
Received 12 June 2024, accepted 11 August 2024, date of publication 19 August 2024, date of current version 2 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446039

QuantNAS for Super Resolution: Searching for
Efficient Quantization-Friendly Architectures
Against Quantization Noise
EGOR SHVETSOV 1, DMITRY OSIN1, ALEXEY ZAYTSEV1, IVAN KORYAKOVSKIY 2,3,
VALENTIN BUCHNEV4, ILYA TROFIMOV 1, AND EVGENY BURNAEV 1,2
1Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
2Artificial Intelligence Research Institute, 105064 Moscow, Russia
3Toloka AI, 11000 Belgrade, Serbia
4Yandex Self Driving Group LLC, 123112 Moscow, Russia

Corresponding author: Egor Shvetsov (e.shvetsov@skoltech.ru)

This work was supported by the Analytical Center under the RF Government (subsidy agreement 000000D730321P5Q0002)
under Grant 70-2021-00145 02.11.2021.

ABSTRACT This work aims to develop an automated procedure for discovering new, efficient solutions
that can be effectively quantized in mixed-precision mode with minimal degradation. While our primary
focus is on Super-Resolution (SR), our proposed procedure is applicable beyond this domain. To achieve
our goals, we first develop an efficient Neural Architecture Search (NAS) procedure for full-precision (in
this paper, ‘‘full-precision’’ or FP refers to floating point with a 32-bit data format) models, surpassing
existing NAS solutions for SR. We then adapt this procedure for quantization-aware search. By introducing
Quantization Noise (QN) during the search phase, we approximate the model degradation after quantization.
Additionally, we improve search performance by implementing entropy regularization, which prioritizes
operations and its precision within each search space block. Our experiments confirm the superiority of
quantization-aware NAS compared to the two-step process: NAS followed by quantization. Furthermore,
approximating quantization with QN offers a 30% speed improvement over direct weight quantization.
We validate our approach by developing and applying it to two search spaces inspired by state-of-the-art
SR models. Our code is publicly available (github.com/On-Point-RND/QuantNAS).

INDEX TERMS Single image super resolution, quantization, neural architecture search, regularization.

I. INTRODUCTION
Neural networks (NNs) have become a default solution
for many problems because of their superior performance.
However, wider adoption of NNs is often hindered by their
high computational complexity, which poses challenges,
particularly for mobile devices. Ensuring computational effi-
ciency is crucial, especially in tasks like super-resolution [1],
where deep learning models are employed on devices with
limited energy capacity.

Computational efficiency can be measured using various
metrics such as memory usage, latency, energy consumption,

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

FLOPs,1 BitOps,2 and throughput. In our work we focus
on FLOPs and BitOps but our approach can be naturally
extended to other efficiency constrains. Further, we define
two strategies to obtain computationally efficient models:
preventive and corrective.

Corrective strategy: This strategy focuses on modifying
pre-trained or existing architectures to enhance their compu-
tational efficiency. While this strategy is commonly used, it is
limited by the fixed initial architecture, which restricts the
number of possible solutions.

1Number of floating-point operation.
2Number of operations multiplied by bit value used.

117008

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-1782-6290
https://orcid.org/0000-0002-9193-1016
https://orcid.org/0000-0002-2961-7368
https://orcid.org/0000-0001-8424-0690
https://orcid.org/0000-0002-4780-1708

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

Preventive strategy: On the other hand, the preventive
strategy involves designing the model’s architecture with
hardware constraints in mind right from the beginning.
This proactive approach allows for the optimization of
computational efficiency and performance on the target
hardware. The goal of the preventive strategy is to bridge the
gap between hardware and architecture design. Even though,
computational constrains become more and more important,
the preventive strategy is less common in the literature.

Our work falls into the preventive category and our goal is
to bring architecture design closer to hardware.

Accounting for the impact of architecture design on
computational efficiency can be challenging. Therefore, one
way to consider hardware constrains is to automatically
search for a specific hardware-friendly architecture via NAS,
simultaneously optimizing target metrics and computational
efficiency. Hardware constrained NAS was introduced in [2].
In our work we search for specific operations at a given layer,
the number of layers, sets of possible operations and how they
connect with each other define our search space.

Another way to consider the physical aspect of a computer
system is by leveraging various data types. Quantization [3],
[4], [5], [6], [7], [8]] is a technique that allows for the
discretization of real-valued values and reducing the bits
width3 for each parameter, reducing the bit width helps with
memory bandwidth and integer-based arithmetic requires
fewer resources than floating-point arithmetic. Reducing the
bit width helps with memory bandwidth, and integer-based
arithmetic requires fewer resources than floating-point
arithmetic. Therefore, it allows for a smaller model size
and improved inference time. Additionally, mixed-precision
quantization offers the flexibility to assign different bit
widths to specific layers, which allows more accurately
balance between model performance and its computational
efficiency [9].

Strategies to Combining NAS and Quantization: To
further reduce the gap between hardware and architecture
design, we can combine NAS and quantization. There are two
possible ways to achieve this:

1) Two-fold Procedure: This approach involves per-
forming a hardware-aware architecture search [2],
optimizing factors such as FLOPs and model perfor-
mance. Once an architecture is found, it is quantized
using mixed-precision quantization, further optimizing
computational cost and performance.

2) Joint Procedure: In this approach, we perform a joint
hardware and quantization-aware architecture search
simultaneously, optimizing computational cost and
model performance. It allows for the search of optimal
solutions by simultaneously exploring operations at
each layer and their corresponding bit values. While
this approach offers greater flexibility, it is also more

3In this paper, ‘‘bit width’’ refers to the number of bits usedwith the integer
data format.

challenging due to the increased complexity of the
search process.

To evaluate the effectiveness of these scenarios, we devel-
oped a NAS procedure and a specific search space for
full precision NAS, focusing on super-resolution domain.
We extended this procedure to perform quantization-aware
search and demonstrated that the joint procedure yields
superior results. To further enhance the effectiveness of
our joint procedure, we introduced Quantization Noise to
approximate quantization degradation during the search.

Contributions: Firstly, we developed a differentiable Neu-
ral Architecture Search procedure specifically for the super-
resolution domain. This NAS procedure incorporates entropy
regularization, the importance of which is demonstrated in
Section IV-F.
Furthermore, we are the first to incorporate Quantization

Noise into the NAS procedure, enabling the efficient
exploration of quantization-friendly architectures. We refer
to this approach as Search Against Noise (SAN). We also
envision the potential for SAN to be extended to search
for architectures that are robust to noise or adversarial
attacks. In Section IV-E0a, we empirically demonstrate
that approximating quantization with QN, instead of direct
quantization, leads to superior architectures.

To address the challenges of combining NAS and mixed-
precision quantization, we developed two SR-specific search
spaces inspired by an analysis of efficient SR models.
We found that straightforward combination of NAS and
mixed-precision quantization leads to unstable and slow
convergence due to the large search space size and
non-differentiable quantization operations. Additionally, the
presence of Batch Normalization (BN) in SR models can
negatively impact final performance, and training models
without BN significantly slows down convergence. To over-
come these issues, we introduce the Adaptive Deviation
for Quantization (ADQ) module and incorporate it into our
search spaces.

We demonstrate that the Joint Procedure, which com-
bines our search spaces with ADQ and NAS with SAN,
outperforms the Two-fold Procedure by a significant margin.
We refer to this combination as QuantNAS.

II. RELATED WORKS
This section serves as the preliminaries for different com-
ponents of our work: Differentiable NAS and co-adaptation
problem, Quantization, Search space design for SR. Further-
more, we will briefly review relevant works to conduct a
comparative study.

A. DIFFERENTIABLE NAS (DNAS)
DARTS [10] introduces a continuous relaxation of the
discrete architecture choices and formulates the search
problem as an optimization task. By using the relaxation,
the search space becomes differentiable, enabling the use
of gradient-based optimization algorithms. This relaxation
is achieved via supernet construction. The search can be

VOLUME 12, 2024 117009

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

formulated as selection of a directed acyclic sub-graph (DAG)
from an over-parameterized supernet. Supernet includes all
possible variations of architecture that we aim to select from.
Specifically, it consists of a number of layers, for each of
which we have a set of nodes such that each node corresponds
to a specific operation. Output of a layer is a weighted sum
of nodes within this layer. Weights used in such operation are
called importance weights.

During the search procedure, we aim to assign importance
weights for each edge and consequently select a sub-graph
using edges with the highest importance weights. An example
of such selection is in Figure 1. The weights assignment
can be done in several ways. The main idea of DNAS is to
update importance weights α with respect to a loss function
parameterized on supernet weightsW .
DNAS has been proven to be efficient to search for

computationally-optimized models. In this case, hardware
constraints are introduced as an extension of an initial loss
function. FBnet [2] focuses on optimizing FLOPs and latency
with themain focus on classification problems. AGD [11] and
TrilevelNAS [12] apply resource constrained NAS for super
resolution problem (SR) by minimizing FLOPs during search
procedure.

FIGURE 1. An overparametrized supernet is a graph. In this graph,
multiple possible operation edges connect nodes that are outputs of each
layer. The α values represent the edge importance. The joint training of
operation parameters and their importance allow for differentiable NAS.
The final architecture is the result of the selection of edges with the
highest importance between each consecutive pair of nodes. The selected
edges are marked with solid lines, composing a final neural network
architecture.

B. SUPERNET CO-ADAPTION DURING DIFFERENTIABLE
ARCHITECTURE SEARCH
makes it difficult to a select final architecture from the
supernet because selected operations depend on all the left
in the supernet operations. Therefore, we need to explicitly
enforce operations independence during search phase. Below,
we dicuss available solutions.

FIGURE 2. SAN approach for a single layer A function QNoise(b)
generates quantization noise. WR are real valued weights, WQ are output
pseudo quantized weights, and α is a vector of trainable parameters.
By adjusting α, we search for acceptable model degradation caused by
quantization procedure. QNoise(b) is independent of weights and allows
for propagation of gradients. For quantization-aware search, each blue
operation on Figure 1 becomes SAN operation with noisy weights.

Enforcing operations independence depends on the graph
structure of a final model. In our work, we use the Single-Path
graph - one possible edge between two nodes (more in
Appendix J-A). For this structure, the sum of node outputs is
a weighted sum of features (see Figure 1), the co-adaptation
problem becomes obvious. Second layer convolutions are
trained on a weighted sum of features, but after selecting
a subgraph via discretization, only one source of features
remains. Therefore, enforced independence for the vector of
α is necessary. In BATS [13], independence is achieved via
scheduled temperature for softmax. Entropy regularization
is proposed in Discretization-Aware search [14]. In [15],
authors proposed an ensemble of Gumbels to sample sparse
architectures for the Mixed-Path strategy, and in [16],
Sparse Group Lasso (SGL) regularization is used. In ISTA-
NAS [17], authors tackle sparsification as a sparse coding
problem. Trilvel NAS [12] proposed sorted Sparsestmax.

C. QUANTIZATION
Quantization is a non-differentiable mapping that converts
a range of values into a discrete range of values of fixed
length. This conversion allows significant improvements in
computational efficiency by allowing faster integer arithmetic
and reduced memory consumption. However, quantization
imposes limitations on the expressivity of the model, which
can potentially lead to quality degradation. There are various
methods available to perform this mapping, we utilize linear
quantization methods introduced in LSQ [5] and HWGQ [4].

It has been observed that different layers in a model may
require different levels of expressivity. As a result, they can
be mapped into different bit ranges, where lower bit ranges
correspond to lower expressivity. This insight has led to the
emergence of mixed-precision quantization techniques [9],
enabling more flexible and efficient model designs.

We use following quantization methods to compare our
approach with Two-fold Procedure: LSQ, HWGQ and
EdMIPS [9]

Since quantization is inherently a non-differentiable
operation, we need to employ approximations in order to
incorporate it into the training process. One commonly
used approximation is the Straight Through Estimation
(STE) [18] technique. The use of STE [18] can introduce

117010 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

oscillations during optimization due to rounding errors.
DiffQ [7] addresses this issue by introducing differentiable
Quantization Noise (QN) to approximate the degradation
caused by quantization. Notably, DiffQ only applies QN to
model weights. In NIPQ [19], authors combine QN and LSQ
(Learned Step Size Quantization) [5] by sharing the same
parameter corresponding to the same bit levels. This approach
facilitates an easy transition from QN to LSQ during the
later stages of training, allowing for improved quantization
performance. While application of QN is not novel we are
the first to demonstrate and study its advantages for NAS.

D. EFFICIENT SUPER RESOLUTION ARCHITECTURES
Many current models for SR suffer from high computational
costs, making them impractical for resource-constrained
devices and applications. To address this issue, lightweight
SR networks have been proposed. One such network is the
Information Distillation Network (IDN) [20], which splits
features and processes them separately. Inspired by IDN and
IMDB [21], the RFDN [22] improves the IMDB architecture
by using RFDB blocks [22]. These blocks utilize feature
distillation connections and cascade 1 × 1 convolutions
towards a final layer.

While there are numerous ideas for making SR models
lightweight, developing such methods can be labor-intensive
due to the trial-and-error process. In our work, we aim to
improve existing architectures - specifically the RFDN net-
work, which was the winning solution in the AIM 2020 Chal-
lenge on Efficient Super-Resolution [23]. We focus on
modifying RFDN to be more amenable to quantization by
constructing a quantization-aware, RFDN-based space.

Search space design is crucial. It should be both flexible
and contain known best-performing solutions. Even a random
search can be a reasonable method with a good search space
design. In AGD [11], authors apply NAS for SR, and search
for (1) a cell - a block which is repeated several times,
and (2) kernel size, along with other hyperparameters like
the number of input and output channels. TrilevelNAS [12]
extends the previous work by adding (3) network level
that optimizes the position of the network upsampling layer.
We compare our full precision NAS for SR with TrilevelNAS
and AGD.

In [24], the authors applied NAS to an RFDN-based search
space, which is similar to our work.4 In Sections V-B1
and VI, we compare and discuss our method and results with
the approaches mentioned above, specifically for the non-
quantized setting.

E. HARDWARE-AWARE DNAS
DNAS can be employed to search for architectures with
desired properties. In OQAT [3], authors performed a search
for architectures that perform well when quantized. They
used uniform quantization, where the same number of
bits is used for each layer of the neural network. The

4It’s worth noting that our choice of RFDN was independent from [24].

architectures discovered through quantization-aware search
performed better when quantized compared to architectures
found without considering quantization.

In the studies conducted in [25] and [26], similar areas of
research were explored, with some techniques closely related
to ours. In [25], the authors focused on a joint search for
neural architecture, layer-wise weights, activations precision,
and accelerator design. In [26], the authors used DNAS to
search for quantization-friendly architectures for the super-
resolution problem, with U-net as the backbone for their
search space. In Section VI, we will further compare our
approach with the latter one.

In a more recent study [27], the authors applied NAS
to search for binary neural networks, which represents the
lowest and most extreme level of quantization. To achieve
high-performing results, they enhanced their search space
by incorporating recent advancements in binary neural net-
works, including new types of activation functions [28] and
approximations of the sign function used for quantization.
However, it is important to note that their focus was on the
image classification task, which is outside the scope of our
work.

F. SUMMARY
While the approaches mentioned above provide valuable
insights into the integration of mixed-precision quantization
andNAS, it is important to note that they do not address all the
challenges associated with SR, DNAS, or quantization, nor
do they explore their combinations comprehensively. In our
work, we go beyond simply combining existing methods and
mainly focus on addressing the problems that arise from their
combination.

III. METHODOLOGY
The description of the methodology consists of four parts.
We start with Subsection III-A that describes our search
spaces. Subsection III-B describes our ADQmodule, which is
specifically designed to substitute Batch Norm and make the
search space more robust. In Subsection III-C we introduce
mixed precision search and provide details on Search Against
Noise technique. The complete QuantNAS search procedure
is described in subsection III-H. It includes the description of
the used loss function.

A. SEARCH SPACE DESIGN
The work considers two approaches to design the search
space. For designing the first search space, which we call
Basic search space, we take into account recent results in this
area and, in particular, the SR quantization challenge [29].
We combine most of these ideas in the search design depicted
in Figure 3. The second search space RFDN expands a recent
computationally efficient architecture RFDN [22].
Basic search space consists of head, body, upsample, and

tail blocks. The head block is composed of two searchable
convolutional layers. These layers play a crucial role in the
model and are responsible for capturing important features

VOLUME 12, 2024 117011

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 3. The search space design. We separate the whole architecture into 4 parts: head, body, upsample, and tail. The head and the tail
have N = 2 convolutional layers. The identical body part is repeated K = 3 times, unless specified otherwise. The number of channels for all
the blocks equals 36, except for the head’s first layer, upsample, and the tail’s first layers. All the blocks with skip connections
incorporate ADQ.

at the beginning of the network. The body block consists
of three layers. It includes two consecutive layers and one
parallel layer, along with a skip connection. This block
can be repeated multiple times to enhance the model’s
performance. Each body block is followed by ADQ. The
upsample block consists of one searchable convolutional
layer and one upsampling layer. The upsampling operation
is performed using the Pixel Shuffle technique, as described
in ESPCN [30]. This block is responsible for increasing
the resolution of the image. The tail block consists of two
searchable convolutional layers with a skip connection. This
block is located at the end of the network and is responsible
for refining the features and generating the final output. Basic
search space is depicted in Figure 3.

The deterministic part of our search space includes the
position of upsample block and the number of channels in
convolutions. The ADQ block is used only in quantization-
aware search. The variable part refers to quantization bit
values and operations within head, body, upsample, and
tail blocks. All possible operations are defined in Appendix
section J-C. We perform all experiments with 3 body blocks,
unless specified otherwise.

To create the RFDN search space, we start with the
RFDN architecture and replace all convolutional layers with
searchable operations. The possible operations are listed in
the Appendix, specifically in section J-C. Each operation has
different bit values that can be searched. The key difference
between the Basic search space and the RFDN search space
is that the latter uses repeated RFDB blocks [22] instead of
body blocks defined above, the tail block has only 1 layer, and
there is no head block. Instead, 3 input channels are repeated
and concatenated to have a desirable shape for RFDB block.

If we were to substitute the body block in the Basic search
spacewith the RFDB block, it would result in an architecture
very similar to RFDN [22]. The Basic search space can be
easily modified to create various popular SR architectures by
adjusting the structure of the inner blocks, which is why it is
called the Basic search space.

B. ADQ MODULE
Variation in a signal is crucial for identifying small details
for the SR preventing usage of normalizations like batch

FIGURE 4. Comparison of ADQ with AdaDM [31]. Some Block represents
any residual block with several layers within, σ (Xin) is a variance of input
signal, γ and β are learnable scalars. We remove the second BN after
Xout from original AdaDM.

norm (BN). After normalization layers, the residual feature’s
standard deviation shrinks, causing the performance degra-
dation in SR task [31]. On the other hand, training a neural
network without BN is unstable and requires more iterations.
The issue is even more severe for differentiable NAS, as it
requires training an overparameterized supernet.

The authors of AdaDM [31] proposed to rescale the
signal after BN, based on its variation before BN layers.
We empirically proved that removing the second BN in
AdaDM scheme, keeping only the first one in each block,
leads to better results for quantized models. We call this
block ADQ. Original AdaDM block and our modification are
depicted in Figure 4. All the body blocks during search have
the ADQ module.

C. QUANTIZATION-AWARE TRAINING—QAT
Our aim is to find quantization-friendly architectures that
perform well after quantization. A standard approach to
obtain a trained and quantized model is the Quantization-
Aware Training [6]. For QAT, we sequentially perform the
following: (a) quantize full precision weights and activations
during forward pass; (b) compute gradients using STE [18]
by bypassing non differentiable quantization operation; and
(c) update full precision weights.

Let consider the following one-layer neural network (NN)
with input x,

y = f (a(x)) = Wa(x), (1)

where a is a non linear activation function and f is a function
parametrized by a tensor of parameters W . While in (1) f is
a linear function, a convolutional operation is also a linear
function, so the structure is general enough. To decrease

117012 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

the computational complexity of the network, we replace
expensive float-point operations with quantized operations.
Quantization occurs for both weightsW and activation a.
The quantized output has the following form:

yq = fq(aq(x)) = o(G(x, b),Q(W , b)), (2)

where quantization bit width is denoted as b and a convolution
layer is denoted as o.
Q(W , b) is a quantization function for weights.

D. WEIGHTS AND ACTIVATION QUANTIZERS
There are various choices for quantizers, and weights and
activations can use different quantizers. Below, we will
describe our settings for both weight and activation
quantization.

For weight quantization, we utilize linear uniform quan-
tization, which means that the quantization steps are evenly
spaced throughout the dynamic range of the weights. More
details on uniform quantizers can be found in Section A.
Specifically, we opted to use Learned Step Quantization
(LSQ) [5] with a trainable step value for weight quanti-
zation, as it has demonstrated good performance in our
initial experiments. Additionally, uniform quantizers are
hardware-friendly.

Models are more sensitive to activation quantization
rather than weight quantization [32]. It is well known that
non-uniform quantization methods may lead to higher com-
pression rates with better accuracy. Therefore, for activation
quantization, we use a non-uniform quantizer. Specifically,
we opted for the HWGQ (Hardware-Guided Quantization)
method [4], as it has shown better performance than LSQ
for activation quantization in our initial experiments and is
simple to implement. In our notation, we use G(W , b) for the
HWGQ quantizer. More details on HWGQ can be found in
Section B.
We need to note that while there are other possible options

for quantizers, we did not study them since they are outside
the scope of our work.

E. MIXED PRECISION SEARCH AND BitMixer
The task of mixed-precision quantization is to find optimal
bit width for each layer in a neural network. In this scenario,
we replace each convolution layer with an operation that we
call BitMixer. BitMixer’s purpose is to model a weighted sum
of the same convolutional operation quantized to different bit
width during search.

The straightforward approach is to have an independent set
of weights for each convolutional operation. Let α be vector
of importance weights corresponding to different bit width.
Then, for convolution o and input xl , the output of l-th layer
is:

BitMixer(α, o, xl) =
∑
b∈B

αb · o
(
G

(
xl, b

)
,Q(W o

b , b)
)

(3)

This approach requires computing the same convolutional
operation |B| times.

F. QUANTIZATION-AWARE SEARCH WITH SHARED
WEIGHTS (SW)
To improve computational efficiency we can quantize
weights of identical operations with different quantization
bits instead of using different weights for each quantization
bit, this idea was studied in [9]. Then (3) becomes:

BitMixer(α, o, xl) =
(∑
b∈B

αb

)
· o

(∑
b∈B

α̂bG
(
xl, b

)
,
∑
b∈B

α̂bQ(W o, b)
)

, (4)

where α̂b =
αb∑
b∈B αb

.

Note that it is not necessary to use the first term of the
product as well as alpha-scale when

∑
b∈B αb = 1. This

is the case when we only try to find optimal bit-width for
a layer but do not search for convolutional operation, like
in [9]. QuantNAS, however, searches for different bit width
and operation simultaneously, which is why we perform such
adjustments. Without it,

∑
b∈B αb is significantly smaller

than 1, with forward signal magnitude being drastically
reduced after going through BitMixer.

The effectiveness of SW can be seen from (4): it requires
fewer convolutional operations and less memory to store the
weights.

G. SAN - QUANTIZATION-AWARE SEARCH AGAINST NOISE
To further improve computational efficiency and perfor-
mance of search phase, we introduce SAN. Model degrada-
tion caused by weights quantization is equivalent to adding
the quantization noise QNoiseb(W) = Q(W , b) − W . Then,
quantized weights isQ(W , b) = W +QNoiseb(W) and (4) is:

BitMixer(α, o, xl) =
(∑
b∈B

αb

)
· o

(∑
b∈B

α̂bQNoiseb
(
xl

)
+xl,

∑
b∈B

α̂bQNoiseb
(
W o)
+W o

)
(5)

This procedure does not require weights quantization
and is differentiable, unlike straightforward quantization.
QNoiseb is a function of W because it depends on its
shape and magnitude of values. Given the quantization noise,
we can more efficiently run forward and backward passes for
our network, similar to the reparametrization trick.
Adding quantization noise is similar to adding independent

uniform variables from [−1/2, 1/2] with 1 =
1

2b−1 ,
as explained in in [8]. However, for the noise sampling,
we use the following procedure as in [7]:

QNoise(b) =
1

2
z, z ∼ N (0, 1), (6)

as it performs slightly better than the uniform distribution [7].

VOLUME 12, 2024 117013

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

H. THE SEARCH PROCEDURE
The search and training procedures are carried out as two
separate steps. First, we search for an architecture and bit
width, and then we conduct another training session for
the selected architecture. We assign individual α-importance
values to each possible operation with a specific bit. This
means that the number of α values is equal to the number
of operations multiplied by the number of possible bits.
For l-th layer, there are |Ol | possible operations and |B| bit
widths.

For search step, we alternately update supernet’s weights
W and edge importances α. Two different subsets of training
data are used to calculate the loss function and derivatives for
updatingW and α, similar to [11]. Hardware constraints and
entropy regularisation are applied as additional terms in the
loss function for updating α.
To calculate the output of l-th layer xl+1 we sum the

outputs of BitMixer taking as inputs: importance values αli ,
convolutional operation oli , and input xl .

xl+1 =
|Ol |∑
i=1

BitMixer(αli, o
l
i, xl), (7)

where
∑|Ol |

i=1
∑|B|

b=1 αlib = 1 and all αlib ≥ 0.
Note that when |B| = 1, α̂b used in (4) and (5) becomes 1,

and (7) will give us the standard DNAS procedure for
searching operations.

Then, the final architecture is derived by choosing a
single operator with the maximal αlib among the ones for
this layer. Finally, we train the obtained architecture from
scratch.

To optimize α, we compute the following loss that consists
of three terms:

L(α) = L1(α)+ ηLcq(α)+ µ(t)Le(α),

where η and µ(t) are regularization constants. µ(t) increases
with each iteration t , details are covered in Appendix
section IV-F. L1(α) is the l1-distance between high resolution
and restored images averaged over a batch. Lcq(α) is the
hardware constraint and Le(α) is the entropy loss that enforces
sparsity of the vector α. The last two losses are defined in two
subsections below.

1) HARDWARE CONSTRAINT REGULARIZATION
The hardware constraint is proportional to the number of
floating point operations FLOPs for full precision models
and the number of quantized operations BitOps for mixed-
precision models. Ffp(o, x) is the function computing FLOPs
value based on the input image size x and the properties of a
convolutional layer o: kernel size, number of channels, stride,
and the number of groups. We use the same number of bits
for weights and activations in our setup. Therefore, BitOps
can be computed as Fq(o, x) = b2Ffp(o, x), where b is the
number of bits. Then, the corresponding hardware part of the

loss Lcq is:

Lcq(α) =
|S|∑
l=1

|Ol |∑
i=1

|B|∑
b=1

αlibb
2Ffp(oli, xl), (8)

where S is a supernet’s block or layer consisting of several
operations, the layer-wise structure is presented in Figure 1,
and xl is the input to l-th layer. We normalize Lcq(α) value
by the value of this loss at initialization with the uniform
assignment of α, as the scale of the unnormalized hardware
constraint reaches 1012.

2) ENTROPY REGULARIZATION
We use entropy regularization such that after the architecture
search, the model keeps only one edge between two nodes,
we call this procedure sparsification. Let us denote as αl all
alphas that correspond to edges that connect a particular pair
of nodes. They include different operations and different bits.
At the end of the search, we want αl to be a vector with one
value close to 1 and all remaining values close to 0.

The sparsification loss Le(α) for α update step has the
following form:

Le(α) =
|S|∑
l=1

H (αl), (9)

where H is the entropy function, that we can calculate,
as α admits interpretation as the categorical distribution.
The coefficient before this loss µ(t) depends on the training
epoch t . The detailed procedure for regularization scheduling
is given in Appendix IV-F.

I. SUMMARY
We present the summary of our mixed-precision quantization
NAS approach in this subsection. The algorithm outlining our
procedure can be found in Appendix 1.

• We consider two search spaces that take origin from SR
competition and from a recent RFDN [22] architecture.
To make the search procedure more stable and efficient,
we use ADQ.

• For different edges in a single layer that have different
bit values and identical operations, we share weights
making training more efficient.

• As a loss function, we use a three-term function. The first
term is a standard SR loss, the second one constrains
FLOPs of a model forcing it to be more efficient, and
the last one leads that importance weights converge to a
single non-zero value for each layer.

• We perform Quantization-Aware search, so our archi-
tecture in the end would be quantization-friendly. The
idea is to substitute non-differentiable quantization
with additive differentiable quantization noise. In this
way, we ensure good quantization property of a final
architecture.

117014 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

IV. RESULTS
The section is organized as follows:

• Initially, we provide an overview of the protocol and
introduce the competitor methods. This segment also
includes technical specifications for both our approach
and the alternative methods.

• We commence by conducting a comparative analysis
between our approach and existing methods in the field
of NAS and quantization for super-resolution.

• To conclude, we present the findings of an ablation
study, offering insights into how different contributions
have improved our approach.

We provide the code for our experiments here.

A. EVALUATION PROTOCOL
The evaluation protocol follows that from [12] with
DIV2K [33] the training dataset. The test datasets are
Set14 [34], Set5 [35], Urban100 [36], and Manga109 [37]
The super-resolution scale is 4.

In the main body of the paper, we present results on Set14.
The results for other datasets are presented in Appendix. For
training, we use RGB images. For PSNR score calculation,
we use only the Y channel similarly to [11] and [12].
Evaluation of FLOPs andBitOPs is done for fixed image sizes
256× 256 and 32× 32, respectively.
To illustrate the effectiveness of our approach, we present

the application of QuantNAS in two distinct settings. The
first setting involves our carefully crafted custom-designed
search space BasicSpace, which has been developed through
a comprehensive analysis of the state-of-the-art (SOTA)
architectures. Furthermore, we demonstrate the versatility
of QuantNAS by applying it to the champion of the
AIM 2020 Efficient Super-Resolution Challenge, namely
RFDN [22].

a: BASIC SEARCH SPACE
For all experiments, we consider the following setup if not
stated otherwise. A number of body blocks is set to 3.
For quantization-aware search, we limit the number of
operations to 4 to obtain a search space of a reasonable size.
Following others, our setup considers two options as possible
quantization bits: 4 or 8 bits for activations and weights.

b: RFDN SEARCH SPACE
In our approach, we substitute each convolutional layer
within RFDN with a search block consisting of six possible
operations. Each operation can be configured to use either
4 or 8 bits. So, 12 edges constitute the search block.
Furthermore, we apply the ADQ module around each RFDN
block. Notably, the ESAblock remains consistently quantized
to 8 bits.

c: PERFORMANCE EVALUATION
QuantNAS has the capability to discover models that
exhibit varying levels of computational complexity and

quality. By adjusting the hardware constraint regularization,
we identify several distinct models. When these points are
plotted on a graph, they form a Pareto plot, which serves as
a means to assess the method’s quality. Visual evaluation of
such a graph can be conducted as follows: the more points
situated to the left and higher up on the graph, the better the
overall performance, as they have higher quality and lower
complexity.

FIGURE 5. Our quantization-aware QuantNAS approach vs. fixed
quantized architectures. PSNR is for Set14 dataset and BitOPs is for image
size 32 × 32. We aim at the upper left corner that corresponds to smaller
GBitOps and higher quality measure via PSNR.

B. QuantNAS VS. QUANTIZATION OF FIXED
ARCHITECTURES
a: COMPARED METHODS
To compare QuantNAS with other mixed and uniform
architectures, we consider the following fixed models:
SRResNet [38], ESPCN [30], and RFDN [22]. For mixed
precision quantization, we use EdMIPS [9]. Our setup
for EdMIPS is matching the original setup and search is
performed for different quantization bits for weights and
activations. For uniform quantization, we use LSQ [5] and
HWGQ [4].

Our QuantNAS with ADQ and SAN has the following
hardware penalties: 0, 1e-4, 1e-3, 5e-5 to produce distinct
points at the Pareto frontier. Mixed precision quantization by
EdMIPS [9] for SRResNet [38], ESPCN [30], and RFDN [22]
used hardware penalties 0, 1e-3, 1e-2, 1e-1 respectively.

b: MAIN TABLE
We start with comparison of different quantized models and
results of QuantNAS. ESPCN model is quantized to 8 bits,
and SRResNet is quantized to 4 bits to match the desired
model size.

Table 1 presents the results. QuantNAS outputs archi-
tectures with a better PSNR/BitOps trade-off than uniform
quantization techniques for both considered GBitOPs values
about 5 and about 20.

VOLUME 12, 2024 117015

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

TABLE 1. Quantitative results for different quantization methods for
different models. ‘‘U’’ - stands for uniform quantization - all bits are the
same for all layers. GBitOPs were computed for 32 × 32 image size.

c: PARETO FRONTIER
Figure 5 complements the table above, showcasing the
complete Pareto frontier of architectures obtained using
QuantNAS and EdMIPS.

QuantNAS excels in discovering architectures with more
favorable PSNR/BitOps trade-offs, particularly within the
range where BitOps values overlap, when compared to
SRResNet and ESPCN. Additionally, our approach demon-
strates a notable performance improvement, especially when
compared to quantized ESPCN. Moreover, it is evident that
QuantNAS for RFDN delivers superior results in comparison
to EdMIPS RFDN.

Due to computational limits, our search space is bounded
in terms of the number of layers.We cannot extend our results
beyond SRResNet or RFDN in terms of BitOps to provide a
more detailed comparison.

C. QuantNAS VS. NAS + FIXED QUANTIZATION
We also look at whether a joint selection of architecture
and bit level - mix precision setting is better than neural
architecture search for a single fixed bit level - uniform
quantization setting.

We apply QuantNAS to the RFDN architecture in three
distinct settings, each varying in the available bit options
for each block. The first setting exclusively searches for
4-bit blocks, the second explores 8-bit blocks, and the third
provides the flexibility to select either 4- or 8-bit operations
for each block.

Results are shown in Figure 6. The graph clearly demon-
strates that broadening the search space to include mixed bit
width (4/8 bits) consistently leads to the discovery of superior
models. It is worth noting that the Pareto plots for various
metrics, such as SSIM and PSNR, exhibit remarkably similar
results. This trend persists across all experiments.

D. ADAPTIVE DEVIATION FOR QUANTIZATION
We start with comparing the effect of AdaDM [31] and
ADQ on three architectures randomly sampled from our
search space. Table 2 shows that both original AdaDM and
Batch Normalization hurt the final performance, while ADQ
improves PSNR scores.

FIGURE 6. NAS + mixed precision vs. NAS + uniform quantization.
We conduct identical search for QuantNAS RFDN, but with the flexibility
to search for blocks using fixed 4 bits, 8 bits, or both 4 and 8 bits
simultaneously. Results are presented using the Set14 dataset via SSIM
and PSNR metrics.

FIGURE 7. Comparison of different NAS options: vanilla, without SAN,
without ADQ, and without SAN and ADQ settings. Without SAN means
that we use quantization with shared weights. Metrics are for the Set14
dataset. Left - QuantNAS RFDN, right - QuantNas Basic search space.

TABLE 2. PSNR of SR models with scaling factor 4 for Set14 dataset. M1
and M2 are two arbitrary mixed precision models randomly sampled
from our search space.

In Figure 7, we can see that architectures found with
ADQ perform better in terms of both PSNR and BitOPs,
highlighting the clear advantage of using ADQ in the search
procedure for both our custom search space and RFDNs.

E. SEARCH AGAINST NOISE
a: QUALITY
The results shown in Figure 7 also demonstrate the contribu-
tion of SAN to our method.

Provided metrics demonstrate that SAN serves as a
reasonable and effective replacement for direct quantization.
Furthermore, in the setting involving our custom search
space, SAN consistently enhances the search procedure, and
when combined with ADQ, it yields a distinct improvement
for RFDN.

b: TIME EFFICIENCY
To demonstrate the time efficiency of our approach, we mea-
sured the average training time for three quantization

117016 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 8. Time comparison of quantization noise and weights sharing
strategy during the search phase of quantization-aware NAS. Y-axis
(on the left) shows time spent on 60 training iterations (line plot). The
secondary Y-axis (on the right) presents the time fraction of
SW strategy (bar plot).

methods: without weight sharing, with weight sharing used
by EdMIPS, and employing search against quantization noise
used by QuantNAS with SAN.

SAN reduces computation during the search phase, avoid-
ing the need for quantizing each bit level individually. We ran
the same experiment with varying numbers of searched
quantization bits. For uniform quantization, the number of
searched bit widths is 1, while for mixed precision (4 or 8 bits
for each block) it is 2.

Figure 8 shows the advantage of SAN in training time.
As the number of searched bits grows, so does the advantage.
On average, we get up to 30% speedup.

The search procedure with SAN, two optional bits and
Basic search space takes about 24 hours to finish for a
single GPU TITAN RTX. To train the final model takes about
6 hours on a single GPU.

F. ENTROPY REGULARIZATION
In this section, we provide evidence that the entropy
regularization helps a NAS procedure and give details on the
source of these improvements.

We consider three settings to compare QuantNas with
and without Entropy regularization: (A) small search space,
SGD optimizer; (B) big search space, Adam [39] optimizer;
and (C) small search space, Adam [39] optimizer. All
the experiments were performed for full precision search.
For small and big search spaces, we refer to Appendix J.
We perform the search without hardware penalty to analyze
the effect of the entropy penalty.

Quantitative results for Entropy regularization are in
Table 3. Entropy regularization improves performance in
terms of PSNR for all the experiments.

Figure 9 demonstrates dynamics of operations importance
for joint NAS with quantization for 4 and 8 bits. 4 bits edges
are depicted in dashed lines. Only two layers are depicted: the
first layer for the head (HEAD) block and the skip (SKIP)
layer for the body block. With entropy regularization, the
most important block is evident from its important weight

TABLE 3. PSNR/GFLOPs values of search procedure with and without
entropy regularization. Models were searched in different
settings A, B, and C.

value(α from (7)). Without entropy regularization, we have
no clear most important block. So, our search procedure has
two properties: (a) the input to the following layer is mostly
produced as the output of a single operation from the previous
layer; (b) an architecture at final search epochs is very close
to the architecture obtained after selecting only one operation
per layer with the highest importance value.

V. COMPARISON WITH OTHER NAS APPROACHES AND
LIMITATIONS
A. LIMITATIONS
The main limitation of this work is a lack of proper bench-
marking with other NAS methods. As demonstrated in [40]
there are no NAS-Benchmark for SR problem with a unified
search space due to the fact that NAS procedures usually
encompasses a big number of interdependent components
which may affect final performance. Moreover, there are no
NAS-Benchmark for quantized models as well.

To ensure a fair comparison, it would be necessary to
adapt existing methods to the SR domain or add quanti-
zation. However, this adaptation would require significant
modifications and could potentially lead to strong divergence
from existing methods. Therefore, our evaluation is limited
to three methods for NAS in the SR domain that operate in
full precision settings such as AGD [11], TrilevelNAS [12]
and [24]. For quantization we compare our approach with
the Two-fold Procedure (as described in Section I) where we
use our method to find architectures and mixed-precision [9]
and uniform [4], [5] quantization methods from the literature.
While there are works on quantization aware search such
as [26] the authors demonstrate different metrics and use
different search space. We discuss all these details in the
following section.

Obtaining the full Pareto frontier requires running the same
experiment multiple times, which are computationally and
time demanding. In Figure 7, all most right points (within one
experiment/color) have 0 hardware penalty. It clearly shows
that limited search space creates an upper bound for the top
model performance. Therefore, results for our search space
do not fall within the same BitOps range as SRResNet.

Even with the lack of comparison with other NAS
approaches our work brings valuable observations and our
results demonstrate effectiveness of novel techniques within
our own settings, which can further facilitate development in
this area.

B. COMPARISON WITH OTHER NAS APPROACHES
1) FULL-PRECISION NAS FOR SR
Here we examine the quality of our procedure for full
precision NAS without ADQ and SAN, since both were

VOLUME 12, 2024 117017

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 9. Dynamics of importance weights for different operations through epochs for QuantNAS. For 8 and 4 bits, we use solid and
dashed lines, respectively. Usage of entropy sparsification (top) allows for selecting a single most relevant block with high
importance compared to variants without entropy sparsification (bottom).

developed for quantized models. The results are presented in
Table 4.

Our search procedure with the Basic search space
achieves comparable results with TrilevelNAS [12] with a
relatively simpler search space design and about 5 times
faster search time. However, our procedure with the
RFDN-based search space is slightly inferior to DLSR.
Both our approach and DLSR develop search spaces based
on RFDN and apply DNAS, but there are some key
differences:
• DLSR uses different search blocks, specifically separa-
ble convolutional layers, which have fewer parameters
but are slower.

• DLSR uses an additional loss function - High Frequency
Error Norm.

• In terms of the search procedure, similar to us,
DLSR uses DARTS but authors do not apply entropy
regularization.

• Finally, different datasets are used for training the
models.

While it is difficult to conclude which component affected
the results the most, we believe that the reduction in
GFLOPs was most likely achieved due to the usage of
separable convolutions, and better performance was due
to the different dataset and possibly the additional loss
function.

Our best performing full precision architecture with Basic
search space was found with a hardware penalty of value
1e − 3. This architecture is depicted in Appendix Figure 17.
Visual examples of the obtained super-resolution pictures
are presented in Figure 19 for Set14 [34], Set5 [34],
Urban100 [36], and Manga109 [37] with scale factor 4.

2) MIXED-PRECISION NAS FOR SR
In terms of Mixed-precision NAS for SR our work very
closely aligns with [26].While it is difficult to make the direct
comparison due to usage of different search space, datasets
and computational efficiencymetrics, it is not even necessary.

Our approach without SAN, ADQ and entropy regulariza-
tion, would lead to the same procedure withminor differences
in hyperparameters and with the main difference in search
space. So the methods can be compared within the same
search.

VI. DISCUSSION
We demonstrate that with SAN, we are able to achieve
a close approximation of direct quantization. Additionally,
SAN produces superior results, potentially attributed to its
differentiable reparametrization. Moreover, we believe that
application of SAN during NAS is not limited to only
quantization but also can be extended to other problems for
example noise and adversarial robustness.

However, the stochastic nature introduced by randomly
sampled quantization noise makes the SAN procedure less
stable. Interestingly, our findings reveal that when combined
with ADQ, SAN consistently delivers improved outcomes,
whereas using SAN alone may result in suboptimal solutions.
In the subsequent section (Section E), we conduct a thorough
analysis of the architectures and delve into further insights.

We have successfully showcased the efficacy of our
procedure in two search spaces, indicating its potential
applicability to other search spaces as well. RFDN search
space consistently outperforms our Basic search space due
to the incorporation of various technical solutions, including

117018 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

TABLE 4. Quantitative results of PSNR-oriented models with SR scaling
factor 4 for Set14 dataset. ∗ results are from paper [12].

Residual Feature Distillation. It is worth noting that the
development of such search spaces requires considerable
effort. However, our results demonstrate that it is possible
to design a customized search space based on an existing
architecture, resulting in improved quality and efficiency.

We found that our procedure is sensitive to hyperparame-
ters. In particular, optimal coefficients for hardware penalty
and entropy regularization can vary across different search
settings. Moreover, we expect that there is a connection
between optimal coefficients for the hardware penalty,
entropy regularization, and search space size. Different
strategies or search settings require different values of
hardware penalties. Applying the same set of values for
different settings might not be the best option, but it is not
straightforward as how to determine them beforehand.

VII. CONCLUSION
In this work we demonstrate that approximating direct
quantization with QN during architecture search is favorable
and has many advantages.

We introduce an entire framework to search for efficient
hardware friendly SR architectures and release our code. Our
search procedure includes: (1) The entropy regularization to
avoid co-adaptation in supernets during differentiable search;
(2) differentiable SAN procedure; and (3) ADQ module
which helps to alleviate problems caused by Batch Norm
blocks in super-resolution models.

We demonstrate the versatility of our method by applying
it to various search spaces. In particular, we conduct
experiments using search space based on the computationally
efficient SR model RFDN.

Our experiments clearly indicate that the joint NAS and
mixed-precision quantization procedure outperforms using
NAS or mixed-precision quantization alone.

Furthermore, when compared or approach with Two-Fold
procedure where we used mixed-precision quantization with
EdMIPS [9], our search consistently yields better solutions.

APPENDIX A
UNIFORM QUANTIZATION
Quantization is a mapping that converts a range of
full-precision values into a discrete range of values allowing
usage of integer arithmetic and reduced memory consump-
tion. For example, Figure 10 depicts a uniform mapping with
the quantization scale size 1 = 1

4 of float values from the
interval (0, 1) into integer values.

In our work we apply uniform symmetric quantization
with channel-wise quantization step size 1 for weights.
In this case, computations of quantization, dequantization and
estimation of 1 are performed for the bit-width b as below:

qmin = −2b−1, qmax = 2b−1 − 1 (10)

clamp(x; qmin, qmax) = max(qmin,min(x, qmax)) (11)

1 = (11, . . . ,1n)T, 1i =
αi

qmax

(12)

Wint
i = clamp

(⌊
Wi

1i

⌋
; qmin, qmax

)
(13)

W ≈ Q(W) = 1⊙Wint (14)

where 1i is the scale factor for i channel of Wi, Wint

denotes the matrix of the quantized weights, ⊙ is element-
wise product.We need to note, that while1 can be computed,
we follow LSQ [5] and set it as a trainable parameter. One of
the advantages of learnable step size is that it helps to avoid
outlier values (qmin, qmax) which may occur in the during
training weights.

FIGURE 10. Uniform quantization step function with real valued one
dimensional w and integer valued Q(w).

APPENDIX B
HALF WAVE GAUSSIAN QUANTIZATION (HWGQ)
Models are more sensitive to activation quantization rather
than weight quantization [32] and it is well known that non-
uniform quantization may lead to higher compression rates
with better accuracy, therefore, for activations quantization
we use non-uniform HWGQ method [4]. The idea is
illustrated in Equation 15, here each ti is precomputed with
Lloyd’s algorithm considering Gaussian distribution of zero
mean and unit variance. Number of intervals is obtained as
I = 2bit .

Q(x) =

{
qi if x ∈ (ti, ti+1],
0 if x ≤ 0

(15)

Since we use ReLU activation functions we are interested
in positive values only.

APPENDIX C
STRAIGHT THROUGH ESTIMATOR
STE can be described in two steps:

VOLUME 12, 2024 117019

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

• Obtain quantized weights Q(W) from the real-valued
parametersWwith some quantization functionQ, which
is usually is non differentiable.

• Compute gradients at quantized weights Q(W) and
update real valued weightsWt+1←Wt − τ∇f (Q(W))

STE makes a particular choice of a quantization function to
obtain the discrete weights from the real-valued weights. This
approximation can be justified in some settings [41] but in
general the reasons behind its effectiveness are unknown.

APPENDIX D
TECHNICAL DETAILS
During the search phase, we consider architectures with a
fixed number of channels for each operation unless channel
size is changed due to operations properties. For Basic search
space, number of channels is set to 36, and for RFDN
search space number of channels is set to 48. The search
is performed for 20 epochs. To update the weights of the
supernet, we utilize the following hyperparameters: batch
size of 16, an initial learning rate (lr) of 1e-3, a cosine learning
rate scheduler, SGD with a momentum of 0.9, and a weight
decay of 3e-7. When updating the alphas, we employ a fixed
lr of 3e-4 and no weight decay.

During the training phase, an obtained architecture is
optimized for 30 epochs with the following hyperparameters:
batch size 16, initial lr 1e-3, and lr scheduler with the weight
decay of 3e-7.

We did not perform any hyper parameter search to obtain
the parameters.

Algorithm 1 QuantNAS algorithm
1: Initialize parametersW and edge values α

2: for iteration = 1, 2, . . . ,N do
3: Add QN toW as in 6 and 5
4: Compute the loss function L(α) as in III-H
5: Run backpropagation to get derivatives for α

6: Update α

7: Add QN toW as in 6 and 5
8: Compute the loss function L1(W)
9: Run backpropagation to get derivatives forW
10: Update W
11: end for
12: Select edges with the highest α
13: Train the final architecture from scratch

APPENDIX E
ANALYSIS OF FOUND ARCHITECTURES
We conducted an analysis of architectures discovered within
our Basic search space, and exemplary architectures are
presented in Figures 17 and 18 for full precision and
quantized models, respectively. Our observations indicate
that architectures with higher performance tend to have
higher bit values for the first and last layers. Notably, the
quantization of the first layer has a significant impact on
model performance, as it results in substantial information

loss due to the quantization of incoming signal. Additionally,
we found that intermediate body blocks typically exhibit
lower bit values.

APPENDIX F
RANDOM SEARCH
In Figure 13, we conducted a comparison between our
procedure and randomly sampled architectures on the Basic
search space. The results indicate that our procedure
significantly outperforms random search. Notably, there are
two distinct clusters above and below 26 PSNR line, which
correspond to models with 8- and 4-bit quantization of the
first layers.

APPENDIX G
ENTROPY SCHEDULE
For entropy regularization, we gradually increase the regu-
larization value α according to Figure 11, and for the first
two epochs, regularization is zero. Entropy regularization
is multiplied by an initial coefficient and coefficient factor.
Initial coefficients are 1e-3 and 1e-4 for experiments with full
precision and the quantization-aware search.

FIGURE 11. Entropy coefficient regularization is a product of log and
linear functions.

APPENDIX H
SCALING SR MODELS WITH INITIAL UP-SAMPLING
To maintain good computational efficiency, it is common for
SR models to operate on down-sampled images and then
up-sample themwith some up-sampling layers. This idea was
introduced first in ESPCN [30]. Since then, there were not
many works in the literature exploring SR models on initially
up-scaled images.

Therefore, we were interested in how this approach scales
in terms of quality and computational efficiency given
arbitrary many layers. Results are presented in Figure 12.
We start with one fixed block, similar to our body block in
Figure 3, and then increase it by one each time. We compare
our results with SRResNet [38] and SRCNN [42]. As we
can see, SRResNet [38] operates on down-scaled images

117020 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 12. Black point is the original SRCNN [42], and blue point is
SRResNet [38]. For Long Bicubic, we initially upscale an image with
bicubic interpolation and then add an efficient block found in our
experiments. The block consists of 3 convolutions layers with 32 filters
and is added 1, 2, 3, 4 times. PSNR is reported on Set14.

FIGURE 13. Randomly sampled architectures from two search spaces. The
search spaces are described in the corresponding section. PSNR was
computed on Set14 and BitOPs for image size 256 × 256. We observe that
two search spaces provide slightly different results with random
sampling. Results in green for architecture search were obtained with Big
search space - A. Two clusters above and below 26 PSNR line attribute to
8- and 4-bit quantization of the first layer.

and yields better results given the same computational
complexity.

APPENDIX I
DETERMINING THE IMPORTANCE OF BITS AND
CHANNELS
In Figure 14, we conducted an analysis to determine
the relative importance of bits and channels in model
performance. Our findings are as follows. The results reveal
that using 8-bit quantization yields comparable performance
to that of 16- and 32-bit quantization, while providing
marginal computational efficiency gains. This suggests that

FIGURE 14. Performance comparison with different bit values and
number of channels on the ESPCN model. All layers are uniformly
quantized, except for the first layer, which is fixed with 32 bits. BitOps
values are scaled and relative values are reported.

8-bit quantization is a viable option for achieving efficient
performance. Additionally, we observed that increasing the
number of channels in a model comes at a higher cost and is
not practical. As a result, it is essential to explore alternative
optimization approaches to enhance model performance,
rather than rely solely on channel scaling. One such
approaches is feature distillation used in RFDN.

Considering these findings, we decided not to include the
number of channels in our search space, since it has a less
significant impact on model performance.

APPENDIX J
SEARCH SPACE
A. SINGLE-PATH SEARCH SPACE
There are several ways to select directed acyclic sub-graph
from a supernet. DARTS [10] uses Multi-Path strategy - one
node can have several input edges. Such a strategy makes a

FIGURE 15. Comparison of results from Fig. 7 for different metrics: SSIM
and PSNR. As we can see, each metric gives a similar result.

VOLUME 12, 2024 117021

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 16. The same as Figure 7 but for different datasets.

FIGURE 17. Our best FP (full precision) architecture, 29.3 GFLOPs (image size 265 × 265), PSNR: 28.22 dB. PSNR was computed
on Set14. Body block is repeated three times for both architectures.

FIGURE 18. Examples of quantized architechtures. PSNR from top to bottom: 27.814 dB, 27.2 db, 24.8 db. On the top is our quantized
architecture (body 3), more details are given in Table 1. PSNR was computed on Set14 with scale 4. Body block is repeated three
times for all the architectures. Architecture on the bottom was sampled randomly.

search space significantly larger. In our work, we use Single-
Path strategy - each searchable layer in the network can
choose only one operation from the layer-wise search space
(Figure 1). It has been shown in FBNet [2] that simpler

Single-Path approach yields are comparable with Multi-Path
approach results for classification problems. Additionally,
since it alignsmorewith SR search design in our work, we use
Single-Path approach.

117022 VOLUME 12, 2024

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

FIGURE 19. Visual comparison of results for Set14. Better view in zoom. Note: we present results for quantized models with the body block
repeated 3 times. Model with the body block repeated 6 times has better PSNR values (see in Table 1). Our SP denotes Basic search space.

Wehave a fixed number of channels for all the layers unless
specified. For detailed operations description, we refer to our
code.

B. SEARCH SPACE (BIG - A)
This search space was used for full precision experiments,
unless specified. Possible operations block-wise:

• Head 8 operations: simple 3× 3, simple 5× 5, growth2
5 × 5, growth2 3 × 3, simple 3 × 3 grouped 3,

simple 5 × 5 grouped 3, simple 1 × 1 grouped 3,
simple 1× 1;

• Body 7 operations: simple 3 × 3, simple 5 × 5, simple
3× 3 grouped 3, simple 5× 5 grouped 3, decenc 3× 3
2, decenc 5× 5 2, simple 1× 1 grouped 3;

• Skip 4 operations: decenc 3×3 2, decenc 5×5 2, simple
3× 3, simple 5× 5;

• Upsample 12 operations: conv 5 × 1 1 × 5, conv
3 × 1 1 × 3, simple 3 × 3, simple 5 × 5, growth2

VOLUME 12, 2024 117023

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

5 × 5, growth2 3 × 3, decenc 3 × 3 2, decenc 5 × 5 2,
simple 3× 3 grouped 3, simple 5× 5 grouped 3, simple
1× 1 grouped 3, simple 1× 1;

• Tail 8 operations: simple 3 × 3, simple 5 × 5, growth2
5 × 5, growth2 3 × 3, simple 3 × 3 grouped 3, simple
5× 5 grouped 3, simple 1× 1 grouped 3, simple 1× 1;

C. SEARCH SPACE (SMALL - B)
This search space was mainly used for all Quantization
experiments Possible operations block-wise:

• Head 5 operations: simple 3 × 3, simple 5 × 5, simple
3× 3 grouped 3, simple 5× 5 grouped 3;

• Body 4 operations: conv 5× 1 1× 5, conv 3× 1 1× 3,
simple 3× 3, simple 5× 5;

• Skip 3 operations: simple 1 × 1, simple 3 × 3, simple
5× 5;

• Upsample 4 operations: conv 5 × 1 1 × 5, conv 3 × 1
1× 3, simple 3× 3, simple 5× 5;

• Tail 3 operations: simple 1 × 1, simple 3 × 3, simple
5× 5;

Conv 5× 1 1× 5 and conv 3× 1 1× 3 are depth-wise sep-
arable convolution convolutions. For operations description,
we refer to our code.

APPENDIX K
RESULTS ON OTHER DATASETS
In Figure 16, we provide quantative results obtained on
different test datasets: Set14 [34], Set5 [35], Urban100 [36],
Manga109 [37] with scale 4.
In Figure 19, we provide with visual results for quantized

and full precision models.

ACKNOWLEDGMENT
(Egor Shvetsov and Dmitry Osin contributed equally to this
work.)

REFERENCES
[1] S. Anwar, S. Khan, and N. Barnes, ‘‘A deep journey into super-resolution:

A survey,’’ ACM Comput. Surv., vol. 53, no. 3, pp. 1–34, May 2021.
[2] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,

Y. Jia, and K. Keutzer, ‘‘FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10726–10734.

[3] M. Shen, F. Liang, R. Gong, Y. Li, C. Li, C. Lin, F. Yu, J. Yan, and
W. Ouyang, ‘‘Once quantization-aware training: High performance
extremely low-bit architecture search,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 5320–5329.

[4] Z. Cai, X. He, J. Sun, and N. Vasconcelos, ‘‘Deep learning with low
precision by half-wave Gaussian quantization,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5406–5414.

[5] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha,
‘‘Learned step size quantization,’’ 2019, arXiv:1902.08153.

[6] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[7] A. Défossez, Y. Adi, and G. Synnaeve, ‘‘Differentiable model compression
via pseudo quantization noise,’’ 2021, arXiv:2104.09987.

[8] B. Widrow, I. Kollar, and M.-C. Liu, ‘‘Statistical theory of quantization,’’
IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 353–361, Apr. 1996.

[9] Z. Cai and N. Vasconcelos, ‘‘Rethinking differentiable search for mixed-
precision neural networks,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 2346–2355.

[10] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–13.

[11] Y. Fu,W. Chen, H.Wang, H. Li, Y. Lin, and Z.Wang, ‘‘AutoGAN-distiller:
Searching to compress generative adversarial networks,’’ in Proc. ICML,
2020, pp. 1–12.

[12] Y.Wu, Z. Huang, S. Kumar, R. S. Sukthanker, R. Timofte, and L. Van Gool,
‘‘Trilevel neural architecture search for efficient single image super-
resolution,’’ in Proc. Comput. Vis. Pattern Recognit., 2021, pp. 1–13.

[13] A. Bulat, B. Martinez, and G. Tzimiropoulos, ‘‘Bats: Binary architecture
search,’’ in Proc. ECCV, 2020, pp. 309–325.

[14] Y. Tian, C. Liu, L. Xie, J. Jiao, and Q. Ye, ‘‘Discretization-aware architec-
ture search,’’ Pattern Recognit., vol. 120, Dec. 2021, Art. no. 108186.

[15] J. Chang, Y. Guo, G. Meng, S. Xiang, and C. Pan, ‘‘Data: Differentiable
architecture approximation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1–11.

[16] Y. Wu, A. Liu, Z. Huang, S. Zhang, and L. Van Gool, ‘‘Neural architecture
search as sparse supernet,’’ in Proc. AAAI Conf. Artif. Intell., 2021, vol. 35,
no. 12, pp. 10379–10387.

[17] Y. Yang, H. Li, S. You, F.Wang, C. Qian, and Z. Lin, ‘‘ISTA-NAS: Efficient
and consistent neural architecture search by sparse coding,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 1–11.

[18] Y. Bengio, N. Léonard, and A. Courville, ‘‘Estimating or propagating
gradients through stochastic neurons for conditional computation,’’ 2013,
arXiv:1308.3432.

[19] J. Shin, J. So, S. Park, S. Kang, S. Yoo, and E. Park, ‘‘NIPQ: Noise proxy-
based integrated pseudo-quantization,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 3852–3861.

[20] Z. Hui, X. Wang, and X. Gao, ‘‘Fast and accurate single image super-
resolution via information distillation network,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 723–731.

[21] Z. Hui, X. Gao, Y. Yang, and X. Wang, ‘‘Lightweight image super-
resolution with informationmulti-distillation network,’’ inProc. 27th ACM
Int. Conf. Multimedia, Oct. 2019, pp. 2024–2032.

[22] J. Liu, J. Tang, and G. Wu, ‘‘Residual feature distillation network for
lightweight image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV) Workshops, Glasgow, U.K. Springer, Jan. 2020, pp. 41–55.

[23] K. Zhang, M. Danelljan, Y. Li, R. Timofte, J. Liu, J. Tang, G. Wu,
Y. Zhu, X. He, W. Xu, ‘‘Aim 2020 challenge on efficient super-resolution:
Methods and results,’’ inProc. Eur. Conf. Comput. Vis. (ECCV)Workshops,
Glasgow, U.K. Springer, Aug. 2020, pp. 5–40.

[24] H. Huang, L. Shen, C. He, W. Dong, and W. Liu, ‘‘Differentiable neural
architecture search for extremely lightweight image super-resolution,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 6, pp. 2672–2682,
Jun. 2023.

[25] K. Teja Chitty-Venkata, Y. Bian, M. Emani, V. Vishwanath, and
A. K. Somani, ‘‘Differentiable neural architecture, mixed precision and
accelerator co-search,’’ IEEE Access, vol. 11, pp. 106670–106687, 2023.

[26] K. T. Chitty-Venkata, A. K. Somani, and S. Kothandaraman, ‘‘Searching
architecture and precision for U-Net based image restoration tasks,’’ in
Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 1989–1993.

[27] M. Tan, W. Gao, H. Li, J. Xie, and M. Gong, ‘‘Universal binary neural
networks design by improved differentiable neural architecture search,’’
IEEE Trans. Circuits Syst. Video Technol., early access, May 9, 2024, doi:
10.1109/TCSVT.2024.3398691.

[28] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, ‘‘ReActNet: Towards
precise binary neural network with generalized activation functions,’’ in
Proc. 16th Eur. Conf. Comput. Vis. (ECCV), Glasgow, U.K. Springer,
Aug. 2020, pp. 143–159.

[29] A. Ignatov et al., ‘‘Real-time quantized image super-resolution on
mobile NPUs, mobile AI 2021 challenge: Report,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021,
pp. 2525–2534.

[30] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, ‘‘Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1874–1883.

[31] J. Liu, J. Tang, and G. Wu, ‘‘AdaDM: Enabling normalization for image
super-resolution,’’ 2021, arXiv:2111.13905.

117024 VOLUME 12, 2024

http://dx.doi.org/10.1109/TCSVT.2024.3398691

E. Shvetsov et al.: QuantNAS for SR: Searching for Efficient Quantization-Friendly Architectures

[32] D. Becking, M. Dreyer, W. Samek, K. Müller, and S. Lapuschkin, ‘‘ECQX :
Explainability-driven quantization for low-bit and sparse DNNs,’’ in Proc.
Int. Workshop Extending Explainable AI Beyond Deep Models Classifiers.
Springer, 2020, pp. 271–296.

[33] E. Agustsson and R. Timofte, ‘‘NTIRE 2017 challenge on single image
super-resolution: Dataset and study,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 1122–1131.

[34] R. Zeyde, M. Elad, and M. Protter, ‘‘On single image scale-up using
sparse-representations,’’ in Proc. Int. Conf. Curves Surf. Springer, 2010,
pp. 711–730.

[35] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel, ‘‘Low-
complexity single-image super-resolution based on nonnegative neigh-
bor embedding,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC), 2012,
pp. 135.1–135.10.

[36] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5197–5206.

[37] A. Fujimoto, T. Ogawa, K. Yamamoto, Y. Matsui, T. Yamasaki, and
K. Aizawa, ‘‘Manga109 dataset and creation of metadata,’’ in Proc. 1st
Int. Workshop Comics Anal., Process. Understand., Dec. 2016, pp. 1–5.

[38] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4681–4690.

[39] J. B. Diederik and P. Kingma, ‘‘Adam: A method for stochastic
optimization,’’ in Proc. Int. Conf. Learn. Represent., 2015, pp. 126–135.

[40] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani,
‘‘Neural architecture search benchmarks: Insights and survey,’’ IEEE
Access, vol. 11, pp. 25217–25236, 2023.

[41] X. Lin, C. Zhao, and W. Pan, ‘‘Towards accurate binary convolutional
neural network,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–9.

[42] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. ECCV, 2014, pp. 184–199.

EGOR SHVETSOV received the B.S. and M.S.
degrees in applied physics and material science
from Tomsk Polytechnic University, in 2008.

Since 2020, he has been a Research Engineer
with the Applied AI Center, Skolkovo Institute
of Science and Technology. His recent research
interests include neural architecture search and
computationally efficient deep learning.

DMITRY OSIN received the B.S. degree in applied
mathematics and informatics from Lomonosov
Moscow State University, Moscow, Russia,
in 2021.

Since 2020, he has been a Research Engineer
with the Skolkovo Institute of Science and
Technology. His main research interests include
neural architecture search, quantization, model
compression, representation learning, super reso-
lution, and sequential data.

ALEXEY ZAYTSEV was born in Kharkiv, Ukraine.
He graduated from MIPT, in 2012. He received
the Ph.D. degree in mathematics from IITP, RAS,
in 2017. He is currently an Assistant Professor
with the Skolkovo Institute of Science and Tech-
nology. His research interests include development
of new methods for sequential data, Bayesian
optimization, and embeddings for weakly struc-
tured data. In his master’s thesis, he proposed
a modification of Bayesian approach for linear

regression that allows an automated feature selection.

IVAN KORYAKOVSKIY received theM.Sc. degree
in computer science from the Computer Vision
Laboratory, Seoul National University, Seoul,
Republic of Korea, and the Ph.D. degree from
Delft Biorobotics Laboratory, Faculty of Mechan-
ical Engineering, Delft University of Technology,
researching machine learning techniques for the
control of the walking robots. He is currently a
Research Scientist with Toloka AI. His research
interests include on-device machine learning, rein-

forcement learning, computer vision, and autonomous agents.

VALENTIN BUCHNEV received the M.Sc. degree
in applied mathematics and informatics from
Moscow Institute of Physics and Technology,
in 2023. From 2021 to 2023, he was a Research
Engineer with Huawei Technologies Company
Ltd. Since 2023, he has been a Research and
Development Engineer with Yandex Self Driv-
ing Group LLC. His research interests include
neural network quantization and computationally
efficient deep learning.

ILYA TROFIMOV received the M.Sc. degree in
theoretical physics fromMoscow State University,
in 2006, and the Ph.D. degree in computer science
from the Federal Research Center ‘‘Computer
Science and Control,’’ RAS, in 2018.

He is currently a Research Scientist with the
Skolkovo Institute of Science and Technology.
His main research interests include large-scale
machine learning, AutoML, neural architecture
search, and generative adversarial networks.

EVGENY BURNAEV received the M.Sc. degree
in applied physics and mathematics from Moscow
Institute of Physics and Technology, in 2006,
and the Ph.D. degree in foundations of computer
science from the Institute for Information Trans-
mission Problem, RAS, in 2008.

He is currently a Full Professor with the
Skolkovo Institute of Science and Technology and
the Director of the Skoltech Applied AI Center.
His current research interests include regression

based on Gaussian processes and kernel methods for multi-fidelity surrogate
modeling and optimization, deep learning for 3D data analysis and manifold
learning, online sequence learning for prediction, and non-parametric
anomaly detection.

VOLUME 12, 2024 117025

