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ABSTRACT With the popularization of the Internet, it is very important to effectively identify abnormal
behaviors in network traffic. This study focuses on the construction of an internet traffic monitoring model,
aiming to improve the accurate recognition rate of abnormal behavior and reduce information loss during
small block segmentation. To this end, a internet traffic monitoring algorithm based on the improved
Transformer is optimized. This model adopts a block segmentation algorithm that preserves important
information during the segmentation process, thereby enhancing the segmentation quality and accuracy of the
model. By effectively interacting with multiple receptive field information, the model reduces information
loss and improves accuracy and efficiency. After experimental verification, the model performed well on
CICIDS sample data, with an F1 value of 93% for normal internet traffic. The F1 value of internet attack
traffic was 91%. Compared with the original Transformer model, it increased by 5% and 2.4%, respectively.
On the NSLKDD sample, the improved algorithm proposed in the study had an area under the curve
value of 0.90, which outperformed other models. This proves that it has significant advantages in the dual
classification task of internet traffic anomaly monitoring. This study provides an effective deep learning
algorithm for internet traffic anomaly monitoring, which is expected to provide strong support for network
security assurance in practical application scenarios.

INDEX TERMS Deep learning, transformer, internet, flow rate, block segmentation, monitoring, Trans-M.

I. INTRODUCTION
The openness of the internet provides conditions for ille-
gal actors. Conducting illegal activities through the internet
not only endangers personal information security and prop-
erty, but also poses a serious threat to social stability.
In recent years, network security incidents have occurred
frequently, causing serious damage to the network envi-
ronment and order. This also prompts experts and scholars
to search for more effective network traffic monitoring
methods [1], [2], [3].

Internet traffic monitoring is the basis of digital services,
such as online transactions, short-term video applications,
online reservation providers and electronic ordering systems,

The associate editor coordinating the review of this manuscript and

approving it for publication was Walid Al-Hussaibi .

and plays a vital role in ensuring the security and stable
operation of these services [4], [5], [6]. Existing Internet traf-
fic monitoring technologies face several limitations. Firstly,
with the rapid growth of network traffic, traditional traffic
monitoring systems may lack efficiency and accuracy in
processing large-scale data. In addition, existing monitoring
methods may suffer from undefined spots and high false
alarm rates in detecting complex and diverse network attack
methods. Therefore, researchers urgently need to develop
more efficient, accurate, and robust traffic monitoring tech-
nologies to cope with the constantly evolving network threat
environment. In this context, as a deep learning model in the
field of computing, Transformer has good feature capture and
adaptability, which can effectively handle large-scale parallel
computing tasks. Therefore, it has applicability in the traf-
fic monitoring. However, despite its significant advantages
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in capturing data features, Transformers still need further
optimization to address high noise levels and complex attack
behaviors.

Therefore, in order to provide a more efficient, accurate
and reliable Internet traffic anomaly monitoring scheme to
cope with the evolving network security challenges, this
research proposes an improved Transformer-based Inter-
net traffic monitoring algorithm Transformer Multi-Receive
Field Fusion (Trans-M). This model is based on the opti-
mized Transformer algorithm, which is specially designed
for Internet traffic anomaly monitoring. Considering the
shortcomings of traditional Transformer model in extract-
ing local feature information, it is combined with extended
convolutional units to better capture global and local infor-
mation. In addition, by applying expansion convolutions with
different unfolding rates, the model can perceive multiple
receptive field regions, further enhancing the information
perception ability. When dealing with block segmentation,
a block segmentation algorithm is adopted, which can calcu-
late and allocate appropriate weights to the information in the
receptive field area. To reduce information loss during block
segmentation, a decoder-based Multi-Receptive Field Fusion
(MRFF) algorithm is also introduced and combined with self
attention mechanism to reduce information loss.

The main contribution of the research is that it has brought
significant positive impacts to the field of Internet traffic
monitoring. By addressing the efficiency and accuracy issues
of existing technologies in large-scale data processing and
complex network attack detection, the research aims to sig-
nificantly enhance the security and stability of the system.
Furthermore, improved technology is expected to reduce
false alarm rates and enhance robustness against high noise
and complex attack behaviors, effectively protecting personal
information and property security. The research results aim
to improve the overall effect of Internet traffic monitoring,
provide a solid guarantee for the safe operation of digital
services such as online transactions, short-term video appli-
cations, online bookings, and promote the healthy and stable
development of the network environment.

The overall framework of the study can be divided into
four parts. The first part summarizes the achievements and
shortcomings of research on Transformer and Internet traffic
both domestically and internationally. The second part intro-
duces Transformer and block segmentation models. Based on
this, relevant improvements have been made to the Trans-
M model. The third part conducts hyper-parameter and dual
classification experimental analysis. The fourth part summa-
rizes the research findings and points out the directions for
further research.

II. RELATED WORKS
A. RESEARCH STATUS OF INTERNET TRAFFIC
MONITORING TECHNOLOGY
Internet traffic monitoring provides critical support for
network security and performance management. With the

continuous progress of network technology and machine
learning, many scientists and scholars have conducted
research on the Internet traffic monitoring [7]. Duan et al.
proposed an innovative method to efficiently monitor zombie
networks by combining auto-encoder neural networks with
Decision Trees Model (DT). This method used deep current
monitoring and statistical analysis for feature selection, accu-
rately characterizing the communication behavior between
nodes. Self encoder was used for feature filtering and opti-
mizing model construction. By generating a few samples and
enhancing the DT with improved gradients, class balancing
was achieved and botnet data was accurately monitored.
The experimental results showed that this method performed
superior in network traffic [8]. Zhang and Wang proposed
that Internet traffic classification was crucial for multiple net-
work activities. Due to the inability of traditional methods to
adapt to the increasing demand for encryption, machine learn-
ing methods are gradually increasing. Although net flow is
widely used by network operators, the application in network
traffic classification is still immature. Combining net flow
data with deep neural networks, an effective internet traffic
classification module was proposed. The performance was
verified on two real datasets [9]. Ponnusamy et al. believed
that the lack of initial defense at the network or node level
allowed attackers to launch attacks. The lack of readily avail-
able benchmark data for internet traffic added challenges.
The study explored the characteristics of existing datasets and
their applicability in traffic, and analyzed the characteristics
of wireless network packets. The dynamic weight allocation
improved threat classification. Combining domain heuristic
methods and early classification results, 19 high information
gain wireless network specific fields were identified as ML
features [10]. Li et al. proposed that back-pressure control
was initially applied to communication networks with packet
routing. After multiple modifications, it was adapted to flow
control and achieved satisfactory results. Most BP variants
were based on the assumption that they could fully understand
the network flow and traffic conditions, especially the queue
length. However, it was actually difficult to obtain accurate
queue length information. Comparedwith the original BP and
other controllers, the experimental results showed that even
with only 10% of the traffic, the average delay, throughput,
and maximum parking queue length performed well in high
demand scenarios [11].
Zanma et al. used a discrete homogeneous Markov chain

to represent the multi-time varying network traffic state.
Based on lost historical data, the probability matrix of
Markov chains was used to estimate the network traffic
state online. Then, based on the estimated network traffic
status, the appropriate controllers were selected to optimize
control performance. This method was validated through
simulation and experiments, demonstrating the effectiveness
in real-time networked control systems [12]. Zanma et al.
proposed a progressive network traffic collective anomaly
detection framework called CCAD, which was based on clus-
tering methods. CCAD helped analysts effectively identify
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collective anomalies in network traffic. Its working method
was different from other anomaly monitoring methods,
mainly by analyzing the impact of collective anomalies on
the clustering results of network traffic data. Experiments
showed that CCAD performed well in collective anomaly
exploration. The monitoring rate was significantly improved
compared with other existing methods [13]. Dong and Xia
explored the impact of packet sampling on recognition
accuracy. The research involved feature selection, behav-
ior measurement correlation analysis, and traffic recognition
algorithms. Through experiments, under grouped sampling,
the importance of behavioral feature decreased. As long as the
traffic is sufficient, feature selection is independent of sam-
pling ratio. High sampling rate leads to a decrease in accuracy.
To improve the accuracy, a deep belief network recognition
method was introduced, demonstrating better performance
than other methods [14]. Vidhya and Nagarajan proposed
a progressive intrusion detection method based on machine
learning technology, aiming to intelligently and effectively
identify wireless network traffic intrusions without the need
for additional hardware. The function of Intrusion Detection
System (IDS) was to detect and prevent network intrusions,
guarantee the security of user connections, and ensure the
confidentiality and integrity of the network. Compared with
existing methods, this method exhibited higher intrusion
detection accuracy [15].

B. CURRENT STATUS OF ATTENTION MECHANISMS AND
TRANSFER LEARNING RESEARCH
Many researchers have also contributed to attention mecha-
nisms and transfer learning. Peng et al. proposed a method
aimed at solving the graph neural network text classification
models being unable to capture distant node information
and reflect various scale features of text. This method intro-
duced attention mechanism in Dense Connected Graph Con-
volutional Neural Network (DC-GCN). DC-GCN utilized
dense connections to collect information from distant nodes,
achieving small-scale feature multiplexing and generating
features with different scales. Finally, by combining atten-
tion mechanisms with features, the relative importance was
determined. The experimental results showed that the method
performed excellently on four benchmark datasets [16].
Scholars such as Zulqarnain proposed a Bimodal GRU (TS-
GRU) method based on feature attention mechanism, aimed
at solving the emotion polarity recognition and classification
in sentiment analysis. This method integrated pre-feature
attention mechanism, combined sentence order modeling and
word feature capture to model complex relationships between
words, and utilized attention layers to capture the emotional
polarity of keywords. The experimental results showed that
the proposed method was effective in IMDB. Emotional
analysis accuracy of 90.85%, 80.72%, and 86.51% were
obtained on the MR and SST datasets, respectively [17].
Lauren et al. proposed a method based on deep transfer
learning aimed at addressing the demand for large amounts of

manually annotated data in supervisedmachine learning. This
method utilized pre-trained language models to accumulate
prior knowledge. After fine-tuning the model, it was trans-
ferred to specific political text tasks. The experimental results
showed that for eight tasks, the model using transfer learning
improved performance by 10.7% to 18.3% compared with the
classical model [18]. F. Ullah and other researchers proposed
a Transformer-based imbalanced network traffic transfer
learning intrusion detection system, aimed at solving the
feature complexity and data imbalance in network intrusion
detection. This method utilized transformer-based transfer
learning to learn network feature representation and feature
interaction, and combined synthetic minority over-sampling
techniques to balance abnormal traffic. The model exhibited
good performance, providing an effective intrusion detec-
tion solution for the network security [19]. Fateh et al.
proposed a comprehensive solution for multi-lingual hand-
written digit recognition based on attention mechanism and
transfer learning. This method utilized transfer learning to
reduce computational costs while maintaining image qual-
ity and recognition accuracy, and introduced the innovative
MRA module for feature extraction. Experimental results
showed that this module significantly improved image qual-
ity and handwritten digit recognition accuracy, resulting in
a nearly 2% increase in recognition accuracy for specific
languages [20].
Table 1 shows a list of the relevant work proposed.
To sum up, the existing research has made significant

progress in improving the accuracy and efficiency of Internet
traffic monitoring. Among them, methods such as combining
auto-encoder neural networks with decision trees, efficient
classification and detection, etc. have demonstrated good
performance. However, thesemethods still have limitations in
dealing with large-scale data, high noise levels, and complex
attack behaviors, with high false alarm rates and detec-
tion undefined spots. In this regard, the study proposes the
Trans-M, which optimizes feature extraction methods and
combines them with self attention mechanisms to enhance
the ability to capture local and global information, effectively
addressing the aforementioned limitations. The contribution
of the research is that it provides an efficient, accurate and
robust solution to improve the performance of Internet traf-
fic anomaly monitoring, further expanding the research and
application scope of Internet traffic monitoring.

III. INTERNET TRAFFIC MONITORING MODEL BASED ON
IMPROVED TRANSFORMER
This study proposes an Internet traffic monitoring model
based on an improved Transformer. The main goal is to
strengthen the monitoring capacity of Internet traffic to bet-
ter adapt to practical applications. Firstly, data blocks are
segmented using the Transformer and block segmentation
techniques. A multi-perception domain fusion algorithm is
introduced to address the potential structural losses that may
occur during block cutting. Finally, the MRFF algorithm is
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TABLE 1. Related worksheet.

combined with Transformer encoder to analyze and model
Internet traffic data.

A. TRANSFORMER MODEL AND BLOCK SEGMENTATION
CONSTRUCTION
With the rapid development of information technology, Inter-
net traffic monitoring is crucial to ensure network security
and performance management. Although existing technolo-
gies have real-time monitoring and anomaly detection capa-
bilities, they still have limitations in handling large-scale data
and complex attack behaviors. This sectionmainly introduces
block segmentation technology into the Transformer model
to reduce the information loss, retain more useful informa-
tion, and enhance the quality and robustness of features. The
Transformer model relies entirely on attention mechanisms
to perform parallel computing. Previously, recurrent neural
networks are mainly used for natural language processing
and other sequential tasks. Processing sequence data is the
key to deep learning. Usually, it is necessary to focus on the
key parts of the input sequence. The attention mechanism
allows the network to automatically focus on the parts related
to the current position when processing different positions
in the sequence. Adjusting weight can improve flexibility
and adaptability [21], [22]. By assigning greater weights to
important features, the attention mechanism enhances the
network expression and generalization capabilities, as shown
in Figure 1.

FIGURE 1. Attention mechanism diagram.

The Transformer model consists of an encoder and a
decoder. Each part is composed of multiple layers of heap.
Each layer includes a multi-head self attention sub-layer
and a fully connected feed-forward network sub-layer. The
decryption layer has an additional mask multi-head attention
sub-layer compared with the encryption layer. The specific
structure is shown in Figure 2.

The Transformer’s multi-head attention mechanism par-
allelly processes each position of the input sequence. Mul-
tiple headers are used to learn different queries, keys, and
value mappings to capture different semantic information.
Masked multi-head attention blocks future location informa-
tion during computation to prevent information leakage. The
main difference between it and conventional long headed
attention lies in the way it processes future information.
The feed-forward neural network is the core component
of the Transformer, which performs nonlinear transformation
on the hidden layer representation of each position. The
output of multi-head attention is mapped to another dimen-
sion space. It enhances the model’s expressive power and
predictive accuracy. Residual connection adds input directly
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FIGURE 2. Diagram of encoder and decoder for transformer model.

to output, helping the model learn residual [23], [24], [25].
In Transformer, each sub-layer has residual connections. This
design helps to avoid gradient vanishing and gradient explo-
sion problems in deep networks. Layer normalization is used
to standardize the input of each layer, which can accelerate
training and improve the generalization ability and perfor-
mance, as shown in equation (1).



LayerNorm(X ) = a⊗
X − µ

σ
+ β

µ =
1
n

n∑
i=1

xi

σ =

√√√√1
n

n∑
i=1

(xi − µ)2 + ε

(1)

In equation (1), a and β are trainable parameter vectors.
The dimension matches the final dimension of X . ⊗ rep-
resents element level multiplication. ε is a small constant
used to ensure numerical stability. Compared with traditional
deep learning models such as Recurrent Neural Network
(RNN) and Long Short-TermMemory (LSTM), Transformer
is suitable for handling internet traffic anomaly monitoring
tasks due to the parallel computing advantages [26], [27].
This study draws on successful experiences in the natural
language processing. The improved Transformer model is
used to Internet traffic monitoring. Among them, the forma-
tion of convolutional attention module significantly improves
the performance of the model by using attention mechanisms
in image channels and feature dimensions. Transformer per-
forms well in handling long-term dependencies of sequences,
but the local feature information processing is limited.
Therefore, it is improved. Based on the block segmentation
technology, the information loss is reduced. More useful

information is retained to enhance the quality and robustness
of features. Figure 3 shows the model structure.
The model consists of four modules, including pre-

processing and sequence image conversion, expansion con-
volution unit, block embedding unit, and encoding unit. The
pre-processing stage organizes and standardizes the gaps and
outliers in Internet traffic data. The sequence image conver-
sion module converts the data sequence into a rectangular
image and transmits it to an expansion convolution unit,
which performs expansion convolution based on the expan-
sion rate to extract feature information. The block embedding
unit is composed of block segmentation and full connectivity.
It is segmented using a block segmentation algorithm to
increase the number of channels. The encoding unit inte-
grates MRFF, multi-head attention, feed-forward network,
and multi-receptive field information to process global key
features, and map the results. In the pre-processing stage, the
gaps and outliers in the data set are properly handled to ensure
the accuracy of the model. The outliers refer to the Gaussian
distribution theory, as shown in equation (2).

f (x) =
1

√
2πσ

exp
{
−
(x − µ)2

2σ 2

}
(2)

In equation (2), σ represents the standard deviation of the
data set. µ is the average of the data set. X refers to a specific
data point. The data points of 99% to 100% are located in the
(µ − 3σ, µ + 3σ ). The distance between the data points and
the average is measured. If this distance exceeds three times
the standard deviation, it can be confirmed that the data point
is abnormal. The strategies for handling null values include
direct discarding, interpolation, and the K-Nearest Neighbor
(KNN) algorithm. The direct discarding method may result
in missing information. The interpolation method calculates
missing values based on neighboring values. The KNN rule
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FIGURE 3. Trans-M structure diagram.

searches for K data points that are most similar to missing
values for filling. The choice of method depends on the nature
of the data. Both CICIDS and NSLKDD Internet traffic sam-
ple sets in the study have missing values. The CICIDS data
set has fewer missing values. It has a large amount of data,
approximately 2.84 million pieces. Therefore, data contain-
ing missing values is directly discarded. Relatively speaking,
the NSLKDD data set has fewer missing values. However,
due to the small amount of data, about 150000 pieces, each
data point is extremely important. Therefore, the mean filling
method is used to handle missing values. To accelerate model
training, the data needs to undergo range reduction process-
ing. The normalization method is used in the study, as shown
in equation (3).

x ′
=

x − min(x)
max(x) − min(x)

(3)

In equation (3), max and min represent the maximum and
minimum values of the sample data, respectively. The input
phase organizes the raw data into rectangles. Figure 4 is a
schematic diagram of the sequence image conversion struc-
ture. This Figure shows the input process of Internet traffic
data {x1, x2, · · ·, xt }. It is converted into a rectangle with a
width of W and a height of H . The H and W are calculated
based on the given data sequence length t . If the length t of the
data sequence is n times thewidthW , the data can be perfectly
converted into a rectangle. If it is not an integer multiple,
the conversion is achieved by adding zero at the end of the
sequence. This transition from sequence to matrix adjusts the
data structure to fit the input requirements of the model.

The pre-processed data is converted through a sequence
image conversion module. The dimension becomes W ×

H × C . To achieve information complementarity between
different receptive fields, the converted data is input into
an expanding convolution unit for expanding convolution
operations. The output data of stage one is denoted asX1

1X
2
1 ∈

RW×H×C , while the other is denoted as X1
2X

2
2 ∈ RW×H×C .

X rm represents stage m. The structure of the extended convo-
lutional unit is shown in Figure 5.

In Figure 5, 1 × 1 Conv and 3 × 3 Conv refer to the
size of the convolutional kernel, respectively. H-swish and
Softmax are activation functions. The data is first processed

FIGURE 4. Schematic diagram of sequence image conversion structure.

by 1 × 1 Conv, then activated by H-swish activation func-
tion, and followed by 3 × 3 Conv and H-swish activation
again. Finally, it activated by 1 × 1 Conv and Softmax. The
convolutional module also integrates a residual network to
prevent gradient vanishing. The specific forms of H-swish
and Softmax activation functions are shown in equation (4).

H − swish = x
min(max(x + 3, 0), 6)

6

st = Softmax(σt ) =
e−σt

w∑
t=1

e−σt

= [s1, s2, · · ·, sw]w×1

(4)

In equation (4), σ represents the input sequence. w is the
length of the marked sequence. st is the calculated value
obtained. The Softmax function allocates spatial attention
weights based on the size of each element in the input
sequence and ensures the sum of weights. The advantage of
Softmax lies in the computational simplicity in the gradient
descent optimization process.

B. CONSTRUCTION OF TRANS-M ALGORITHM BASED ON
BOCK SEGMENTATION AND ENCODER
The Transformer algorithm divides data into several blocks
through block segmentation and generates block vectors to
enhance feature representation. Then, the block vectors are
merged through a fully connected layer to fuse multi-domain
information. On this basis, multi-head attention mechanism
and layer normalization technology are further introduced
into the encoder module to improve the modeling ability
for long-distance dependencies. Finally, the MRFF method
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FIGURE 5. Structure diagram of the extended convolution unit.

and the multi-head attention mechanism are combined to
accurately monitor Internet traffic data.

In the block segmentation step, block segmentation is used
to convert the divided blocks into block vectors. In the sub-
sequent fully connected stage, these block vectors undergo
linear operations for feature merging to form the final block
embedding. When performing block segmentation, data X1

1
and X1

2 are divided into several non-overlapping blocks. Each
block size is S. Subsequently, block segmentation is used to
calculate the vector representation of each block. The specific
calculation process is shown in equation (5).

prc,i =

s2∑
s=1

exp(arc,i,s)a
r
c,i,s∑S2

s′=1 exp(a
r
c,i,s′ )

pri =
[
pr1,i, p

r
2,i, · · ·, pr2C,i

]
.

(5)

In equation (5), prc,i ∈ R2C describes the block segmen-
tation calculation results of the i-th block in the channel
numbered c at the expansion rate r . c is an integer from 1 to
C . arc,i,s refers to the s-th position of the i-th block in the
channel numbered c at the expansion rate r . pri represents the
value of the i-th block at the expansion rate r . Next, the block
vector inputs a fully connected layer network with an output
dimension of 4C . FC(4C) represents passing through the
fully connected layer. The number of channels becomes 4C .
The output of 4C after passing through the fully connected
layer is shown in equation (6).

Pr = FC(4C)(pr ) (6)

In equation (6), the vector under the expansion rate r
represents the characteristics of the block. Based on flexi-
ble pooling techniques, block segmentation algorithms can
flexibly process different receptive domain information,
more effectively preserve channel features, and improve the
accuracy of block segmentation. Although the Transformer
algorithm can effectively model long-distance dependencies
of feature information, the block segmentation process may
lose some organizational structure information. Integrating
blocks with different receptive domains can alleviate this
problem. Therefore, it is crucial to find effective meth-
ods to integrate block feature information from different
receptive domains. To address this issue, a multi-sensory
domain feature fusion algorithm based on the encoder is
proposed. Multi-sensory domain feature fusion can inter-
act with information from multiple sensory domains while
modeling long-distance dependencies of input information,
thereby reducing the Internet traffic information loss. The

encoder module includes multi head attention mechanism,
feed-forward network, and uncertainty modeling method.
The study selected Bayesian statistics as the uncertainty
modeling method, which combines prior knowledge and
observation data, and uses Bayesian theorem to update the
posterior distribution of model parameters. Bayesian statisti-
cal methods provide quantification of parameter uncertainty
through a posterior distribution, which helps to consider
model uncertainty in the decision-making process. In these
two parts, residual networks and layer normalization tech-
niques are introduced. The multi-head attention mechanism
is an enhanced version of the self attention mechanism. It can
calculate contextual information for each position in the input
sequence and includes multiple heads that can calculate atten-
tion in parallel. Each head learns different queries, keys, and
value mappings to capture different feature information [28],
[29]. Figure 6 shows the structure of the self attention mech-
anism for multi-sensory domain feature fusion.

The comprehensive correlation between blocks i and j is
generated by the synthesis of corresponding position infor-
mation within each receptive field, as shown in equation (7).

ωij =
1

√
d mod el

((P1iW
Q)(P1jW

K )T + (P2i U
Q)(P2i U

K )T )

(7)

In equation (7), d mod el represents the dimensions in the
hidden layer of the model. When the expansion ratio is 1,
the dot product output of Pi is shown in the first term of
equation (8). When the expansion ratio is 2, the dot product
output of Pi is shown in the second item of equation (8).

β1
i =

n1∑
j=1

exp(ωij)∑n1
j′=1 exp(ωij′ )

(P1i U
V )

β2
i =

n2∑
j=1

exp(ωij)∑n2
j′=1 exp(ωij′ )

(P2i U
V ).

(8)

In equation (8), n1 and n2 respectively indicate the number
of blocks within the two receptive domains. n1 is equal to
n2 [30]. The self attention mechanism is clearly presented by
equation (9).

A(Q,K ,V ) = Softmax(
Q1KT

1 + Q2KT
2

√
d mod el

)V

= [β1
1 , . . . , β

1
n1; β2

1 , . . . , β
2
n2] (9)

In equation (9), Q = concat[Q1;Q2], K =

concat[K1;K2], and V = concat[V1;V2]. These are con-
catenated by query sets, key sets, and value sets of two
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FIGURE 6. The structure of multiple receptive domain features fused from
attention mechanism.

receptive fields. By performing multiplication operations
between Q and K , the correlation between specific location
features and other features can be evaluated. A high score
means a strong correlation [31], [32]. Afterwards, the corre-
lation score will be divided by the square root of the hidden
layer dimension to maintain gradient stability. Then, the
Softmax function is used to process the scores. The relative
importance between each feature is determined. Finally, the
output of the Softmax is multiplied by the V matrix to
highlight important features while diluting the influence of
irrelevant information. The calculation of each attention unit
is shown in equation (10).

headj = A(QWQ
j ,KWK

j ,VWV
j ) (10)

In equation (10),WQ
j ,W

K
j , andWV

j are linear transforma-
tion matrices for queries, keys, and values, respectively. The
operational process of combining multiple self attention units
to form multiple attention units is shown in equation (11).

MultiHead(Q,K ,V )

= Concat(head1, head2, . . . , headn)W o (11)

In equation (11), Concat is the matrix connection function.
W o is the additional weight matrix. By connecting n self
attention mechanisms and performing matrix calculations
withW o, self attention from different sub-spaces can be com-
pressed into a matrix to extract key features more accurately.
After introducing the residual network into the multi-head
attention mechanism, the output results are fed into the
feed-forward network for calculation. The feed-forward net-
work consists of two linear transformations, between which
there is an activation function. The operation process of the
feed-forward network is shown in equation (12).

FeedForward(x) = f (xW1 + b1)W2 + b2 (12)

In equation (12), f (·) is the activation function.W1 andW2
represent the weight parameters, respectively. b is the bias
term. The Trans-M model is developed to accurately monitor
Internet traffic anomalies. The Trans-M applies a new block
segmentation technique. The MRFF method of the decoder is
introduced to address the structural information loss caused
by segmentation [33], [34]. By combining the decoding part
of MRFF and Transformer, this model can deeply analyze
and model Internet traffic data. It is validated on standard
datasets. The process includes obtaining and pre-processing
data, dividing it into training and testing sets. Model training
includes extracting information using extended convolutional
modules with different expansion rates, and then process-
ing blocks using block segmentation techniques and fully
connected networks. Through MRFF and multi-head atten-
tion mechanism, the model can extract key features. After
inputting training data into Trans-M and undergoing iterative
training and parameter optimization, the model is saved when
the loss decreases to an acceptable range or reaches the
number of iterations. Finally, the model is evaluated on the
testing set to calculate the accuracy of anomaly monitoring.
The training process of the model is shown in Figure 7.

In order to comprehensively evaluate the performance of
the classification model, multiple indicators such as accuracy,
recall, and F1 score are usually used. Each indicator has its
specific definition and calculation equation. The accuracy
describes the proportion of correctly classified samples in the
model, as shown in equation (13).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

In equation (13), TP is a true positive example. TN is a
true negative example. FP is a false positive example. FN is
a false negative example. Recall, also known as sensitivity,
describes the proportion of the model correctly classified in
all actual positive examples, calculated in equation (14).

Re call =
TP

TP+ FN
(14)

F1 score is the harmonic average of Precision and Recall,
used to measure the overall performance of the classification
performance, especially when the categories are imbalanced.
The calculation is shown in equation (15).

F1 − score = 2 ×
Pr ecision × Re call
Pr ecision+ Re call

(15)

Among them, Precision refers to the proportion of actual
positive examples among the samples predicted by the model
as positive examples, as shown in equation (16).

Pr ecision =
TP

TP+ FP
(16)

The above indicators comprehensively evaluate the perfor-
mance of the model in different aspects, such as correctness,
full coverage, and result balance, thus comprehensively char-
acterizing the actual effectiveness of the model.
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FIGURE 7. Training process of the model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS OF
INTERNET TRAFFIC MONITORING BASED ON TRANS-M
To further investigate the execution ability of the Trans-M
model, this study explores it on different data sets. Firstly, the
origin and pre-processing steps of the sample data set used are
outlined. Subsequently, the evaluation criteria widely used in
the Internet traffic anomaly recognition are deeply explored.
The selected hyper-parameters are analyzed. Finally, a com-
parative experiment is conducted between the Trans-M and
other different models.

A. HYPERPARAMETERS RESULTS AND ANALYSIS BASED
ON TRANS-M
The CICIDS and NSLKDD data sets are selected as the
experimental cores for this study. CICIDS contains approx-
imately 2.84 million data points, involving normal Internet
traffic and diverse abnormal traffic. Before the experiment,
traffic data triggered by different attacks are classified and
statistically analyzed. The 10 categories of Internet attacks
and normal traffic are selected, totaling 11 categories, for
in-depth experimental research. NSLKDD includes five cate-
gories, BENIGN, Dos, Probe, R2L, and U2R, with each data
having 43 features. The training and testing data of NSLKDD
are statistically analyzed and sampled by category, resulting
in approximately 150000 pieces of data. In the binary clas-
sification experiment, BENIGN is used as normal Internet
traffic, while the other four types are used as abnormal traffic.
4999 samples are collected for each type of abnormal traf-
fic. In the multi-classification experiment, 4999 samples are
taken for each category. All insufficient parts are sampled.

To evaluate the effectiveness of various improvement
strategies in Trans-M, the study first conducts ablation experi-
ments and uses True Positive Rate (TPR), False Positive Rate
(FRP), Accuracy, Recall, specificity, and Frames Processed
per Second (FPS) as evaluation indicators. The results of
the ablation experiment are shown in Table 2. In Table 2,
in the ablation experiment, each improvement strategy had
a significant impact on performance. Firstly, the expansion
convolutional unit enhances the model’s ability to capture
features, thereby improving TPR and Accuracy. Furthermore,
the block segmentation algorithm helps to better under-
stand the local structure of Internet traffic, thus reducing
FPR. Most importantly, the MRFF self attention mechanism
enables the model to better focus on important information,
further improving TPR and accuracy. Compared with tradi-
tional Transformers, Trans-M improved TPR and accuracy by
5% and 4.5%, respectively, proving the effectiveness of the
improved strategy. Meanwhile, the FPR also decreased from
0.12 to 0.07, further demonstrating the effectiveness of the
improvement strategy. Therefore, the Trans-M model, which
combines the expansion convolution unit, block segmentation
algorithm and MRFF self attention mechanism, shows better
performance in Internet traffic classification tasks, thanks to
the optimization of model structure and attention mechanism.

To ensure the reasonable selection of hyper-parameters, the
variable control method is used to select the hyper-parameters
of the Trans-M model. The rationality of the selected param-
eters is confirmed by comparing the experimental results
of different models. The three models involved include
RNN, Bidirectional Long Short-Term Memory Network (Bi-
LSTM), and Trans-M. The experimental results are shown
in Figure 8. While maintaining the number of hidden layer
neurons at 255 and the learning rate unchanged, the number of
iterations is gradually adjusted to 999. From the experimental
results, in the initial stage, the accuracy of RNN and Trans-M
was similar, while Bi-LSTM had the highest accuracy. As the
number of iterations gradually increased, the accuracy of
each model improved. Although the Trans-M model was not
always in the optimal state throughout the entire process,
it ultimately achieved excellent performance. When the num-
ber of iterations reached 999, the accuracy of the Trans-M
model reached the peak and showed good performance, thus
determining the number of iterations as 999.

Next, the hyper-parameter value of the number of neurons
in the hidden layer is adjusted. The fixed number of iterations
is 999 and the learning rate is 0.001, while continuously
adjusting the number of neurons in the hidden layer. Figure 9
displays the comparative experimental diagram of the scale
and accuracy of the hidden layer. When adjusting the number
of hidden layer neurons, the accuracy of Trans-M gradually
improves. When the number of neurons in the hidden layer
was 128, the accuracy of RNN and Bi-LSTM models was at
the optimal state. However, when the number of hidden layer
neurons reached 255, the Trans-M model exhibited the best
performance and the accuracy surpassed the other two mod-
els. Therefore, the number of hidden layer neurons is 255.
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TABLE 2. Results of Trans-M ablation experiment.

Finally, the learning rate is selected for hyper-parameter
numerical experiments. During this training process, the
number of iterations and the number of hidden layer neurons
remain unchanged, at 999 and 255. Figure 10 shows the
accuracy comparison of the Trans-Mmodel at different learn-
ing rates. From Figure 10, during the experimental stage of
learning rate, the accuracy of all three showed first increasing
and then decreasing. When the learning rate was 0.001, the
accuracy of the Trans-M model remained high. Therefore,
the learning rate is 0.001. Based on the above experimental
results, the model performs best when the number of itera-
tions is 999, the number of hidden layer neurons is 255, and
the learning rate is 0.001.

B. EXPERIMENTAL ANALYSIS OF DUAL CLASSIFICATION
INTERNET TRAFFIC BASED ON TRANS-M
This study mainly focuses on the performance of Inter-
net traffic classification tasks. The extension comparison
is made between normal internet traffic and attack traffic.
The parameter configuration used in the dual classification
experiment includes a forgetting factor of 0.5, which means
that each neural unit has a 38% to 40% probability of being
omitted. Through experimental screening, the number of
iterations, number of hidden layer neural units, and learn-
ing rate are determined to be 999, 225, and 0.001. Five
decoder layers are stacked to form the encoder part of the
model. Eight multi-head can synthesize the output of eight
self attentions. To confirm the effectiveness of the Trans-M
model proposed in this study, a comparative analysis is con-
ducted between Trans-M and the other five models. They are
DT, RNN, Bi-LSTM, the original Transformer model and
Convolutional Neural Network-Residual Network (CNN-
RN). In the dual classification experiment, the accuracy of
DT, RN, Bi-LSTM, Transformer, CNN-RN, and Trans-M
were 79%, 83%, 84.5%, 88%, 90%, and 92%, respectively.
The accuracy gradually improved. Trans-M had the highest
accuracy, with an improvement of approximately 2% com-
pared with CNN ResNet. Compared with the DT, it was
improved by approximately 18%. These data clearly indi-
cate that Trans-M performs well in dual classification tasks.

FIGURE 8. Results of Trans-M model iterations and accuracy.

FIGURE 9. The number and accuracy of hidden layer neurons in Trans-M
model.

To comprehensively evaluate the performance of Trans-M in
dual classification tasks, accuracy, recall rate, and F1 score
are compared. The comparison results of normal Internet
traffic in the CICIDS dual classification diagram are shown
in Figure 11.

In order to more comprehensively evaluate the perfor-
mance of Trans-M in the dual classification task, the study
compares the accuracy, recall rate and F1 score. Figure 11
shows the comparison results of the CICIDS data set under
normal Internet traffic. In order to more comprehensively
evaluate the performance of Trans-M in the dual classification
task, the study compares the accuracy, recall rate and F1
score. Figure 11 shows the comparison results of the CICIDS
data set under normal Internet traffic. In Figure 11 (a), The
accuracy of the Trans-M model is significantly higher than
other models. The accuracy of DT is the lowest, only 79%,
while the accuracy of RN and Bi LST are 83% and 84.5%,
respectively. In contrast, The accuracy of the Transformer
model is 88%, The combination model of CNN ResNet
achieved an accuracy of 90%. However, The accuracy of
Trans-M reached 92%, ranking first among all models, with
an improvement of about 2% compared to CNN ResNet
and about 18% compared to decision tree models. This
indicates that, The Trans-M model has strong learning abil-
ity and generalization performance in classification tasks.
In Figure 11 (b), The F1 score of Trans-M is as high as
93%, which is nearly 5 percentage points higher than the
F1 score of the initial Transformer scheme. This significant
improvement validates the effectiveness of the implemented
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FIGURE 10. Trans-M model learning rate and accuracy results.

optimization strategy in enhancing the overall performance
of the model. In other models, the F1 score of DT, RN,
Bi LSTM, and Transformer is 79%, 83%, 84.5%, and 88%,
respectively, while the F1 score of CNN ResNet is 90%.
It can be seen from this that although there are differ-
ences among the models on F1 score, Trans-M undoubtedly
performs the best. This not only emphasizes the advan-
tages of Trans-M in balancing accuracy and recall, but also
demonstrates its robust performance in complex traffic envi-
ronments. In Figure 11 (c), the Area Under the Curve (AUC)
of Trans-M reached 0.96, outperforming all other compar-
ative models. In comparison, the AUC of Transformer and
Bi-LSTMwere 0.93 and 0.91, respectively, while DT had the
lowest AUC of 0.85. This indicates that Trans-M performs
better in balancing accuracy and recall, which verifies the
excellent performance of Trans-M in Internet traffic classi-
fication tasks.

Figure 12 shows the comparison data of Internet attack
traffic against CICIDS data set. From Figure 12, the improved
Trans-Mmodel also exhibited excellent performance in iden-
tifying internet attack traffic. The F1 score achieved an
accuracy of 91%. Compared with the initial Transformer
model, there was a 2.4% improvement. From Figures 11
and 12, the combination of convolutional neural networks and
residual networks, as well as Trans-M and the original Trans-
former, perform relatively well in identifying normal and
Internet attack traffic. The Bi-LSTM performs outstandingly
in monitoring normal Internet traffic, but it is slightly inferior
to other models in monitoring Internet attack traffic. The
performance of DT and RNN is relatively weak. Especially
in the task of identifying Internet attack traffic, the accuracy
and recall are relatively low. Although Trans-M does not
achieve the best performance in accuracy in Internet attack
traffic, it has the best recall and F1 score for internet attack
traffic. In summary, the Trans-Mmodel proposed in the study
exhibits better performance compared with other models.

Figure 13 shows the Receiver Operator Characteristic
curve (ROC) for the dual classification task in the CICIDS
data set. To further confirm the utility of the proposed
Trans-M model and comprehensively evaluate the univer-
sality performance, the KSLKDD sample data is selected.
A dual classification test experiment is conducted.

FIGURE 11. Comparison of indicators of normal traffic dual classification.

In Figure 14 (a), The Trans-M model performed the best
in accuracy, reaching 93%, with an improvement of approxi-
mately 3.5% compared with the Transformer model’s 89.5%.
The accuracy of Bi-LSTM and CNN-RN were 88% and
85%, respectively, while DT had the lowest accuracy, only
79%. This result demonstrates the significant advantage of
Trans-M in accuracy, especially in complex traffic classifi-
cation tasks. The Trans-M model had a recall of 94%, while
the Transformer, Bi-LSTM, and CNN-RNmodels were 92%,
90%, and 87%, respectively. DT still performed the worst
at 82%. The F1 scores of Trans-M, Transformer, Bi-LSTM,
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FIGURE 12. Comparison of indicators of both attack traffic categories.

CNN-RN, and DT models were 93.5%, 91.1%, 89%, 88%,
and 80%, respectively, demonstrating the superiority of the
Trans-Mmodel in balancing accuracy and recall. In Figure 14
(b), on the accuracy of Internet attack traffic, the Trans-M
model was about 0.10% higher than the Transformer model.
From the perspective of recall, compared with the Trans-
former model, Trans-M was improved about 0.20% in terms
of normal Internet traffic. In terms of Internet attack traffic,
it was about 4% higher than the Transformer model and
36.3% higher than the worst DT. In terms of F1 score, Com-
pared with the Transformer model, the Trans-M model had a
1.9% increase in normal Internet traffic and a 2.3% increase
in Internet attack traffic. Therefore, the Trans-M model is

FIGURE 13. Comparison of working characteristic curves of subjects with
double classification.

FIGURE 14. NSLKDD binary classification six model index comparison.

superior to other models in terms of accuracy, recall and
F1 core, fully verifying its excellent performance in Internet
traffic binary classification tasks.

Figure 15 presents the working characteristic curves of
the subjects in the binary classification experiment con-
ducted on the NSLKDD data set. A detailed comparison
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FIGURE 15. NSLKDD double classification subjects working characteristic
curve comparison.

is made between normal Internet traffic and attack traffic.
The Trans-M model exhibited the best performance among
the dual classification responsibilities, with an ROC of 0.91.
Next was the Transformer model, with an ROC of 0.89.
The combination model of Bi-LSTM and CNN-RN also
performs well, with an ROC of 0.85 and 0.87, respectively.
The performance of the DT and the RNN was slightly infe-
rior, with an ROC of 0.80 and 0.81. This study focuses
on the binary classification task of Internet traffic anomaly
detection. The performance effects using deep learning mod-
els for this task are explored. The superior performance of
the Trans-M model in binary classification tasks is verified
through the CICIDS and NSLKDD data sets. Compared
with other comparative models, the Trans-M model showed
significant advantages on both data sets, verifying the excel-
lent performance in the binary classification task of Internet
traffic anomaly detection. This conclusion indicates that the
Trans-M model is more effective in handling complex Inter-
net traffic data. Therefore, the study designs a powerful deep
learning strategy for the binary classification task of Inter-
net traffic anomaly detection, providing reliable support for
Internet security assurance in practical applications.

Table 3 shows the accuracy, Recall and F1 score of the
Trans-M model and five other models at different noise lev-
els. From the table, the Trans-M model exhibited excellent
performance at different noise levels, particularly in terms of
recall and F1 score. Under noiseless conditions, the accuracy
of Trans-Mwas 93%, significantly higher than Transformer’s
89.5% and Bi-LSTM’s 88%. Even when the noise level
increased to 50%, the accuracy of Trans-M remained at
85%, while Transformer and Bi-LSTM decreased to 81%
and 79%, respectively. In addition, the recall and F1 score of
Trans-M were also higher than other models at various noise
levels, further indicating its robustness and adaptability in
processing noisy data. In contrast, DT performed worst under
all noise conditions, highlighting its limitations in Internet
traffic classification tasks. Therefore, the stability and supe-
riority of the Trans-M model under various noise conditions

TABLE 3. Robustness results of Trans-M model at different noise levels.

have verified its potential application in complex data
environments.

V. CONCLUSION
In order to accurately identify abnormal behaviors of com-
plex Internet traffic and avoid information loss in the block
segmentation phase, a Trans-M model based on improved
Transformer algorithm was proposed. This model adopted a
block segmentation algorithm to ensure that a large amount
of useful information could be retained during the segmen-
tation stage, thereby improving the segmentation quality of
the model. By interacting with multiple receptive fields of
information, the Trans-Mmodel effectively reduced informa-
tion loss and improved model accuracy and efficiency. After
multiple rounds of testing during the experimental stage, the
optimal hyper-parameter combination with 999 iterations,
255 hidden layer neurons, and a learning rate of 0.001 was
determined to achieve the best performance of the Trans-
M model. On the CICIDS sample data, the Trans-M model
achieved 93% F1 score in normal Internet traffic and 91%
F1 score in Internet attack traffic, which was 5% and 2.4%
higher than the original Transformer model, respectively.
In addition, in the binary classification experiment of the
NSLKDD data set, the AUC of Trans-M model was 0.90,
which was superior to other models. The Bi-LSTM has an
optimal recall rate of 89.8% for normal Internet traffic, while
the DT had the best accuracy for Internet attack traffic. The
Trans-Mmodel performswell in all indicators, demonstrating
excellent performance in the binary classification task of
internet traffic anomaly monitoring.

Therefore, the main findings of the study are summarized
as follows:
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1. Accurately identify abnormal behaviors in complex
Internet traffic, and effectively prevent information loss in the
block segmentation phase.

2. Improve the Transformer algorithm by constructing a
Trans-M model, retaining a large amount of useful informa-
tion through block segmentation algorithm, and improving
segmentation quality and model performance.

3. On the CICIDS data set, the normal Internet traffic
F1 core of the Trans-M model reached 93%. Internet attack
traffic F1 core was 91%, which was 5% and 2.4% higher than
the original Transformer.

4. In the NSLKDD data set dual classification experiment,
the AUC of the Trans-M model reached 0.90, which was
superior to other models.

The limitation of this study is the lack of diversity of data
sets. In the future, more different types of Internet traffic data
should be considered to verify the generalization ability of
the Trans-M model. The future research directions can be
expanded from the following two aspects:

1. Explore more improvement strategies and techniques to
enhance the Trans-M model performance.

2. Combine other advanced in-depth learning technologies
and algorithms to improve the accuracy and real-time of
the model and provide more powerful technical support for
Internet traffic security monitoring.
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