
Received 2 August 2024, accepted 15 August 2024, date of publication 19 August 2024, date of current version 30 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446176

Quantum Subroutine for Efficient
Matrix Multiplication
ANNA BERNASCONI 1, ALESSANDRO BERTI 1,2, GIANNA MARIA DEL CORSO 1,
AND ALESSANDRO POGGIALI 1, (Graduate Student Member, IEEE)
1Department of Computer Science, University of Pisa, 56127 Pisa, Italy
2Department of Physics, University of Pisa, 56127 Pisa, Italy

Corresponding author: Alessandro Berti (alessandro.berti@df.unipi.it)

This work was supported in part by European Union Next-GenerationEU—National Recovery and Resilience Plan (NRRP)—MISSION 4
COMPONENT 2, INVESTMENT N. 1.4—CUP N under Grant I53C22000690001; and in part by the Gruppo Nazionale Calcolo
Scientifico–Istituto Nazionale di Alta Matematica (GNCS–INdAM).

ABSTRACT We propose an efficient quantum subroutine for matrix multiplication that computes a state
vector encoding the entries of the product of two matrices in superposition. The subroutine exploits efficient
state preparation techniques and shows a potential speed-up with respect to classical methods. The most
important benefit of our subroutine is that it encodes the entries of the matrix product directly in the
state vector, which can be used for further computations within the same quantum circuit. All scenarios
involving the computation of non-homomorphic functions of the product of two matrices can benefit from
our technique. As a possible application, we discuss the computation of the variance of the entries of a matrix
product, which can be a useful tool for some machine learning algorithms.

INDEX TERMS Quantum circuit, quantum matrix multiplication, computation of non-homomorphic
functions, state preparation.

I. INTRODUCTION
Matrix multiplication is a fundamental operation in linear
algebra with a wide range of applications across various
scientific and engineering disciplines. It lies at the heart of
many scientific and high-performance computing problems,
from solving systems of linear equations with direct and
iterative methods to data compression, machine learning,
and computer vision problems. Thus, efficient computation
of matrix multiplication is still a topic of intense research
and optimization. Furthermore, with the resurgence of
interest in matrix multiplication fueled by the rapid growth
of data-centric applications and the increasing need for
improved computing capabilities, recent years have seen
the emergence of new algorithms and methodologies that
harness modern hardware architectures such as multicore
processors, GPUs, distributed computing environments, and
even quantum computers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

In this work, we delve into the problem of matrix multipli-
cation from the quantum computing perspective, proposing
an efficient quantum algorithm for matrix multiplication that
computes a state vector encoding the entries of the product in
superposition.

The algorithm achieves, in principle, an exponential speed-
up over the best classical fast method thanks to the use
of efficient state preparation techniques, similar to the
block-encoding procedure for matrix multiplication [12].

Actually, it is worth noting that the proposed quantum
algorithm achieves something different from the classical
matrix multiplication one, as it does not return all entries of
the matrix product; rather, it provides them in superposition
as amplitudes of a state. If one needs to retrieve all entries
with accuracy ε, the algorithm should be executed and
measured O(N 2/ε2) times, losing the exponential speed
up. However, similarly to what happens with the Quantum
Fourier transform, our approach could still be very effective:
since the entries of the matrix product are directly encoded
in the state vector, although in superposition, they can be

116274

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-0263-5221
https://orcid.org/0000-0001-9144-9572
https://orcid.org/0000-0002-5651-9368
https://orcid.org/0000-0002-1591-7925
https://orcid.org/0000-0002-4964-6609

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

exploited for further computations within the same quantum
circuit, without performing anymeasurement. Thismakes our
approach suitable for all scenarios involving the computation
of non-homomorphic functions depending on the product
of two matrices, such as trace, mean value, variance,
or eigenvalues, which are crucial for many applications.

Other quantum algorithms for matrix multiplication pro-
posed in the literature and reviewed in Section II, are either
computationally more expensive or present a comparable
cost but are less suitable for further performing non-linear
operations depending on all entries of the matrix product.
We refer to Section IV for a discussion on this aspect.
Moreover, to highlight the novelty of our approach, we also
provide an application for the computation of the variance of
the entries of the product of two matrices. This computation
finds many important applications within the machine
learning area.

As already observed, the cost of the proposed quantum
algorithm mainly depends on the cost of the encoding of
the two matrices to be multiplied within a quantum state,
and a super-polynomial speed-up can be guaranteed only
by exploiting efficient state preparation techniques, i.e.,
techniques that can be implemented with quantum circuits of
depth polylogarithmic in the input size [23].

The work is organized as follows. In Section II, we briefly
discuss the recent progress in algorithms for linear algebra
problems, particularly matrix multiplication, both from a
classical and quantum perspective. In Section III, we first
recall a quantum procedure described in [24] for inner
product computation that inspired our contribution, and
then we present and analyze our new algorithm for matrix
multiplication. Section IV discusses the relation, advantages,
and disadvantages of our proposal with respect to the method
based on block-encoding. Finally, Section V describes how
to exploit our algorithm for computing the variance of
the entries of a matrix product, and Section VI draws the
conclusions.

II. PRELIMINARY AND RELATED WORK
The historical significance of matrix multiplication dates
back to the pioneering work of Strassen [29], who introduced
the concept of recursive matrix multiplication, reducing the
number of multiplicative operations from eight to seven for
two matrices of size 2. Since then, numerous algorithms and
optimization techniques have been proposed to accelerate
matrix multiplication. Prominent among them are the method
by Bini et al. [3] based on the concept of border rank
of tensors, the Coppersmith-Winograd algorithm [10] and
subsequent methods based on the laser method [34], and the
more recent developments [19], [35] which seems to have a
more practical interest.

The inception of quantum algorithms for linear algebra can
be attributed to the pioneering work of Harrow et al. [15].
The HHL algorithm, a significant breakthrough, is designed
to handle sparse and well-conditioned systems of linear

equations as input. Remarkably, it accomplishes this in a
polylogarithmic time complexity in the system’s dimension.
Although the HHL algorithm does not directly output the
classical solution, the quantum state it produces empowers
sampling from the solution vector. This capability has had
a profound impact, inspiring subsequent works [26], [33]
in the field of quantum algorithms for machine learning
problems.

However, it is essential to exercise caution when con-
sidering the applications of these algorithms. Two critical
factors warrant careful consideration: firstly, the assumptions
concerning the input data that are necessary to achieve
efficient running times. For instance, the HHL algorithm’s
polylogarithmic time complexity is contingent on the matrix
being well-conditioned (i.e., the minimum singular value
is sufficiently large) and sparse. Secondly, one must assess
whether the quantum algorithm resolves the original classical
problem or a modified variant, accounting for the fact that the
classical solution is not explicitly provided but rather encoded
within a quantum state.

Another interesting consideration is that while in the
classical framework, problems such as matrix inversion,
computation of the determinant, and linear system solution
via Gaussian elimination are asymptotically equivalent to
matrix multiplication (see Chapter 16 of [6]), to the best
of our knowledge there is not a similar result in the
quantum computing framework. The equivalence among
these problems in the classical setting has been proved
through polynomial reductions of cost quadratic in the
dimension of the matrix (i.e., linear in the input size).
However, these reductions cannot be immediately adapted
to quantum computation as HHL does not use Gaussian
elimination to solve a linear system, which was a key step
for the classical reduction definition.

Regarding the specific problem of matrix multiplication,
let us briefly recall some quantum algorithms proposed in
the recent literature. In [28], three different algorithms have
been presented for dealing with matrix multiplication. The
first technique is inspired by the swap test [5], extended to
a more general form suitable for dealing with quantum data
in parallel, and has a cost that is dominated by the time for
preparing the input at a given precision ε. The other two
techniques are based on SVE [20] (singular value estimation)
and HHL [15], respectively. The method based on the swap
test proved better than the other two, achieving the lowest
complexity Õ(N 2/ε) to multiply two N × N matrices with
classical data, with precision ε. The quantum algorithms
obtained from SVE and HHL depend on the condition
number of the given matrices. If the condition number is
bounded byO(polylogN), the two algorithms also achieve the
same efficiency. However, these algorithms use amplitudes to
store the classical input data and require a measurement to
get the results. Hence, they are not immediately suitable
to implement matrix multiplication as an intermediate step
within a quantum computation.

VOLUME 12, 2024 116275

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

In [22], a different approach has been proposed, where
basis states are used to store input data. Thus, quantum algo-
rithms that require matrix multiplication as an intermediate
step do not have to rely on measurement to get the result
and only need one measurement when the overall result of
the computation is output. The proposed matrix multiplier
exploits superposition and parallelism of quantum computing
to reduce the time complexity to multiply twoN×N matrices
from classical O(N 3) to quantum O(N 2 log2 N). The space
complexity also improves from classical O(N 2) to quantum
O(logN).
We finally recall that the block encoding technique [8],

[12] can be exploited to implement matrix calculations on
a quantum computer quite easily and, in principle, enable
exponential speed-ups in terms of the dimension of the
matrices. Since, in general, an input matrix of data, say A,
could be non-unitary and cannot be directly implemented as
a quantum operator, the idea of block encoding is to embed A
as a block inside a larger unitary matrix U , usually the top left
block. Once a matrix has been block-encoded, we can operate
on its corresponding unitary operator U so that all quantum
matrix calculations are carried out in an operational way. For
instance, as shown in [12], the product of two block-encoded
matrices is a block encoding of the product of the two
matrices, and the errors add up without introducing additional
errors. The cost of implementing the block encoding of
dense unstructured matrices has been studied in [9], where
a careful analysis of T-gate counts and circuits’ depth has
been provided. Some efficient schemes to block-encode
structured matrices such as Toeplitz, tridiagonal, or matrices
with displacement structure, as well as sparse matrices, are
known [7], [30], [32].

III. QUANTUM ALGORITHM FOR MATRIX
MULTIPLICATION
In this section, we present and discuss a new quantum
algorithm for matrix multiplication. We first recall the
quantum procedure described in [24] for the computation of
the inner product of two vectors that inspired our contribution.
We then describe and analyze the proposed new algorithm,
prove its correctness, and evaluate its computational cost.

A. INNER PRODUCT COMPUTATION
Let us briefly review the quantum algorithm proposed in [24]
for computing the inner product of two vectors whose values
are encoded in the amplitudes of two quantum states. Recall
that the inner product of the two quantum states |a⟩ =
1

∥a∥2

∑N−1
i=0 ai |i⟩ and |b⟩ =

1
∥b∥2

∑N−1
i=0 bi |i⟩, representing

two N -dimensional vectors, is defined as

⟨a|b⟩ =
1

∥a∥2∥b∥2

∑N−1

i=0
āibi

where āi is the complex conjugate of ai, for all i ∈

[0,N − 1]. Suppose that the two quantum states can be
prepared by applying two oracles Ua and Ub, i.e., |a⟩ =

Ua |0⟩ and |b⟩ = Ub |0⟩, where the input register |0⟩ is

a n = ⌈logN⌉-qubit register sufficiently large to store all
indexes i = 0, 1, . . . ,N − 1 in superposition. Since ⟨a| =

⟨0|U†
a , and |b⟩ = Ub |0⟩, we immediately get

⟨a|b⟩ = ⟨0|U†
aUb|0⟩ .

Now, if we consider the quantum state

|γ ⟩ = U†
aUb |0⟩ =

N−1∑
i=0

γi |i⟩

derived with the quantum circuit depicted in Figure 1, we can
observe that the amplitude γ0 of the state |0⟩ is precisely the
inner product of the two states |a⟩ and |b⟩, i.e.,

γ0 = ⟨0|U†
aUb|0⟩ = ⟨a|b⟩ .

Thus, to compute the inner product, we just need to read the
value γ0, for instance, applying the Amplitude Estimation
algorithm [4], [14], and multiply back by the normalization
factor ∥a∥2∥b∥2.
The overall cost of the method is directly connected to

the state preparation cost for |a⟩ and |b⟩, i.e., to the cost
of implementing the oracles Ua and Ub. Assuming efficient
methods for encoding classical data [23]), the cost of the
algorithm becomes O(polylogN).
This approach might be more convenient than the standard

one based on the swap test [5], even if the circuit costs (width,
size, and depth) of the two methods are comparable. The cost
of both algorithms is indeed dominated by the cost of the
state preparation step. Recall that the swap test method uses
an ancilla qubit in state |0⟩, which is (i) put into a uniform
superposition with a Hadamard gate, (ii) used to control a
swap between the two states |a⟩ and |b⟩, and (iii) measured
after the application of a second Hadamard gate. Since the
result of the measurement of the ancilla is 1 with probability
1
2 −

1
2 | ⟨a|b⟩ |

2, it is possible to estimate ⟨a|b⟩ through this
probability. The downside of the swap test is that the value of
the inner product can be estimated only after a measurement.
Instead, in the previous method, the inner product is directly
encoded into the amplitude γ0 and can, therefore, be exploited
for further computations within the same quantum circuit
without the need for a measurement.

B. MATRIX MULTIPLICATION
Let us now consider the more general problem of matrix
multiplication.

Let A ∈ RM×K and B ∈ RK×N , assuming w.l.o.g. that
M ,K ,N are powers of 2, and let C ∈ RM×N denote their
product C = AB. Observe that each entry in C is the result
of an inner product computation, i.e., Cij is given by the inner
product between the i-th row of A and the j-th column of B.

Our proposal consists of a generalization of the inner
product procedure described above: we encode all columns
of B, appropriately normalized, in a weighted superposition,
and we then apply an operator encoding all rows of A. The
entries of the matrix C = AB will then be found in some
specific amplitudes of the final state. Some care is needed

116276 VOLUME 12, 2024

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

FIGURE 1. Quantum circuit for inner product computation.

to deal with the normalization factors properly. In particular,
we need to amplitude-encode the norms of the rows of A and
of the column of B (i.e., the rows of B†).
The quantum circuit for matrix multiplication (QMM) that

we propose makes use of four unitary operators for encoding
entries and norms of the matrices. In particular, UA and VA
denote the oracles used to encode the rows of A and their
norms in the amplitudes of k = log2 K and m = log2M
qubits, respectively:

UA |i⟩m |0⟩k =
1

∥A(i, :)∥2
|i⟩m

K−1∑
j=0

Aij |j⟩k

= |i⟩m |A(i, :)⟩k , for 0 ≤ i < M ,

VA |0⟩m |j⟩k =
1

∥A∥F

M−1∑
i=0

∥A(i, :)∥2 |i⟩m |j⟩k

= |Ã⟩m |j⟩k for 0 ≤ j < K . (1)

Similarly, we use the two oracles UBT and VBT to encode
the columns of the matrix B, i.e., the rows of the matrix
BT , and their norms in the amplitudes of k = log2 K and
n = log2 N qubits, respectively:

UBT |j⟩n |0⟩k =
1

∥B(:, j)∥2
|j⟩n

K−1∑
s=0

Bsj |s⟩k

= |j⟩n |B(:, j)⟩k , for 0 ≤ j < N , ,

VBT |0⟩n |s⟩k =
1

∥B∥F

N−1∑
j=0

∥B(:, j)∥2 |j⟩n |s⟩k

= |B̃T ⟩n |s⟩k , for 0 ≤ s < K . (2)

Note that the above relations specify the behavior of the
two operators VA and VBT , whose role is to recover the
normalization factors of the columns and rows of the two
matrices. However, these operators are defined only when the
first register is in the |0⟩ state. No specifications are provided
for other configurations, potentially allowing more flexibility
in the implementation of the operators within a quantum
circuit. Moreover, we can observe that we are replicating the
same information |Ã⟩ and |B̃T ⟩ on the first K columns of VA
and VBT in order to facilitate the removal of the normalization
factors in UA and UBT .

The circuit also requires a register-swap operator, denoted
by RS, that is used to swap the position of two registers during
the computation. The swap of two registers can be performed
using several single swap gates,1 each acting on a pair of
qubits. In particular, if the two registers have the same number
t of qubits, they can be swapped in constant depth applying
exactly t swap gates, acting in parallel on t distinct pairs
of qubits: the i-th qubits of the two registers, 1 ≤ i ≤ t .
Otherwise, if the registers contain a different number of
qubits, their swap can be realized, for example, implementing
the rotation by inversion algorithm (see [11] for details).
This algorithm requires two steps, each of constant depth,
consisting of the parallel application of swap gates on disjoint
pairs of qubits. First, each register is reversed simultaneously,
swapping its first qubit with its last one, its second qubit with
the second last one, and so on until the middle is reached
and the entire register is reversed. Then, the concatenation of
the two reversed registers is reversed as well, with the same
technique, thus realizing the interchange of the two original
registers (see Figure 2). Note that each qubit is swapped
twice.

The main steps of the quantum algorithm QMM for
performing matrix multiplication according to our proposal
are depicted in Figure 3, and detailed below.
Step 1: The initial state |ϕ0⟩ consists of three registers

initialized to 0, of n, m, and k qubits respectively:

|ϕ0⟩ = |0⟩n |0⟩m |0⟩k .

Step 2: We encode the norms of the rows of A in the
second register with m qubits applying VA to |0⟩m |0⟩k .
Then, we swap the first two registers using the register-swap
operator RS, and we finally apply VBT to encode the norms of
the columns of B in the first register with n qubits. The state
becomes

|ϕ1⟩=
1

∥A∥F ∥B∥F

M−1∑
i=0

∥A(i, :)∥2 |i⟩m

N−1∑
j=0

∥B(:, j)∥2 |j⟩n |0⟩k .

Step 3: We then create a weighted superposition of the
columns of B using the unitary UBT on the second and third

1A swap gate is a 2-qubit gate used to interchange the state of two qubits.
It can be implemented with three C-NOTs [25].

VOLUME 12, 2024 116277

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

FIGURE 2. Operator RS for the swap of registers of equal size (a) and of different size (b).

FIGURE 3. QMM: a Quantum Circuit for Matrix Multiplication.

register, leading to the state

|ϕ2⟩ =
1

∥A∥F ∥B∥F

M−1∑
i=0

N−1∑
j=0

∥A(i, :)∥2∥B(:, j)∥2 |i⟩m(
1

∥B(:, j)∥2
|j⟩n

K−1∑
s=0

Bsj |s⟩k

)

=
1

∥A∥F ∥B∥F

M−1∑
i=0

N−1∑
j=0

K−1∑
s=0

∥A(i, :)∥2Bsj |i⟩m |j⟩n |s⟩k .

Step 4: Swapping back the first two registers with the
operator RS, we get

|ϕ3⟩ =
1

∥A∥F ∥B∥F

N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj |j⟩n |i⟩m |s⟩k .

Step 5: Finally, we apply the oracle U†
A to the last two

registers and obtain the final quantum state

|ϕf ⟩=
1

∥A∥F ∥B∥F

N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj |j⟩n U
†
A |i⟩m |s⟩k .

116278 VOLUME 12, 2024

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

In the following theorem, we prove that this final state |ϕf ⟩

encodes all the entries of C = AB scaled by the Frobenius
norms of A and B.
Theorem 1: Let A ∈ RM×K , B ∈ RK×N , and let C ∈

RM×N denote their product C = AB. Suppose that M ,K ,N
are powers of 2, and that the following oracles are provided:

UA |i⟩m |0⟩k = |i⟩m |A(i, :)⟩k , for 0 ≤ i < M ,

UBT |j⟩n |0⟩k = |j⟩n |B(:, j)⟩k , for 0 ≤ j < N ,

VA |0⟩m |j⟩k = |Ã⟩m |j⟩k , for 0 ≤ j < K ,

VBT |0⟩n |s⟩k = |B̃T ⟩n |s⟩k , for 0 ≤ s < K ,

where n = log2 N , m = log2M , and k = log2 K .
Then, the quantum circuit QMM, starting from the state

|ϕ0⟩ = |0⟩n |0⟩m |0⟩k and with one use of VA,VB,UT
B and

U†
A, and two applications of the Register-Swap operator RS,

computes the state

|ϕf ⟩=
1

∥A∥F∥B∥F

N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj |j⟩n U
†
A |i⟩m |s⟩k

that encodes all entries of C = AB. In particular, for all 0 ≤

p < M and 0 ≤ q < N , it holds that

Cpq = ∥A∥F∥B∥F n⟨q| m⟨p| k ⟨0|ϕf ⟩.

Proof: As detailed before, applying once the four
state preparation oracles VA,VB,UT

B , U
†
A, and twice the

register-swap operator RS according to the quantum circuit
QMM, the starting state |ϕ0⟩ is transformed into the final state
|ϕf ⟩. Now consider the oracle UA used to encode the rows of
A, and observe that

m⟨p|k ⟨0|U
†
A |i⟩m |s⟩k

= m⟨p|k ⟨A(p, :)|i⟩m |s⟩k
= m⟨p|i⟩m k ⟨A(p, :)|s⟩k

= m⟨p|i⟩m
1

∥A(p, :)∥2

K−1∑
j=0

Apj k ⟨j|s⟩k

= m⟨p|i⟩m
1

∥A(p, :)∥2
Aps

=

{ 1
∥A(p,:)∥2

Aps, i = p
0 i ̸= q .

∥A∥F∥B∥Fn⟨q| m⟨p| k ⟨0 |ϕf ⟩

= n⟨q| m⟨p| k ⟨0|
N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj |j⟩n U
†
A |i⟩m |s⟩k

=

N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj n⟨q| m⟨p| k ⟨0| |j⟩n U
†
A |i⟩m |s⟩k

=

N−1∑
j=0

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsj n⟨q|j⟩n m⟨p| k ⟨0|U
†
A |i⟩m |s⟩k

=

M−1∑
i=0

K−1∑
s=0

∥A(i, :)∥2Bsq m⟨p| k ⟨0|U
†
A |i⟩m |s⟩k

=

K−1∑
s=0

∥A(p, :)∥2Bsq
1

∥A(p, :)∥2
Aps =

K−1∑
s=0

ApsBsq = Cpq ,

and the thesis follows.
Hence, the state |ϕf ⟩ encodes all the normalized entries

of the product C . In particular, the entry Cpq, scaled by
∥A∥F∥B∥F , corresponds to the entry of the vector state |ϕf ⟩

of index (qM + p)K . More precisely, the final vector state
corresponds to the vectorization by column of the matrix
C (in all entries congruent to 0 modulo K), interlaced with
garbage entries.

The characterization of the content of the state vector might
be exploited to design a generalization of the proposed matrix
product to the product of more than two matrices. Since the
memorization of the matrix product in the vector state is by
column, the generalized quantum algorithm for computing
the product P = A1A2A3 should execute the product from
right to left, i.e., P = A1(A2A3). However, this generalization
is not straightforward, especially if we need to maintain
the number of ancillary qubits and the depth of the circuit
polylogarithmic in the matrix dimensions.

C. COMPLEXITY ANALYSIS
First of all, observe that the depth and the size of the
proposed quantum circuit QMM for matrix multiplication
mainly depend on the cost of implementing the oracles UA,
UBT , VA, and VBT for the state preparation, as the register
swap operator RS has constant depth and size linear in the
number of qubits.

In general, the preparation of a quantum state is a crucial
step that can affect the efficiency of quantum algorithms.
Specifically, we refer to an efficient state preparation when
the depth of the oracle implementing the state preparation is
polylogarithmic in the input size.

For our application, the cost of the state preparation
for encoding the two matrices A and B depends on their
structural properties. For example, if the matrices are
sparse, data sparse, or present regular patterns [7], it is
possible to implement the oracles UA, UBT , VA, and VBT in
polylogarithmic depth in their dimensions.

In the literature, some efficient state preparation techniques
for general matrices have been proposed. For instance,
we recall here the approach described in [20] that com-
bines a Quantum Random Access Memory [13] with the
classical data structure known as KP-trees, to achieve
efficient encoding of vectors in the amplitudes. We refer
the reader to [9] and [23] for a comprehensive description
of this framework. Exploiting QRAM together with KP-
trees, the oracles UA, UBT , VA, and VBT can be implemented
with ε-precision with circuits of depth O(polylog(MK/ε)),

VOLUME 12, 2024 116279

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

O(polylog(NK/ε)), O(polylog(M/ε)), and O(polylog(N/ε)),
respectively (see Theorem 5.1 of [20] and [8]), where ε

denotes an upper bound for the norm of the difference
between the normalized original matrix and the encoded one.
Thus, the overall depth of the QMM circuit becomes of
orderO(polylog(max{M ,N }K/ε)), providing an exponential
speed-up over the best classical fast algorithms.

From a numerical perspective, the computation of the
inner products defining the entries of the matrix product is
backward stable, meaning that the computed entries are a
tiny perturbation of the exact ones [16]. However, forward
errors can be high because cancellations may occur while
computing the inner products. The overall accuracy of the
whole computation also depends on the specific quantum
hardware used to physically implement quantum gates.

However, we should mention that quantum hardware
that supports data storage and access in superposition in
polylogarithmic time is currently still unavailable, and its
feasibility is debated [17], [31].

D. A NUMERICAL EXAMPLE
In this section, we detail the steps of our quantum algorithm
on a small numerical example. In particular, wewill explicitly
construct the unitary matrices involved in the computation.
Let A ∈ R4×2 and B ∈ R2×4 be defined as

A =


−1 2
−1 −5
3 −4
0 −2

 , B =

[
2 −2 −0 3

−4 −3 1 −1

]
.

Step 1: The initial state |ϕ0⟩ consists of three registers
initialized to 0, of 2, 2, and 1 qubits, respectively:

|ϕ0⟩ = |00⟩ |00⟩ |0⟩ .

Thus, |ϕ0⟩ ∈ R32, with the first entry equal to 1 and all the
others equal to zero.
Step 2: We encode the norms of the rows of A in the

second register with 2 qubits applying VA to |00⟩ |0⟩. Since
∥A∥F =

√∑
i, jA2ij =

√
60, we have that |Ã⟩ =

1
√
60
[
√
5;

√
26;

√
25,

√
4]. A possible form for matrix VA is2

VA =


√
5/60 0.658 0.645 0.258

√
26/60 0.289 −0.637 −0.279

√
26/60 −0.258 0.667 −0.267

√
4/60 0.645 0.267 0.667

⊗ I2,

where I2 = Ik is the identity matrix of dimension 2, acting on
the last register. Similarly a possible form for VBT is

VBT =


√
20/44 −0.544 −0.389 0.314

√
13/44 0.674 −0.314 −0.389

√
1/44 −0.477 0.261 −0.826

√
10/44 0.151 0.826 0.261

⊗ I2.

Note that these are not the only possible forms forVA andVBT
since equation (1) and (2) define the behavior of the operators

2We rounded the entries of VA and VBT to a three digits precision.

only on the firstK columns, and there aremany different ways
to complete the matrix to a unitary basis. Indeed, there might
be some completion to unitary which are more convenient for
the circuital implementation such as the CMV form [2].

At the end of this step, considering also the register swap
executed before the application of the operator VBT , the state
becomes

|ϕ1⟩ =
1

√
60

√
44


√
5

√
26

√
25

√
4

⊗


√
20

√
13

√
1

√
10

⊗

[
1
0

]
.

Step 3-5: Matrix UBT can be constructed as a block
diagonal matrix as follows

2
√
20

−
4

√
20

0 0 0 0 0 0

−
4

√
20

−
2

√
20

0 0 0 0 0 0

0 0 −
2

√
13

3
√
13

0 0 0 0

0 0 −
3

√
13

−
2

√
13

0 0 0 0

0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 3

√
10

−
1

√
10

0 0 0 0 0 0 −
1

√
10

−
3

√
10


and similarly UA is

−
1

√
5

2
√
5

0 0 0 0 0 0
2

√
5

1
√
5

0 0 0 0 0 0

0 0 −
1

√
26

5
√
26

0 0 0 0

0 0 −
5

√
26

−
1

√
26

0 0 0 0

0 0 0 0 3
√
25

−
4

√
25

0 0

0 0 0 0 −
4

√
25

−
3

√
25

0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0


The final state, multiplied by the product of the Frobenius
norm of A and B, becomes

∥A∥F∥B∥F |φf ⟩

= [−10, 0, 18, 14, 22, 4, 8, −4, −4, −7, 17, −7, 6,

17, 6, 4, 2, 1, −5, −1, −4, −3, −2, 0, −5, 5, 2, 16,

13, −9, 2, −6].

where, for clarity, almost zero entries have been replaced with
zero.

We can easily recognize the entries ofC , in boldface, listed
by columns and some garbage entries. Indeed

C =


−10 −4 2 −5
18 17 −5 2
22 6 −4 13
8 6 −2 2

 ,

and the final state can be rewritten as

|φf ⟩ =
1

√
60

√
44

(
|φC ⟩ |0⟩k + |φG⟩ |1⟩k

)
,

116280 VOLUME 12, 2024

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

where the unnormalized states |φC ⟩ and |φG⟩ are as follows

|φC ⟩ = [−10, 18, 22, 8, −4, 17, 6, 6, 2, , −5, −4, −2,

− 5, 2, 13, 2];

|φG⟩ = [0, 14, 4, −4, −7, −7, 17, 4, 1, −1 − 3, 0, 5,

16, −9, −6].

We also report the numerical absolute and relative error
measured in the simulation of the algorithm with the IBM
Qiskit3 framework, using a noise-free simulator. Denoting by
C̃ the reshaped form of vector |φC ⟩, we get

∥C − C̃∥2 = 1.889e-15

and

∥C − C̃∥2

∥C∥2
= 9.754e-14,

reaching almost the machine precision (2.2204e-16). Sim-
ulating the execution of the circuit on real noisy quantum
hardware, using the simulator Fake20QV1 provided by the
Qiskit framework, we obtained a density matrix leading
to a very low fidelity of about 0.24 in an all-to-all qubit
connection. This shows that our algorithm can be run on real
quantummachines, but the noise makes the result unreliable.

IV. DISCUSSION
This section compares our algorithmwith the block-encoding
approach proposed in [12]. First of all, recall that the block
encoding technique consists of embedding a scaled, non-
unitary N ×N square matrix into the top left block of a larger
unitary one that can then be used within a quantum circuit.
Once matrices have been block-encoded, we can operate on
their corresponding unitary operators so that all quantum
matrix calculations are carried out in an operational way.
In particular, the computation of the matrix product C = AB
can be easily carried out starting from the block-encoding of
A and B.
The cost of implementing the block encoding of dense

unstructured matrices has been analyzed in [9], where a
careful evaluation of the performance of the encoding in
terms of T-gate counts and circuits’ depth has been provided.

However, we can observe that the block-encoding
approach does not immediately provide a final state vector
encoding all entries of C , as all entries reside in the top-left
block of the unitary describing the circuit. Of course,
by exploiting particular configurations of the initial state,
it is possible to retrieve any selected column of the product.
Otherwise, by adding some ancillary qubits, we can exploit
the quantum parallelism and retrieve all columns of thematrix
product C in the final state.
The construction of the block-encoding requires efficient

state preparation techniques similar to the ones briefly
discussed in Section III-C. Therefore, this technique is similar

3https://qiskit.org/

to our proposal, but it requires the additional state preparation
of an appropriate sparse initial state in order to retrieve all the
columns of the matrix product.

A different approach, again based on the block-encoding
technique, requires to (i) block-encode the first matrix A into
a unitary U , (ii) add logN ancillary qubits to get the operator
IN ⊗ U , and (iii) prepare a state encoding the vectorized by
column version of B. This technique exploits the possibility
offered by the block encoding of computing matrix-vector
products easily.

Despite its similarity to the more general block-encoding
methodology, our quantum algorithm for matrix multipli-
cation offers some advantages. First of all, it allows the
manipulation of even rectangular matrices without padding
with zeros to get square matrices, causing a potential increase
in the number of qubits.Moreover, it provides by construction
an encoding of all entries of the product directly in the final
state vector without requiring additional manipulations, or a
measurement. The cost, in terms of width, size, and depth
of the circuits, appears to be equivalent. Still, our approach
guarantees that each entry is already individually encoded and
indexed within the state vector.

V. APPLICATION: VARIANCE OF THE PRODUCT OF TWO
MATRICES
As already observed, the quantum algorithm QMM for

matrix multiplication can be exploited in all scenarios
involving the computation of non-homomorphic functions of
the product of two matrices, for instance, trace, mean value,
variance, or eigenvalues. In this regard, we now show how
QMM can be exploited to compute the variance of the entries
of a matrix product.

The variance is a pervasive measure that finds application
across a vast number of domains [18], including the field
of Artificial Intelligence. Some applications within this area
require the computation of the variance of the entries of
a matrix product. For instance, the classical Angle-Based
Outlier Detection (ABOD) algorithm [21] for the Outlier
Detection problem, exploits the variance of A†A, where A is
the matrix encoding the dataset.

Let A ∈ RM×K and B ∈ RK×N be two matrices, let C ∈

RM×N be their product, and let Var(C) denote the variance
of the elements of C . First of all, observe that Var(C) cannot
be derived from the variances of A and B, but requires the
computation of all entries of C , i.e., the variance is a non-
homomorphic function.

We can implement a quantum circuit for computingVar(C)
combining the circuit QMM with the quantum subroutine
QVAR proposed in [1] and [27] to compute the variance of
a quantum superposition of values indexed by proper register
qubits.

The overall circuit, depicted in Figure 4, requires five
registers and an ancilla qubit. The three last registers |n̂⟩, |m̂⟩,
and |k̂⟩ are the input of the QMM circuit and are registers
composed of n = log2 N , m = log2M , and k = log2 K

VOLUME 12, 2024 116281

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

FIGURE 4. QVAR oracle for the computation of the variance.

qubits, respectively. These registers are used to amplitude
encode the entries of the matrices A and B and to compute
their product in superposition. The ancilla qubit |a⟩ and the
other two registers |e⟩ and |q⟩, each with (n + m) qubits, are
used to compute the variance of the amplitudes of the state
vector |ϕf ⟩ computed by QMM.

We refer the reader to [1] for a detailed description of
the quantum variance computation. Here, we only recall that
the main idea of the QVAR subroutine is to use the ancilla
qubit |a⟩ to create an equal superposition of two branches
through a Hadamard gate. In the branch where the ancilla
is in state |0⟩, the circuit maintains the superposition of the
amplitudes of the state |ϕf ⟩ computed by QMM, while in the
branch where the ancilla is in state |1⟩, the circuit computes
their mean value. Eventually, another Hadamard gate on
|a⟩ is applied to make the two branches collide and create
the superposition containing the component of the variance,
namely the differences between each amplitude and the mean
value.

As explained in [1], all these differences are the amplitudes
of the final state vector related to specific configurations
of the qubits. Moreover, to compute Var(C) we must
select from |ϕf ⟩ only the entries of the matrix C , encoded
in the amplitudes of the configurations where |k̂⟩ =

|0⊗k
⟩, as proved in Theorem 1. Therefore, the Amplitude

Estimation algorithm [4] is used to estimate the variance
value as the sum of squares of these target amplitudes only.
In particular, for the computation of Var(C), Amplitude

Estimation is employed measuring s additional qubits to
estimate the amplitude of the target configuration where
|a⟩ |e⟩ |q⟩ = |1⟩ |1⊗(n+m)

⟩ |0⊗(n+m)
⟩ and |k̂⟩ = |0⊗k

⟩.
This measurement output represents an approximation of the
variance of C in the computational basis.
The overall circuit for computing Var(C) requires in total

3(m+n)+k+s+1 qubits, where s = O(log 1
ε
) is the number

of additional qubits required by Amplitude Estimation to get
an estimate of the variancewith (absolute) error εwith respect
to the classical variance.

Concerning the complexity of this method, we first observe
that the QVAR circuit exhibits a logarithmic complexity both
in the circuit depth and width, excluding the state preparation
cost, as discussed in [1]. Moreover, for the specific compu-
tation of Var(C), no additional state preparation is required
beyond the encoding of A and B in QMM. Indeed, the entries
of C are already encoded in the state on which the QVAR
oracle acts. The complexity of the overall circuit is, therefore,
mainly due to the complexity of QMM.

Eventually, since the cost of Amplitude Estimation is
O(δ 1

ε
+ log log 1

ε
) [14] where δ is the depth of the circuit

in Figure 4, the overall complexity for the computation
of Var(C) becomesO(1

ε
polylog(max{M ,N }K/ε)), assuming

efficient state preparation techniques for matrix encoding.

VI. CONCLUSION
In this work, we designed and analyzed a quantum
algorithm for matrix multiplication that computes a state

116282 VOLUME 12, 2024

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

vector encoding the entries of the product in superposition,
in time polylogarithmic in the matrix dimensions, assuming
efficient state preparation techniques. This algorithm enables
immediate composition with other quantum circuits, imple-
menting computations that involve possibly all entries of
the product of the two matrices. As a possible application,
we discussed the computation of the variance of the entries
of a matrix product, a useful tool for some machine learning
algorithms.

As future work, we plan to generalize the algorithm to the
multiplication of more than two matrices, according to the
intuition mentioned at the end of Section III-B. Moreover,
we plan to extend it to deal with matrices over C. The easy
approach would consist of a repetition of the algorithm for
real and imaginary parts of the two matrices. A more efficient
approach would require the definition of state preparation
techniques capable of dealing with complex entries. We also
plan to identify other applications that could benefit from this
approach.

ACKNOWLEDGMENT
This study was carried out within the National Centre
on HPC, Big Data and Quantum Computing-SPOKE 10
(Quantum Computing).

REFERENCES
[1] A. Bernasconi, A. Berti, G. M. D. Corso, R. Guidotti, and A. Poggiali,

‘‘Quantum subroutine for variance estimation: Algorithmic design and
applications,’’ 2024, arXiv:2403.14655.

[2] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, ‘‘Compression of
unitary rank-structured matrices to CMV-like shape with an application to
polynomial rootfinding,’’ J. Comput. Appl. Math., vol. 278, pp. 326–335,
Apr. 2015.

[3] D. Bini, M. Capovani, F. Romani, and G. Lotti, ‘‘o(n2.7799) complexity
for n × n approximate matrix multiplication,’’ Inf. Process. Lett.,
vol. 8, no. 5, pp. 234–235, 1979. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0020019079901133

[4] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, ‘‘Quantum amplitude
amplification and estimation,’’ Contemp. Math., vol. 305, pp. 53–74,
Oct. 2002.

[5] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, ‘‘Quantum fingerprint-
ing,’’ Phys. Rev. Lett., vol. 87, no. 16, Sep. 2001, Art. no. 167902, doi:
10.1103/physrevlett.87.167902.

[6] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity
Theory, 1st ed., Cham, Switzerland: Springer, 1996.

[7] D. Camps, L. Lin, R. Van Beeumen, and C. Yang, ‘‘Explicit quantum
circuits for block encodings of certain sparse matrices,’’ SIAM J. Matrix
Anal. Appl., vol. 45, no. 1, pp. 801–827, Mar. 2024.

[8] S. Chakraborty, A. Gilyén, and S. Jeffery, ‘‘The power of block-
encoded matrix powers: Improved regression techniques via faster
Hamiltonian simulation,’’ in Proc. 46th Int. Colloquium Automata,
Lang., Program. (ICALP), vol. 132, C. Baier, I. Chatzigiannakis,
P. Flocchini, and S. Leonardi, Eds., Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum Für Informatik, 2019, pp. 33:1–33:14, doi:
10.4230/LIPIcs.ICALP.2019.33.

[9] B. D. Clader, A. M. Dalzell, N. Stamatopoulos, G. Salton, M. Berta, and
W. J. Zeng, ‘‘Quantum resources required to block-encode a matrix of
classical data,’’ IEEE Trans. Quantum Eng., vol. 3, pp. 1–23, 2022, doi:
10.1109/TQE.2022.3231194.

[10] D. Coppersmith and S. Winograd, ‘‘Matrix multiplication via arithmetic
progressions,’’ J. Symbolic Comput., vol. 9, no. 3, pp. 251–280, Mar. 1990,
doi: 10.1016/s0747-7171(08)80013-2.

[11] C. A. Furia, ‘‘Rotation of sequences: Algorithms and proofs,’’ 2014,
arXiv:1406.5453.

[12] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, ‘‘Quantum singular
value transformation and beyond: Exponential improvements for quantum
matrix arithmetics,’’ in Proc. 51st Annu. ACM SIGACT Symp. Theory
Comput., Jun. 2019, pp. 193–204.

[13] V. Giovannetti, S. Lloyd, and L. Maccone, ‘‘Quantum random access
memory,’’ Phys. Rev. Lett., vol. 100, no. 16, Apr. 2008, Art. no. 160501.

[14] T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash, and W. Zeng, ‘‘Low
depth algorithms for quantum amplitude estimation,’’ Quantum, vol. 6,
p. 745, Jun. 2022.

[15] A. W. Harrow, A. Hassidim, and S. Lloyd, ‘‘Quantum algorithm for linear
systems of equations,’’ Phys. Rev. Lett., vol. 103, no. 15, Oct. 2009,
Art. no. 150502, doi: 10.1103/physrevlett.103.150502.

[16] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.,
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002, doi: 10.1137/1.9780898718027.

[17] S. Jaques and A. G. Rattew, ‘‘Qram: A survey and critique,’’ 2023,
arXiv:2305.10310.

[18] A. Jovic, K. Brkic, and N. Bogunovic, ‘‘A review of feature selection
methods with applications,’’ in Proc. 38th Int. Conv. Inf. Commun.
Technol., Electron. Microelectron. (MIPRO), May 2015, pp. 1200–1205.

[19] E. Karstadt and O. Schwartz, ‘‘Matrix multiplication, a little faster,’’ J.
ACM, vol. 67, no. 1, pp. 1–31, Jan. 2020, doi: 10.1145/3364504.

[20] I. Kerenidis and A. Prakash, ‘‘Quantum recommendation systems,’’ in
Proc. 8th Innov. Theor. Comput. Sci. Conf. (ITCS), vol. 67, C. H. Papadim-
itriou, Ed., Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum Für
Informatik, 2017, pp. 49:1–49:21, doi: 10.4230/LIPIcs.ITCS.2017.49.

[21] H.-P. Kriegel, M. Schubert, and A. Zimek, ‘‘Angle-based outlier detection
in high-dimensional data,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2008, pp. 444–452.

[22] H. Li, N. Jiang, Z. Wang, J. Wang, and R. Zhou, ‘‘Quantum matrix
multiplier,’’ Int. J. Theor. Phys., vol. 60, no. 6, pp. 2037–2048,
Jun. 2021.

[23] A. Luongo. Classical Data in Quantum Computers. Accessed:
Feb. 13, 2024. [Online]. Available: https://quantumalgorithms.org/chap-
classical-data-quantum-computers.html

[24] V. Markov, C. Stefanski, A. Rao, and C. Gonciulea, ‘‘A generalized
quantum inner product and applications to financial engineering,’’ 2022,
arXiv:2201.09845.

[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (10th Anniversary Edition). Cambridge, U.K.: Cambridge
Univ. Press, 2016.

[26] J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and
J. Du, ‘‘Experimental realization of quantum algorithm for solving linear
systems of equations,’’ Phys. Rev. A, Gen. Phys., vol. 89, no. 2, Feb. 2014,
Art. no. 022313.

[27] A. Poggiali, A. Bernasconi, A. Berti, G. M. Del Corso, and R. Guidotti,
‘‘Quantum feature selection with variance estimation,’’ in Proc. Eur. Symp.
Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN), Bruges,
Belgium, 2023, pp. 245–250, doi: 10.14428/esann/2023.ES2023-99.

[28] C. Shao, ‘‘Quantum algorithms to matrix multiplication,’’ 2018,
arXiv:1803.01601.

[29] V. Strassen, ‘‘Gaussian elimination is not optimal,’’ Numerische
Math., vol. 13, no. 4, pp. 354–356, Aug. 1969. [Online]. Available:
http://eudml.org/doc/131927

[30] C. Sünderhauf, E. Campbell, and J. Camps, ‘‘Block-encoding structured
matrices for data input in quantum computing,’’ Quantum, vol. 8, p. 1226,
Jan. 2024, doi: 10.22331/q-2024-01-11-1226.

[31] E. Tang, ‘‘Quantum machine learning without any quantum,’’ Ph.D. dis-
sertation, Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA, USA,
2023.

[32] L.-C. Wan, C.-H. Yu, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y. Wen, ‘‘Block-
encoding-based quantum algorithm for linear systems with displacement
structures,’’ Phys. Rev. A, Gen. Phys., vol. 104, no. 6, Dec. 2021,
Art. no. 062414, doi: 10.1103/physreva.104.062414.

[33] N. Wiebe, D. Braun, and S. Lloyd, ‘‘Quantum algorithm for data fitting,’’
Phys. Rev. Lett., vol. 109, no. 5, Aug. 2012, Art. no. 050505.

[34] V. V.Williams, ‘‘Multiplyingmatrices faster than coppersmith-Winograd,’’
in Proc. 44th Annu. ACM Symp. Theory Comput. New York, NY, USA:
Association for Computing Machinery, May 2012, pp. 887–898, doi:
10.1145/2213977.2214056.

[35] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, ‘‘New bounds for matrix
multiplication: From Alpha to Omega,’’ in Proc. Annu. ACM-SIAM Symp.
Discrete Algorithms (SODA), 2024, pp. 3792–3835.

VOLUME 12, 2024 116283

http://dx.doi.org/10.1103/physrevlett.87.167902
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.33
http://dx.doi.org/10.1109/TQE.2022.3231194
http://dx.doi.org/10.1016/s0747-7171(08)80013-2
http://dx.doi.org/10.1103/physrevlett.103.150502
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1145/3364504
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.49
http://dx.doi.org/10.14428/esann/2023.ES2023-99
http://dx.doi.org/10.22331/q-2024-01-11-1226
http://dx.doi.org/10.1103/physreva.104.062414
http://dx.doi.org/10.1145/2213977.2214056

A. Bernasconi et al.: Quantum Subroutine for Efficient Matrix Multiplication

ANNA BERNASCONI received the Laurea degree in physics from the
University of Pavia in 1992, and the Ph.D. in computer science from the
University of Pisa in 1998. She is currently an Associate Professor with
the Department of Computer Science, University of Pisa, where she teaches
fundamental courses in the computer science program (algorithms and data
structures, cryptography, and quantum computing). She has authored or
co-authoredmore than 90 research papers published in international journals,
conference proceedings, books, and book chapters. Her research interests
include algorithms and complexity, Boolean function complexity, and logic
synthesis for emerging technologies. Recently, she got interested in quantum
computing, and in particular in quantum machine learning techniques and
in the synthesis of quantum logic circuits. Her dissertation ‘‘Mathematical
Techniques for the Analysis of Boolean Functions’’ received the Doctoral
Dissertation Thesis Award 1998 from Italian Chapter of the European
Association for Theoretical Computer Science (EATCS).

ALESSANDRO BERTI received the bachelor’s, master’s, and Ph.D. degrees
in computer science from the University of Pisa, Italy, in 2017, 2020, and
2024, respectively. He was a Visiting Ph.D. Student with the Superconduct-
ing Quantum Materials and Systems (SQMS) Center, Fermilab, Batavia,
IL, USA, from 2022 to 2023. He is currently a Postdoctoral Researcher
with the Department of Physics, University of Pisa. His research interests
include quantum computing applications in artificial intelligence, variational
circuits, and efficient quantum state preparation techniques. In addition,
he is an Advocate of scientific dissemination and has contributed to various
education and outreach activities.

GIANNA MARIA DEL CORSO received the Ph.D. degree from the
University of Milano. She has been a Visiting Scholar with the Computer
Science Department, Columbia University, New York, and a Visiting
Researcher with the Department of Computer Science, Johns Hopkins
University, Baltimore. She joined the Computer Science Department,
University of Pisa, in June 2000, where she is currently an Associate
Professor of numerical analysis. Her main scientific interests range from
the study of algorithms for eigenvalue computation of low-rank perturbation
of unitary matrices to the use of spectral techniques for data classification.
In the quantum computing field, she is especially fascinated by the study of
state preparation, quantum machine learning techniques, and discrete-time
quantum walks.

ALESSANDRO POGGIALI (Graduate Student Member, IEEE) received the
B.S. degree in computer science from the University of Pisa, in 2019, with a
thesis on Boolean functions, and the M.S. degree in computer science from
the University of Pisa, in April 2022, with a thesis on quantum algorithms,
where he is currently pursuing the Ph.D. degree in artificial intelligence.
From April to November 2022, he was a Research Assistant with the
University of Piemonte Orientale. From 2023 to 2024, he spent seven months
at the Fraunhofer Institute for Cognitive Systems,Munich, Germany, as a part
of the Quantum-Enhanced AI Team. His current research interest includes
hybrid quantum algorithms for artificial intelligence.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

116284 VOLUME 12, 2024

