density Estimation is a smoother method that
places a smooth, symmetric function - kernel on each data
point and sums it to form an estimate of the PDF. It provides
a continuous and more refined representation of the data
distribution than histograms. A special type of kernel density
estimation, where a fixed window (or ‘‘kernel’’) is centered
at each data point and the contributions from all windows are
summed, is the Parzen window approach. The choice of the
window function and its bandwidth affects the smoothness of
the estimate. Neural networks [10], [11], [12], [13], [14], [15],
as a computational model inspired by the structure of the
human brain, commonly employ PDF estimation as a crucial
step in uncertainty quantification and data modeling. For
example, in [3], the Parzen window estimator and its impact
on the effectiveness of Information Theoretic Learning (ITL)
training, specifically using Renyi’s and Shannon’s entropies
are considered. By comparing the convergence speed of
weights, PDF estimator, and residual error, along with pre-
diction accuracy, across various backpropagation algorithms
(MSE, cross-entropy, and quadratic entropy), this study eval-
uates the performance of a type of neural network called the
multi-layer perceptron (MLP) trained on standard datasets
like MNIST.

Although software implementations have been favored
for their flexibility, there is a growing need for hard-
ware implementations due to several advantages. Namely,
hardware implementations provide significantly higher pro-
cessing speed and improved computational efficiency. This is
particularly beneficial for real-time applications and systems
with demanding performance requirements. Additionally,
hardware implementations optimize resource utilization by
customizing hardware architecture, leading to cost sav-
ings [16], [17], [18], [19], [20], [21]. Therefore, in this
paper, we propose a simple and efficient solution for hard-
ware implementation of the Parzen window-based density

estimation approach. The proposed solution is scalable and
it is not dependent on the signal size.

The paper is organized as follows. Section II briefly
describes the methodology of this work, including the
research question, main goals, assumptions, and evaluation
steps. Section III provides theoretical aspects of the probabil-
ity density estimations, while the Parzen window approach is
described in Section IV. The proposed hardware architecture
is described in Section V. Evaluation of the proposed hard-
ware solution in terms of the hardware complexity, processing
time, and comparison with other solutions is provided in
Section VI. The results for examples with real-world data are
provided in Section VII. The concluding remarks are given in
Section VIII.

II. METHODOLOGY
The classification algorithms using PDF estimation of train-
ing datasets are of practical interest in many applications but
require large training sets to provide reliable results. These
algorithms can be used independently or as an auxiliary
preprocessing step for neural network-based classifications
with large datasets. Therefore, in this work, the commonly
used PDF estimators are described in detail as a part of the
theoretical background.

To provide real-time classification in the case of large
amounts of data, it is of utmost importance to decrease the
processing time and number of operations required by the
PDF estimators. This is especially emphasized when dealing
with various processes in the classification task.

For this purpose, we consider the Parzen window-based
estimator and its real-time hardware realization. The imple-
mentation that directly follows from the algorithm steps
would be very demanding regarding both the hardware
complexity (number of components) and processing time.
To be specific, the Parzen window-based algorithm includes
a demanding sorting operation for large data sequences.
For instance, one may consider the realization of the
Bitonic sort algorithm ( [22], [23]), being very complex and
time-demanding for the observed problems, assuming large
datasets.

Accordingly, the main research question is focused on the
possibility of implementing a hardware solution using analog
circuits that can deal with large datasets and various classifi-
cation processes. Analog solutions may certainly increase the
processing speed, but the sorting operation remains a chal-
lenge. Hence, the proposed approach offers a solution that
allows classification without sorting operation (as presented
in Section V). A slight modification of the algorithm is done
using analog circuit implementation. Indeed, by processing a
signal sample through a single parallel line of analog com-
parators and analog adders, it is possible to associate the
observed sample with one of the classification processes.

Another goal, which is also important to fulfill is a large
scalability of the architecture in terms of the number of
classification processes, which is also addressed in this work.
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The evaluation of the proposed work is performed through
the following segments (discussed in Sections VI and VII):

1. Specification of the proposed hardware complexity and
processing time;

2. Comparison with the analog solution that is based
on the theoretical Parzen-window algorithm without opti-
mizations; comparison with software simulation and digital
implementation.

3. Experimental evaluation using real-world signals (two
different types of vibrations: earthquake vibration and
vehicle-produced vibration).

III. THEORETICAL BACKGROUND—PROBABILITY
DENSITY ESTIMATION APPROACHES
For any random variable x, the probability density function
f (x) provides a comprehensive description of the distribution
of x and facilitates the calculation of probabilities associated
with x through the relationship:

P (a < x < b) =

∫ b

a
f (x)dx, ∀a < b. (1)

Let set {X1, . . . ,Xn} be a set of randomly distributed points.
When f (x) is unknown, where x denotes a new point, its
properties need to be deduced from a set {X1, . . . , Xn} before
making any predictions. Then, density estimation involves
creating an approximation of the PDF based on the observed
data.

Suppose we have an infinite sequence of indepen-
dent and identically distributed (i.i.d.) random variables
X1, X2, . . .with an unknown distribution function f . The goal
is to estimate f based on a finite random sample X1, . . . , Xn,
where n ∈ N . In the context of parametric distribution func-
tion estimation, the approach involves predefining the model
structure before encountering the actual data. This means
having prior knowledge that the distribution fits a specific
form, such as Gaussian (normal) distributionN(µ, σ 2), where
µ and σ 2 are parameters to be estimated. Hence, the goal is to
accurately estimate the distribution parameters based on the
observed data.

Nonparametric methods estimate the PDF based on a
set of independent and identically distributed samples.
The simplest non-parametric approach for PDF estimation
is histogram. It divides the domain into intervals (bins)
and counts the number of samples nb falling within each
interval. For example, if the variable X belongs to the
interval [a, b], it is divided into M non-overlapping bins,
and the bin width lbin is described with the following
relation:

lbin =
b− a
M

. (2)

The bin width represents a smoothing parameter since it
regulates the degree of smoothness in the histogram. Namely,
smoother histograms have larger values of the bin widths
while small values of lbin produce histograms with more
variation.

Given a random sample X1, . . . , Xn and the extent of a bin
[xk , xk+1], the local probability density can be obtained as:

f̂ (x) =
nx

n× lbin
, for xk ≤ X ≤ xk+1 (3)

where nx denotes the number of samples in each bin, n is
the total number of samples, the bin width is lbin = xk+1- xk ,
and f̂ denotes the density estimate for the probability density
function f . The frequency of each bin corresponds to the
number of training data points within the bin divided by the
total number of training data points.

The histogram provides simple implementation and clear
visualization. However, it suffers from limitations such as
a lack of smoothness, with discontinuities at bin transi-
tions [24]. Also, the computational costs become large as the
number of variables increases [4]. These drawbacks have led
to the development of more sophisticated methods to address
these issues effectively.

Another non-parametric approach to the density estimation
is the nearest neighbor estimator. It relies on the distance
between data points to estimate the density at a given point.
Specifically, it estimates the density at a point x by consid-
ering the k th distance dk , i.e. the distance between the point
of interest and its nearest neighbor within a certain radius or
neighborhood. However, the choice of the neighborhood size
or radius can significantly impact the accuracy of the density
estimates. The integer k is chosen to be smaller than the
sample size n. If the sample size is n, then k is typically chosen
to be k ≈ n1/2 [25]. A hypersphere is created using dk as its
radius and the density f̂ (x) can be estimated as:

f̂ (x) =
k

VDndDk (x)
, (4)

where n is the sample size, and VD is the volume of a unit
sphere in RD and it is described by the following relation:

VD =

√
πD

0 (1 + D/2)
, (5)

where 0 is the Gamma function. For the sphere of radius R,
relation (5) becomes:

VD(R) =

√
πD

0 (1 + D/2)
RD. (6)

If the distance between two points is denoted as d , d1(x) ≤

d2(x) ≤ . . .≤ dn(x), then the k th nearest neighbor density
estimate can be calculated according to the relation [25]:

f̂ (x) =
k

2ndk (x)
, (7)

where dk (x) is the distance from x to the k th nearest point.
One generalization of the histogram method is the naive

estimator. If the random variable X has density f , then the
following relation is valid:

f (x) = lim
h→0

1
2h
P (x − h < X < x + h) , (8)
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For a given h, it is possible to estimate P(x−h< X< x+ h)
by determining the proportion of the sample that falls within
the interval (x−h, x+h). The naive estimator is obtained for
small h and it is several X1, . . . , Xn falling within the interval
(x-h, x + h) [25]:

f̂ (x) =
nx
2hn

. (9)

where nx is the number of sample points in the interval
(x-h, x + h). From (3) and (9), it can be seen that the naive
estimator is equivalent to the histogram, where the bin width
is 2h and the center of the bin is the estimation point x.
Namely, the density at a point is estimated based on the
number of observations within a specified interval width h
centered around that point.

The naive estimator can be written using the weight func-
tion w as follows:

f̂ (x) =
1
nh

n∑
i=1

w
(
x − Xi
h

)
,

where w (x) =

{
1/2, if |x| < 1
0, otherwise,

(10)

and Xi are data samples, i.e., independent and identically
distributed (i.i.d.) random variables. The relation (10) means
that the estimate is obtained by placing a „box‘‘ whose dimen-
sions are 2h×(1/2nh) on each observation, and the estimate
is obtained by summing these boxes.

While this approach resolves the issue of selecting bin
locations, it does not mitigate other drawbacks associated
with the histogram approach. The naive estimator is not ideal
for visual presentation, since f̂ is not a continuous function
and therefore, has a coarse stepwise nature. The histogram
and naive estimator, although subjective in choosing the inter-
val width, laid the foundation for the development of kernel
estimators by Rosenblatt, which form a class of univariate
estimators for density estimation.

Kernel density estimators benefit from flexible modeling
of data distribution and adaptability to the data shape when
the distribution is irregular or skewed. This assures more
accurate probability estimates of classes and consequently
much better classification performance. On the other hand,
kernel density estimators increase complexity and computa-
tional overhead when dealing with larger datasets, so there
is a need for low-complexity solutions based on optimized
hardware implementations. Particularly, the Parzen window
approach, as one of the most appropriate kernel density esti-
mators, is considered in the next Section.

IV. PARZEN WINDOW APPROACH AND ITS
APPLICATION IN SIGNAL CLASSIFICATION
By improving the smoothness of the weighting function, the
kernel approach improves the smoothness of the naive estima-
tor. Namely, the weighting function w in the naive estimator
is replaced with a smooth symmetric kernel function K . The
influence of the kernel is maximal at the point x = Xi, while it

is lower at the points left and right from the Xi. Hence, the
kernel estimator can be defined with the following relation:

f̂ (x) =
1
nh

n∑
i=1

K
(
x − Xi
h

)
,∫

∞

−∞

K (t)dt = 1. (11)

If we write kernel function as Kh(x) =
1
hK

( x
h

)
then (11) can

be written in the following form:

f̂ (x) =
1
n

n∑
i=1

Kh (x − Xi). (12)

Parameter h is a smoothing parameter and it is called window
width. A narrow window causes the estimate to exhibit a
significant amount of noise or erroneous patterns. By using
a wider window, the estimate appears smoother, but there is a
risk of obscuring important features such as peaks. The esti-
mated probability density function is derived by positioning a
weighted kernel function at each data point and subsequently
averaging them. The univariate kernel estimator procedure is
summarized in the sequel:

- Choose a kernel function, a smoothing parameter h, and
the set of x values over which to evaluate f̂ (x);

- For each data point Xi, calculate curves according to the
relation: Ki = K

(
x−Xi
h

)
, i = 1, . . . , n;

- Weight each curve by 1/h;
- For each x, take the average of the weighted curves.
The Parzen window approach is a specific type of ker-

nel density estimation, where the window function is fixed.
Instead of directly classifying data samples, the Parzen
window estimates the PDF to provide insights into the dis-
tribution of the data. It involves centering a window at each
observed point and calculating the weighted average of the
values within the window, instead of simply counting the
number of samples. With an infinite number of samples, this
method converges towards the true density.

The kernel is a symmetric function that satisfies the fol-
lowing conditions:

K (x) ≥ 0, ∀x

K (x) = K (−x), ∀x∫
K (x)dx = 1,∫
K 2(x)dx < ∞,∫

K (x) |x|3 dx < ∞.

Let f (x) be the density function to be approximated. Having a
set of n i.i.d. X1, . . . , Xn, the Parzen window estimate of f (x),
based on n samples can be defined as:

f̂ (x) =
1
nh

n∑
i=1

K
(
x − Xi
h

)
. (13)
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where K is a kernel function.The commonly used kernel
function is the Gaussian window function, defined as:

K
(
x − Xi
h

)
=

1
√
2π

e
−

1
2

(
x−Xi
h

)2
. (14)

Other commonly used window functions are rectangular or
triangular kernels. The rectangular Parzen window function
K is obtained and defined as:

K
(
x − Xi
h

)
=

 1, for |x − Xi| ≤
1
2
, i = 1, . . . , k

0, otherwise,

(15)

where k denotes the number of samples enclosed by the
window and n is the total number of samples. The esti-
mated (simplified) density for the rectangular window is
obtained as:

f̂ (x) =
k/n
h

, (16)

where the number of samples within the window is:

k =

n∑
i=1

K
(
x − Xi
h

)
. (17)

A. APPLICATION OF THE PARZEN WINDOW IN THE
CLASSIFICATION TASK
The application of the Parzen window-based approach for
density estimation in the classification task is described in
the sequel. Without loss of generalization, let us consider a
simplified case assuming two different processes: process P1
accompanied by the training signal x1 and process P2 accom-
panied by the training signal x2. The sample value y needs to
be classified, i.e. assigned to P1 or P2. The rectangular win-
dow is used as in (15), and the number of samples inside the
window for P1 and P2 (k1 and k2, respectively) is calculated
according to (17).

The steps of the Algorithm are given in the sequel.
The same procedure is applied even when dealing with N

processes: P1, . . . , PN . Namely, for ki = max{k1, . . . , kN },
it follows that y ∈ Pi.
Limitations: If the observed processes are characterized

by the non-overlapping PDFs, then |k1 − k2| > ξ where
ξ denotes the minimal gap assuring reliable classification.
Otherwise, when |k1 − k2| ≤ ξ the result may be ambiguous,
since it belongs to a kind of neutral zone. However, this is
relevant only when observing a single sample classification.
In the case of a sequence of samples, the majority of them are
accurately classified.

V. A HARDWARE SOLUTION FOR PARZEN-BASED
DENSITY ESTIMATION
In applications using streaming data statistics to monitor the
system performance (e.g. estimation of channel or network
occupancy), high-speed real-time processing is required, and
consequently, the density estimation needs to be implemented

Algorithm 1
1. Inputs
I) P1: x1 = [x1(1), x1(2), . . . , x1(n)]
II) P2: x2 = [x2(1), x2(2), . . . , x2(n)]
III) y – current sample for classification

2. Join y to x1 and x2 as:

xy1sort = sort{join(x1, y)}

xy2sort = sort{join(x2, y)}

3. Calculate the number of samples within the window:

k1 = count{y− 1 < xy1sort < y+ 1}

k2 = count{y− 1 < xy2sort < y+ 1}

where 1 = h/2
4. if k1 > k2 then y ∈ P1
else y ∈ P2
go to the next y

using high-speed real-time hardware solutions. In the sequel,
we propose an efficient hardware implementation of the
Parzen window approach, where the optimized performance
is achieved by exploiting the advantages of analog circuits.

The block diagrams in Fig. 1 illustrate the hardware
implementation of the Parzen window-based PDF estimation
procedure. In the solution depicted in Fig. 1, the classification
of input signal samples is performed using the Parzenwindow
principle to determine association to the most probable pro-
cess. Two scenarios are covered: Fig. 1(a) shows the solution
when the signal is not sampled and therefore, it is fed to
the Sampling circuit before the classification. The shadowed
part depicted in Fig. 1(b) illustrates the modified part of the
architecture from Fig. 1(a), for the case when the signal was
sampled in advance, and the samples were fed to the Sample
select circuit.

The proposed architecture consists of:

• Input data part,
• Classification part,
• Data acquisition part,
• Relaxation oscillator.

A. INPUT DATA PART OF THE PROPOSED ARCHITECTURE
The inputs of the architecture (Input data in Figs. 1(a) and
1(b) are:

- Samples of Process 1, . . . , N (Process 1, . . . , N blocks),
and

- Input signal samples, whose probability is to be esti-
mated (signal for sampling or data/samples for the
classification, depending on what we have at the input).
Blocks Process 1, . . . , Process N consist of sample and
hold amplifiers used to store the samples.Data/samples
for the classification block in the scenario shown in
Fig. 1(b) also consist of sample and hold amplifiers.
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FIGURE 1. Block diagram of the proposed approach; (a) solution with signal sampling circuit in the
Classification part; (b) the modified part of the architecture from (a) - here the signal is already sampled and
samples are directly forwarded to the Sample select circuit.

An integral part of the architecture is the relaxation oscil-
lator that controls the operation of the architecture. As long
as the ENABLE signal of the oscillator is not activated,
the architecture is inactive. Before activating the ENABLE
signal, the samples are stored in Process 1 and Process N
blocks, and the input signal is fed to the architecture. Acti-
vated ENABLE signal produces pulses at the oscillator’s
output, initiating the operation of the architecture.

B. CLASSIFICATION PART OF THE PROPOSED
ARCHITECTURE
The Classification part consists of:

- Sampling circuit or Sample-select circuit - SSC,
- Circuits for incrementing (+1V ) and decrementing
(-1V ),

- Comparator blocks,
- Adders,
- Resolving block.

In the case that the signal is not sampled in advance
(Fig. 1(a)), the Sampling circuit is embedded within the
Classification part of the architecture. The architecture of
the Sampling circuit is shown in Fig. 2. The fundamental
component of this circuit is the sample and hold (SHA)
amplifier.

The sampling circuit takes a sample of the input sig-
nal and holds it at its output long enough to perform its
PDF estimation. The CR part is the differentiator that defines
the time SHA stays in the sampling state. Due to the CR
circuit, this time can be different and shorter than the duration
of the high voltage level at the output of the oscillator.

FIGURE 2. Sampling circuit.

Namely, this ensures that the SHA is in the hold state
even when there are high voltage levels at the output of
the oscillator, which is a fundamental requirement for the
operation of the entire architecture. The selected sample at
the output of the sampling circuit is denoted by DfC (Data
for Classification), see Fig. 2.
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In the case when the sampled signal is fed to the input
(Fig. 1(b)), the Sample select circuit (SSC) is provided in
the Classification part.The realization of the Sample select
circuit is shown in Fig. 3. This circuit is used to select and
connect a sample that will be classified with the rest of the
architecture.

FIGURE 3. Sample select circuit.

It consists of the oscillator, decade counter 4017, logical
AND circuits, and analog switches. Every ascending edge of
the oscillator signal selects the next data for classification.
The decade counter 4017 used in the realization has only
one output at a high voltage level. The high voltage level
at the output of the 4017 counter closes an analog switch,
ensuring that the selected sample is moved forward. The
selected sample at the output of the Sample select circuit is
labeled as DfC (selected Data for Classification).

In analogy with the Algorithm in Section V-A, we have
y= DfC. Here, to avoid any sorting operation being known
as very demanding, we propose the modification using the
analog hardware implementation. Accordingly, first, it is nec-
essary to calculate the bounds of the window:

y+ 1 = DfC + 1V = DfC+, and

y− 1 = DfC − 1V = DfC − . (18)

Then for each process, the samples xi are compared (within
the Comparator block) with DfC+ and DfC- in parallel for
i = 1, . . . , n, producing the outputs according to:

Cout (xi) =

{
1, for xi ∈ [DfC−,DfC+]
0, otherwise. ,

(19)

Finally, it is necessary to count the number of ‘‘1’’ at the
outputs of comparators using the analog adders:

Sum(xi) =

n∑
i=1

Cout (xi). (20)

Therefore, according to (18), the DfC is firstly fed to the
input of the incrementing/decrementing circuit, as shown
in Figs 1(a) and 1(b) (±1V blocks). The realization of
the incrementing/decrementing circuit (operations described
by (18)) is shown in Fig. 4. The circuit has two outputs:

DfC+ and DfC-. At the DfC+ output, the value of the DfC
sample is obtained by adding1V :DfC+ =DfC+ 1V , while
at the DfC- output, the value is obtained by subtracting 1V :
DfC- = DfC - 1V . The results, DfC+ and DfC-, are further
fed to the comparator block. The value 1V is set empirically.
In the experiments, we used the value of parameter1V = 0.1.

FIGURE 4. Incrementing/decrementing circuit.

The Comparator block is presented in Fig. 5, and it is the
same for each process (class) x (the architecture is proposed
following (19)). Let us denote the value of each sample from
process x as PxSi. This value is compared toDfC+ andDfC-.
If it is less than DfC+ and greater than DfC-, a high voltage
level (e.g. 5V) will appear at the output of the NOR gate
(Fig. 5). In all other cases, the voltage level at the output of
the NOR gate will be low (e.g. 0V). Ultimately, the number
of NOR gates with a high voltage level corresponds to the
number of samples from process x whose value is within the
range DfC− < PxSi < DfC+, or within the range of ±10%
of the DfC sample value.

FIGURE 5. Comparator block for process x, where x ∈ [1, . . . , n].

The outputs of the NOR gates in the Comparator block
are labeled as RfPxSi, i ∈ [1, . . . , n], indicating the ‘‘result for
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PxSi’’ sample (comparator output Cout in (19)). These labels
will be used in the further description of the architecture. The
outputs of the NOR gates in the Comparator block RfPxSi,
i ∈ [1, . . . , n], are further led to the inputs of analog adders
(Fig. 6), according to (20).

FIGURE 6. Analog adders.

The analog adders are implemented using inverting ampli-
fiers as shown in Fig. 6. The analog voltage obtained at the
adder’s output (SfPx – Sum for process x) is directly propor-
tional to the number of NOR gates in the Comparator block
with high voltage levels at the output. For the process with the
highest number of high voltage levels at the outputs of NOR
gates, the adder’s output will have the highest analog voltage
level. The presented architecture can cover 1024 outputs of
NOR gates. The architecture is scalable and can be expanded
or reduced to the required number of inputs. At the output
of the Comparator block, there is a decision-making block
denoted by the Resolving block.

In the case of estimating the membership of a sample
between two processes, the Resolving block is quite simple
and consists of only one comparator, as shown in Fig. 7. The
decision is straightforward: if the comparator’s output voltage
is high, there is a higher probability that the sample belongs
to Process 1; otherwise, there is a higher probability that it
belongs to Process 2.

FIGURE 7. Resolving block in the case of two processes.

The complexity of the comparator block is slightly
increased when the decision needs to be made among mul-
tiple processes. In Fig. 8, the resolving block is depicted in
the case of deciding among 4 processes.

Let denote signals that indicate the membership of a sam-
ple to a specific process with APi, where i ∈ {1, . . . , 4}.

The outputs of the comparators Kj, j ∈ {1, 2, 3} determine
the membership to a specific process according to Table 1.
A high voltage level at the comparator’s output is represented
by 1, and a low level is represented by 0. Based on the data
from Table 1, the following Boolean relations between the
signals APi, i ∈ {1, . . . , 4}, and Kj, j ∈ {1, 2, 3} can be easily
identified:

AP1 = K1K3, AP2 = K1K3,

AP3 = K2K3, AP4 = K2K3. (21)

FIGURE 8. Resolving block in the case of four processes.

Fig. 9 shows the realization of the resolving block in the case
of eight processes. The Boolean relations between the signals
APi, i∈ {1, . . . , 8}, andKj, j∈ {1, . . . , 7} for the block in Fig. 9
are:

AP1 = K1K5K7, AP2 = K1K5K7,

AP3 = K2K5K7, AP4 = K2K5K7,

AP5 = K3K6K7, AP6 = K3K6K7,

AP7 = K4K6K7, AP8 = K4K6K7. (22)

TABLE 1. Outputs of the comparators in the case of four processes and
signals AP indicating membership to a specific process.
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The last part of the architecture is the Data acquisition part.
This is the digital segment of the architecture that receives
data from the output of the Classification part, stores the
data, andmakes them available for further processing tomake
appropriate decisions. As shown in the block diagram of the
proposed architecture, the Data acquisition part is designed
to record the results of the input signal samples estimation,
then count howmany samples belong to individual processes,
track the total number of processed samples, and finally gen-
erate a STOP signal to finish the architecture’s operation. This
part can be implemented in software, executed by a proces-
sor of suitable speed, or by designing an appropriate digital
hardware (FPGA design or similar). In this paper, our focus
has been on the analog part as the main contribution of the
proposed architecture. The Data acquisition part involves
collecting and interpreting data, which can be done in various
ways using fairly standard and well-known procedures, so it
is not a significant part of this work.

VI. EVALUATION OF THE PROPOSED
HARDWARE SOLUTION
The simulation of the analog part of the proposed architecture
is performed using PSpice software, OrCad version 22.1. It is
important to emphasize that the presented evaluation of the
proposed hardware solution is done using simple, standard,
and widely available circuits.

The input sample blocks are composed of sample and
hold amplifiers that store the values of process samples.
In the simulation, AD783 sample and hold amplifiers are used
with typical acquisition times of up to 0.01% 250 ns or up
to 0.1% 200 ns.

In the simulation of the sample select circuit, a decade
counter 4017with amaximum transition time of 22 ns is used,
along with an analog switchMAX4645 whose typical contact
closure time is 12 ns and a typical contact opening time is 8 ns.
For the increment-decrement circuit simulation, as well as in
the analog adder simulation, the ultra-high-speed operational
amplifier LT1191 is used, with a settling time (up to 0.1%)
of less than 110 ns and a slew rate of 450 V/µs. The LT1394
comparator circuit is used in the simulation of the comparator
and decision-making block (Resolving block), with a settling
time of 7 ns.

The MC74HC1G02 logic NOR gate with a total propaga-
tion time and output transition time of less than 20 ns is used
as the logical NOR gate in the simulation. In the decision-
making block (Resolving block) simulation, the MAX4645
is used as an analog switch.

Next, we provide the achieved results in terms of the
required processing time, taking into account each of the
hardware architecture parts, as follows:

- The required time for sampling the input signal is less
than 40 ns (architecture part in Fig. 2);

- Incrementing/decrementing the voltage level from the
output of the selection circuit is performed in less than
270 ns (architecture part in Fig. 4).

FIGURE 9. Resolving block in the case of eight processes.

- The voltage levels at the outputs of the Comparator block
(Fig. 5) are established in less than 30 ns.

- The cumulative voltage level at the output of the adder
(Fig. 6) is established at less than 170 ns.

- The voltage level at the output of the Resolving block
(Figs. 7, 8, and 9) for 2 processes is obtained in 7 ns, for
4 processes in less than 40 ns, and for 16 processes in
less than 70 ns, respectively.

By integrating these elements, the simulation results show
that the required time for sampling the input signal and
obtaining voltage levels at the outputs of the resolving block
and comparator part of the architecture is less than 420 ns.
This means that the proposed hardware can process approxi-
mately 2 million of samples per second, which further means
that it can be suitable even for real-time processing of high-
resolution images. It opens the possibility to use this approach
for pre-classification, as an auxiliary tool for neural network
applications with large-size images.

Additional improvements can be achieved using spe-
cialized and optimized circuits, as discussed later in the
text.
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A. COMPARISON OF RESULTS
Case 1: For comparison, let us first observe the case
of analog circuit implementation that follows straightfor-
wardly from the Parzen-window classification algorithm
in Section IV. Since the algorithm includes the sort-
ing operation, the implementation using the Bitonic sort
algorithm with analog circuits is observed as the most con-
venient solution. PSpice simulation using analog Bitonic
sort operation for 1024 samples requires approximately
an additional 1000 ns, i.e. 2.5 times higher processing
time compared to the proposed solution with standard
circuits.

Case 2: Next, we provide the comparison with the soft-
ware realization. Note that the software realization highly
depends on the clock speed. The software code is executed
on a CPU with a frequency of 4 GHz. The required time
for 1024 samples is above 150 µs because the sorting
operation requires 112 µs∗.1 Thus, the software algorithm
requires approximately 300 times higher processing
time.

Case 3: The proposed hardware solution can be addition-
ally improved in terms of execution time, by using advanced
and faster analog components, instead of standard ones. For
instance:

- instead of sampling and hold amplifiers AD783 one
can use HMC661LC4B with acquisition time reduced
to 3 ns,

- instead of analog switch MAX4645, faster circuit
ADG918 can be used,

- the operational amplified LT1191 can be replaced by
LMH6702 to reduce a settling time to 13.4 ns,

- comparator circuit LT1394 can be replaced by
ADCMP580 to reduce a settling time to 0.2 ns,

- logic NOR gate MC74HC1G02 can be replaced by
74AC02 to reduce the total propagation time to 3.5 ns.

The hardware implementation using considered high-speed
circuits reduces the processing time from 420 ns
to 50 ns.

When comparing this high-speed analog version with
advanced digital implementation, the processing time is still
more than twice as low in the case of the proposed solution.
Moreover, the digital sorters in this case are pretty demand-
ing regarding the number of gates (1.6 million gates for
1024 samples∗∗2), which means that very advanced chips
(e.g. Stratix 10 family) are required.

1Theoretically, the required time for sorting operation is: Tsort =

N
2

(
Tcomp + Tswap

) log2 N∑
i=1

i, where Tcomp is the time required for comparison

and Tswap the time required to swap positions. In hardware realization of a
sort operation, the same relation holds without the scaling term N /2 because
a parallel realization is considered.

2The total number of gates can be calculated according to G =

N (logN )2b, where N is the number of samples and b is the number of bits,
e.g., N = 1024 and b = 16.

VII. EXPERIMENTAL RESULTS WITH REAL-WORLD
SIGNALS
The application of Parzen-based PDF estimation in real-
world applications is considered to illustrate the efficiency
of the proposed approach. The goal is to choose real-world
signals with distributions having certain mutual statistical
overlapping. In that sense, the considered signals manifest
similar behavior, and it is of practical importance to prove
that the proposed method can make a distinction between the
two observed processes.

Let us therefore consider two types of vibration signals:
artificial vibrations caused by various vehicles and natu-
ral seismic vibrations resulting from earthquakes. Various
vehicle vibration signals are used in the training pro-
cess, such as ones produced during the airplane takeoff or
truck transition. The samples are recorded using vibration
sensors. The training processes are defined as Process 1
containing 10000 samples of different seismic signals, and
Process 2 containing 10000 samples of different vehicle-
caused vibrations. The classification is done for a sequence
of 800 samples belonging to an unknown test seismic
signal.

In Fig. 10(a), the seismic signal is depicted. The classifi-
cation is done on a sample-by-sample basis. The red line in
Fig. 10(b) represents correctly classified samples compared
to the original signal (blue line). The results indicate that
97.9% of the samples are accurately classified as seismic,
while 2.1% are incorrectly classified as artificial vibrations.
Therefore, based on these numerical outcomes, we can con-
clude that the signal falls within the category of natural,
seismic vibrations.We can also observe that this approach can
be suitable for the detection of low-frequency seismographic
spikes. Particularly, for the tested low-frequency seismic
signals (with the frequency components ranging between
1 and 3 Hz), all samples are accurately classified (100% of
success).

FIGURE 10. First row - Signal for testing, Second row - Original signal
(blue line) and samples correctly classified as seismic (red line).

Additionally, Tables 2 and 3 show results from several
experiments where various seismic and vehicle vibration
signals are considered test signals. Results from Table 2
are related to the seismic signals used as test signals,
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TABLE 2. Classification results when utilizing seismic signals for testing
purposes.

TABLE 3. Classification results when utilizing vehicle vibration signals for
testing purposes.

while Table 3 shows the outcomes in the case when vehicle
vibration signals are considered as test ones.

VIII. CONCLUSION
This paper focuses on the implementation of the Parzen win-
dow approach for the estimation of the unknown probability
density functions, highlighting its versatility and efficiency
for this purpose. The proposed solution covers two sce-
narios – first when the signal has to be sampled before
classification, and second, when the signal is already sampled
and samples are directly forwarded to the classification part of
the architecture. The proposed solution avoids the complexity
of sorting operations. The theory is verified experimen-
tally using PSpice software (OrCad version 22.1), exploiting
standard circuits according to the depicted block schemes.
Simulation results demonstrate the effectiveness of the pro-
posed solution, with the processing time of 420 ns being
within acceptable limits, therefore, proving the potential of
the proposed solution for practical applications. Additionally,
the classification accuracy is experimentally verified on sev-
eral examples, considering the differentiation between natural
and artificial vibrations. As natural vibrations, the seismic
signals are considered while vehicle vibrations are observed
as artificial ones. In all considered cases, the classification
was successful with an accuracy of over 94%.
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