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ABSTRACT Breast cancer is the second deadliest cancer (after lung cancer) globally among women, with
high incidence and mortality rates. Its early diagnosis is pivotal for improving the cure rate. With the con-
tinuous development and maturity of deep learning technologies, traditional classification models have been
widely applied for automated classification of pathological images. However, several challenges still persist.
For instance, traditional classification models typically perform well in processing images with clear distinc-
tions between target objects and backgrounds, but struggle to accurately classify pathological images due to
the lack of clear distinctions between tumor lesion areas and background areas. In the light of this, we propose
a two-stage breast tumor pathological classification model based on weakly supervised target localization,
named ST-Double-Net. In the proposed model, precise lesion localization and classification are achieved in
two stages. In the first stage, a set of global feature maps is obtained by utilizing the Swin Transformer. These
feature maps are then input into a newly designed heatmap cropping (HMC) module, which forces the model
to focus on discriminative features of lesion areas through heatmap-guided cropping, without requiring
bounding boxes or relevant annotation information. This gradual refinement of target localization facilitates
the extraction of useful global features, from coarse to fine. The images with discriminative features
generated in the first stage serve as inputs for the second stage, where another Swin Transformer extracts local
features from the magnified lesion region images. Finally, the global and local features extracted in the first
and second stage, respectively, are fused to emphasize subtle differences in the images, thereby enhancing
the model’s classification ability. The proposed ST-Double-Net model is evaluated on the BreaKHis and
BACH public datasets, demonstrating superior performance compared to state-of-the-art models.

INDEX TERMS Breast tumor classification, Swin Transformer, weakly supervised target localization,
heatmap cropping.

I. INTRODUCTION
Breast cancer is considered one of the most prevalent can-
cer types globally, with incidence counts steadily rising in
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recent years. Clinical studies underscore the close correla-
tion between early detection and cure rates, emphasizing
the critical importance of early diagnosis. Various methods,
based on X-ray imaging [1], magnetic resonance imaging [2],
ultrasound imaging [3], and biopsies [4], are commonly
employed for early breast cancer diagnosis. Among these,
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biopsy stands as the only method capable of accurately
localizing lesions and completing the tumor subtype classi-
fication. With the continuous advancement of deep learning
technologies, an increasing number of convolutional neural
networks (CNNs), such as ResNet [5] and DenseNet [6],
have been proposed. These networks have propelled research
into breast cancer pathological image classification tasks.
However, in traditional image classification networks, regard-
less of the proportion of important discriminative regions
within an image, only a uniform feature extraction is applied
to the entire image. Unlike images with clear distinctions
between target objects and backgrounds, in breast cancer
histopathological images, target objects and backgrounds are
intertwined without clear boundaries, making it challenging
to localize lesion areas [7]. This characteristic of patholog-
ical images poses difficulties for traditional classification
networks in accurately extracting features of lesion areas,
thereby increasing the complexity of image classification.

To enhance the extraction of crucial features from lesion
areas, breast cancer pathological images are typically clas-
sified using a localization-identification approach. Anal-
ogous to how humans differentiate similar objects, this
approach often involves initially identifying regions of inter-
est through rapid scanning, followed by feature extraction and
meticulous comparison for classification. However, current
localization-classification methods face two main challenges
related to the accurate localization of key regions and effec-
tive feature extraction from these regions. Huang et al. [8]
proposed a Part-Stacked CNN (PS-CNN) for fine-grained
visual categorization, based on manually labeled strong com-
ponent annotations, utilizing a fully convolutional network
for component localization and a dual-stream classification
network for encoding object- and component features. This
strong supervised approach, aided by annotated bounding
boxes, detects key regions, thereby mitigating the influence
of other noisy features and reducing the difficulty of region
localization. Nevertheless, such strong supervised methods
typically require additional annotation information, such as
more bounding boxes, to enable the network to learn the posi-
tional information of target regions. This process consumes
more human resources for image annotation and, in addi-
tion, the manually annotated positions may not necessarily
represent the most discriminative regions, thus leading to
over-reliance on the annotators’ cognitive level, which sig-
nificantly impacts classification results [9].
To address these challenges, this paper proposes a

two-stage breast tumor classification model, named ST-
Double-Net, utilizing a newly designed heatmap cropping
(HMC) module with weakly supervised target localiza-
tion [10], whereby target regions are located without the
need for bounding boxes or other annotation information,
using only weakly supervised methods. The HMC mod-
ule utilizes the Gradient-weighted Class Activation Mapping
(Grad-CAM) [11] to analyze the network’s focus areas for
a particular class, solely based on image class labels, and

to visualize the areas of focus during a Swim Transformer
training, enabling the localization of key regions. Subse-
quently, image cropping based on the identified key regions
amplifies the discriminative features of subtle regions. The
weakly supervised target localization approach utilized by
the HMC module enables the rough localization of target
objects at minimal cost without requiring additional bounding
box information [12]. By employing a two-stage classifica-
tion method combined with the HMC module, the proposed
ST-Double-Net model can progressively refine the target
localization in order to extract useful features. The primary
goal of the first stage is to refine the original images by
using the Swin Transformer for global feature extraction
and focusing on subtle discriminative features through the
HMC module. The refined lesion area images output by the
first stage are then input into the second stage for local
feature extraction. Finally, the fusion of multi-scale fea-
tures, extracted by the two stages, captures subtle differences
between images, thus reducing the difficulty of classification.

The proposed ST-Double-Net model achieves automated
identification and classification of lesion areas, serving as an
auxiliary tool for pathologists to enhance the efficiency of
their work. Traditional pathological analysis and diagnosis
require substantial human resources and manual annotations.
Each pathological diagnostic result must be meticulously
observed by pathologists, which undoubtedly increases their
workload. Furthermore, diagnostic results may vary among
different pathologists due to differences in their experience
and skills. Therefore, the utilization of the proposed two-stage
classification model can provide a valuable help to patholo-
gists, allowing them to combine the automated classification
results with their professional knowledge for making more
accurate judgments. This approach also helps reduce sub-
jective biases in diagnoses. Particularly in complex and
challenging cases, automated classification results can offer
more valuable reference information. Therefore, the intro-
duction of ST-Double-Net in practice can contribute to more
accurate diagnosis of early-stage breast cancer pathologists,
thereby improving cure rates, which holds significant clinical
implications.

With the advent of computer-aided treatment, integrat-
ing ST-Double-Net into existing diagnostic workflows to
enhance the diagnostic efficiency is essential. Initially, a suf-
ficient number of pathological images should be collected
in clinical environments. After undergoing standardized pre-
processing, these images can be used for better training
the model. After that, the mature diagnostic model can
be deployed into the existing diagnostic systems ensuring
pathologists can easily access and interpret the model’s
results. During clinical diagnosis, pathologists could upload
processed pathological images to the diagnostic systems,
which then can provide classification diagnostic reports based
on the input images. Pathologists can review and verify these
results by applying their professional knowledge and expe-
rience to make final diagnostic decisions. In summary, the

117922 VOLUME 12, 2024



S. Hao et al.: ST-Double-Net: A Two-Stage Breast Tumor Classification Model

proposed ST-Double-Net model can improve the accuracy
and efficiency of early diagnosis of breast cancer, reduce
associated costs, and provide strong support for pathologists’
diagnostic decisions.

In summary, this paper makes the following contributions:
1) Proposing a newly designed heatmap cropping (HMC)

module to address the issue of traditional networks overlook-
ing subtle features. By using a weakly supervised approach,
lesion areas are localized without requiring bounding box
annotations.

2) Proposing a two-stage classification method combined
with the newly designed HMC module in a phased manner
to extract useful features, from coarse to fine. By combining
coarse-grained features with fine-grained features, inter-class
differences are captured effectively, enabling the extraction of
lesion area features and improving the classification perfor-
mance.

3) Testing the proposed ST-Double-Net model on two pub-
licly available and widely used datasets, namely the Breast
Cancer Histopathological Image Classification (BreaKHis)
[13] and BreAst Cancer Histology images (BACH) [14], in a
comparing manner to existing advanced models, demonstrat-
ing its superiority.

II. RELATED WORK
Cancer is the main killer, threatening human health, among
which breast cancer is one of the most common types. The
incidence of breast cancer is very high in women, and its early
diagnosis is crucial to improve the cure rate [15]. Compared
with the simple classification of benign and malignant breast
cancer, the accurate identification of breast tumor subtypes
can help doctors choose better treatment plans. With the
development of deep learning technologies, a variety of tra-
ditional CNNs have been widely used in the classification of
breast cancer pathological images.

Vang et al. [16] proposed a deep learning framework
to solve the problem of multi-class classification of breast
cancer histopathological images. These authors use CNNs
to learn and extract features from image samples. Their
proposed framework uses a breast cancer histopathological
image dataset for training and achieves good performance in
multi-class classification tasks. Ting et al. [17] proposed a
CNN model that addresses some of the issues in traditional
CNN models as to better process pathological images. The
effectiveness of the proposed model is verified by experi-
ments on a breast cancer histopathological image dataset.
Ragab et al. [18] introduced a framework for classification
of pathological images of breast cancer using multiple Deep
CNNs (DCNNs). Their proposed framework is experimen-
tally evaluated, using a breast cancer pathological image
dataset, in comparison with existing models. The obtained
results demonstrate that the method of integrating multiple
DCNNs achieved good performance in pathological image
classification tasks, showing good application prospects.
Using a public breast cancer pathological image dataset, Liew

et al. [19] investigated the performance of an XGBoost-based
breast tumor classification algorithm in the classification
task of breast cancer pathological images, evaluated its clas-
sification effect, and compared it with other commonly
used classification algorithms, fully verifying its robustness.
Jiang et al. [20] proposed the Breast TransFG Plus model,
which is based on the Transformer architecture and addresses
the needs of fine-grained classification tasks. The model uses
a multi-head self-attention mechanism to capture subtle fea-
tures in images and enhance its ability to recognize different
tissue structures in pathological images. Extensive experi-
ments, conducted on multiple public breast cancer pathology
image datasets, demonstrated that the Breast TransFG Plus
model is superior to traditional models in terms of classifica-
tion accuracy and robustness.

Although Transformers have the advantage of capturing
global features, when dealing with larger images each pixel
needs to be processed with other pixels in the image, result-
ing in massive computational overhead. Recognizing this
challenge, Liu et al. [21] proposed the Swin Transformer.
The core innovation of Swin Transformer lies in its design
of window shifting, which avoids computation of global
sub-attentions while reinforcing inter-window connections.
The Swin Transformer architecture is illustrated in Figure 1,
comprising four pivotal stages, each progressively reducing
the resolution of input feature maps and enlarging receptive
fields layer by layer, akin to CNNs. The computation process
of consecutive Swin Transformer blocks can be represented,
as shown in [21], as follows:

ẑl = WMSA
(
LN

(
zl−1

))
+ zl−1 (1)

zl = MLP
(
LN

(
ẑl

))
+ ẑl (2)

ẑl+1
= SWMSA

(
LN

(
zl

))
+ zl (3)

zl+1
= MLP

(
LN

(
ẑl+1

))
+ ẑl+1 (4)

where ẑl and zl denote the output features of the (Shifted)
Window based Multi-head Self-Attention, (S)WMSA, mod-
ule and the Multi-Layer Perceptron (MLP) module for block
l, and LN denotes a Layer Normalization (LN). WMSA
is an attention mechanism introduced in the Swin Trans-
former to improve its computing efficiency and locality by
applying self-attention within a fixed-size window. MLP
is a classic neural network component that usually con-
tains one or more fully connected (FC) layers and nonlinear
activation functions. LN is a method used to standardize
the output of neural network layers, aiming to speed up
the model training process and improve the performance.
SWMSA is an improved attention mechanism introduced
in the Swin Transformer to enhance the modeling ability
of attention within the window through the sliding window
method.

From the above research results, it can be found that
many models have been proposed and great progress has
been made in the task of breast cancer pathological image
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FIGURE 1. The Swin Transformer, utilized by the proposed ST-Double-Net model.

classification. However, there are still many issues that need
to be addressed. For example, when using histopathological
images for accurate diagnosis, it is necessary to make judg-
ments based on the morphology of tissue cells in the lesion
area [22]. However, pathological images are different from
ordinary images. The difference between the target object and
background in ordinary images is very obvious, with clear
boundary lines, making it easy to classify. In pathological
images, the target object and the background are often mixed
together, and the morphological differences of tissue cells are
minor. Therefore, it is very important to obtain the accurate
positioning of the lesion area and extract the corresponding
key features [23].

By using the combination of visual and linguistic infor-
mation for fine-grained recognition, in 2020 Song et al. [24]
proposed a Progressive Masked Attention (PMA) model that
can be trained end-to-end, requiring only original images and
text descriptions, whose accuracy was proved by compre-
hensive experiments conducted on fine-grained benchmark
datasets. Branson et al. [25] trained a network for object pose
estimation by labeling points and anchor boxes, which made
it easier to learn the characteristics of birds without the inter-
ference of pose changes, and achieved good classification
performance on multiple datasets.

While leveraging additional information, such as bound-
ing boxes, which can effectively improve the classification
performance, such strong supervised classification methods
severely consume human resources. To meet the needs of
practical applications, weakly supervised methods are often
used to achieve localization and classification of key regions.
Ke et al. [26] proposed an end-to-end two-level attention
activation model (TL-AAM), applying object attention acti-
vation modules to complementarily locate object regions.
Using a multi-scale pyramid attention localization module,
the feature channel with the maximum response value is
selected to locate local feature regions. A substantial number
of experiments confirmed the usability of this model. In 2020,
Zhang et al. [27] introduced a method for fine-grained clas-
sification using weakly supervised part detection networks,
designing a novel network architecture that can simultane-
ously perform object detection and fine-grained classification
tasks without requiring part-level annotations, and achieved
promising results on different datasets. Patil et al. [28]

proposed an attention-based multi-instance learning model
for better localization of malignant regions in breast tissue
pathology images. This model treats the image classification
problem as a weakly supervised learning problem, consid-
ering only image-level labels and not the exact locations
of the cancerous areas. It divides each image into multiple
small patches, extracts features from each small patch, and
utilizes an attention mechanism to weight the importance of
each small patch in classification. Fan et al. [29] introduced
a model for microscopic fine-grained instance classifica-
tion, implemented through a deep attention mechanism. This
model first uses a lightweight gated attention mechanism
to detect multiple discriminative regions, and then com-
bines global structure and local instance features for final
image-level classification. Experimental results show that it
is effective for breast tumor classification. Generally, the
weakly supervised target localization reduces the dependence
on annotated data, improves the data utilization efficiency
and generalization ability of models, thus providing a more
economical and practical solution for practical applications.
Therefore, it is very promising to apply it to the classification
task of breast cancer pathological images.

Through the study of various models, it can be observed
that, compared to traditional supervised learning meth-
ods, achieving localization of target regions in a weakly
supervised manner exhibits better generalization ability and
robustness [30]. In addition, it helps address the problem
of scarce part-level annotation data in various classifica-
tion tasks. Based on this, the current paper proposes a
two-stage classification model based on weakly supervised
target localization, which achieves accurate localization and
amplification of lesion areas without requiring additional
bounding box information, thus greatly enhancing the clas-
sification performance.

III. PROPOSED MODEL
A. OVERALL STRUCTURE
Due to the high similarity between target objects and back-
grounds in histopathological images, discernment by the
human eye is challenging, making the classification of breast
cancer pathology images a formidable task. Most existing
models adopt a traditional end-to-end training approach,
where all features in the images are indiscriminately
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FIGURE 2. The proposed ST-Double-Net model.

extracted. However, the unclear boundaries in histopatholog-
ical images often lead to difficulties in locating target lesion
areas, thus significantly affecting classification outcomes.

To address these issues, a two-stage classification model,
based on the Swin Transformer, is proposed in this paper, uti-
lizing the locate-first-then-classify approach. The proposed
ST-Double-Net model is depicted in Figure 2. In the first
stage, it locates the tumor lesion areas by employing a Swin
Transformer to extract global feature information and obtain
a corresponding set of feature maps. Then, by employing a
weakly supervision, it achieves precise localization and mag-
nification of suspicious regions without a need of bounding
boxes, by gradually refining target localization and extracting
discriminative global features, from coarse to fine. In the
second stage, the model utilizes another Swin Transformer to
extract local features of the lesion areas. Finally, the extracted
global features and local features are fused. The fused fea-
tures contain more semantic information, which allows to
greatly improve the classification performance of the model.

B. STAGE 1
In Figure 2, an original image X is input into the first Swin
Transformer (ST 1), utilized to extract the global features.
Via a forward propagation, the predicted value pc1 for the

image’s class c is obtained as follows:

pc1 = ST 1 (Wt ∗ X) (5)

where Wt denotes the weight matrix. Subsequently, in the
HMC module (described in detail in the second subsection
below), the gradient of the target class cwith respect to the last
convolutional layer of ST 1 is computed via backpropagation.
The gradient is then multiplied by the output feature map of
the last convolutional layer to obtain weighted gradients for

each feature map channel, reflecting the importance of each
channel for the target class. These weighted gradients are
aggregated to generate a heatmap, where each pixel indicates
the activation level for the target class. Higher values indicate
greater model attention to the class at that position. Based
on the generated heatmap by means of Grad-CAM [11], the
position and size of the regions of interest can be determined
using a thresholding method. The regions with higher pixels
in the heatmap are selected as the cropping regions, and the
corresponding cropping operation is applied to the original
image to extract the areas of interest. The cropped image X(c)
is obtained as follows:

X(c) = cam (X) 2X (6)

where cam (·) denotes the process of heatmap generation,
while 2 signifies the region cropping operation.

1) LOSS FUNCTION
The first stage adopts the Cross Entropy loss [31], calculated
as follows:

Lori = −
1
N

∑
i

∑M

c=1
yic log

(
pci

)
(7)

where M denotes the total number of classes, N denotes
the total number of samples, yic denotes the actual class of
sample i, and pci denotes the predicted probability of sample
i belonging to class c.

2) HMC MODULE
To address the challenge of distinguishing between the target
object and background in pathological images, a method
of classifying breast cancer pathological images, using a
locate-first-then-classify approach, is employed. Existing
locate-first-then-classify methods commonly rely on precise
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FIGURE 3. The newly designed HMC module, utilized by the proposed ST-Double-Net model.

part localization using annotated boxes to facilitate eas-
ier classification. However, this approach heavily relies on
accurately annotated image parts, which requires significant
human effort and impedes the practical application of patho-
logical image classification. To tackle this issue, we propose
here the use of a newly designed HMC module based on
weakly supervised target localization.

As illustrated in Figure 3, the HMC module achieves the
localization and amplification of crucial features using only
image-level labels, without the need for annotated boxes.
It utilizes Grad-CAM [11] a technique for visualizing the
most attended regions in deep learning models. It gener-
ates a heatmap by backpropagating the class gradients into
the feature maps of a CNN, and then weighting and sum-
ming these gradients to show the model’s focus areas in the
input image. Subsequently, based on the obtained heatmap,
cropping operations are performed on the original image to
precisely localize and amplify discriminative features in the
lesion area.

For a given image X ∈ Rc×h×w, the output on the last
convolutional layer A of ST 1 is fed through a fully connected
(FC) layer to obtain (by forward propagation) the predicted
value yc for the image’s class c. By backpropagation, accord-
ing to yc, the gradient information of the last feature layer A is
obtained, and based on this, the importance of each channel
in feature map A1, denoted as αck , is calculated using the
following formula from [11]:

αck =
1
Z

∑
i

∑
j

∂yc

∂Akij
(8)

where Akij denotes the value at coordinates (i, j) on the k-th

channel of feature layer A, ∂yc

∂Akij
signifies the gradient infor-

mation of class c backpropagated onto feature layer A, and
Z denotes the product of width w and height h. During this
process, the computed gradients are globally average-pooled
(GAP) over the width i and height j dimensions, resulting in
importance weights αck .
After obtaining the weights of yc for each feature channel

in A, each feature map is multiplied by its corresponding
weight and summed up. Then, the ReLU activation function is
applied to obtain the output Grad-CAM heatmap LcGrad−CAM
for class c, as per [11], as:

LcGrad−CAM = ReLU
(∑

k
αckA

k
)

(9)

where Ak denotes the weight matrix on the k-th channel of
feature layer A. The ReLU activation function is utilized to
ensure that the output is greater than 0, suppressing uninter-
esting weight portions.

Then, having obtained the heatmap LcGrad−CAM for class
c, which accomplishes the localization of key features, the
original image is cropped based on this localization.

Given the original image X and its heatmap LcGrad−CAM for
class c, the values in LcGrad−CAM are compared with a thresh-
old τ to determine which regions contain critical features.
Let LcGrad−CAM (i, j) denote the pixel value at index (i, j) in
LcGrad−CAM . Then, the cropping process can be expressed as
follows:

M(c) (i, j) =

{
1, if LcGrad−CAM (i, j) > τ

0, otherwise
(10)
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where M(c) (i, j) denotes a binary mask indicating whether
the region at position (i, j) contains selectively significant
features. The original image X is cropped using the binary
mask M(c) to amplify the selective regions as follows:

X(c) (i, j) = X (i, j) ×M(c) (i, j) (11)

where X(c) (i, j) denotes the region at position (i, j) of the
cropped image and X (i, j) denotes the pixel value at position
(i, j) in the original image. Following this cropping process,
the amplification of critical regions is achieved, enabling the
model to focus on subtle features that are difficult to discern,
thereby enhancing the model classification performance.

C. STAGE 2
The cropped image X(c) obtained in the first stage is used as
the input to a second Swin Transformer (ST 2) performing
local feature extraction, whereby the predicted value pc2 for
the image’s class c is obtained as follows:

pc2 = ST 2
(
Wt ∗ X(c)

)
(12)

whereWt denotes the weight matrix.
The loss function adopted in the second stage is the Focal

Loss [32], calculated as follows:

Lcrop = − (1 − pt)γ log (pt) (13)

where pt denotes the model’s predicted probability for the
sample, and γ is an adjustable hyperparameter. This pro-
cedure tackles the issue of traditional networks treating all
features equally during extraction.

After completing both stages, the extracted feature maps
A1 and A2 are fused along the channel dimension to obtain
the fused feature map A (c.f., Figure 2), as follows:

A = A1 ⊕ A2 (14)

where ⊕ indicates that the two feature maps are subjected
to a feature fusion operation on the channel. This process
realizes the fusion of local and global features in a patho-
logical image, and then inputs the fused features into the
classification head to obtain the final prediction result pc of
the original image X , as follows:

pc = Softmax (Wc · σ (W · A+ b) + bc) (15)

where W denotes the weight matrix of the fully connected
(FC) layer, b denotes the bias vector, σ denotes the ReLU
activation function, Wc denotes the weight matrix of the
classification layer, and bc denotes the bias vector of the
classification layer.

The loss function used in this process is the cross-entropy
loss function [31] Lcls.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
The first dataset, used in the experiments, was the publicly
available and widely used [33], [34] BreaKHis dataset [13],

comprising a total of 7,909 microscopic images (in .png
format with 700 × 460 pixels, 3-channel RGB, 8-bit depth
per channel) of breast tumor tissue collected anonymously
from 82 patients by means of surgical open biopsy (SOB)
in 2014. The images were obtained at four magnification
levels (40 ×, 100 ×, 200 ×, and 400 ×) and contain
two tumor classes, benign and malignant, with 2480 benign
samples and 5429 malignant samples (Table 1). Among
these, the benign class is subdivided into four subclasses –
adenosis (A), fibroadenoma (F), phyllodes adenoma (PT),
and tubular adenoma (TA), whereas the malignant class
contains four subclasses – ductal carcinoma (DC), lobular
carcinoma (LC), mucinous carcinoma (MC), and papillary
carcinoma (PC). Sample images of these are depicted in
Figure 4. In the experiments, this dataset was randomly
divided into a training set and a test set according to the ratio
of 8:2.

TABLE 1. Classification of images in BreaKHis dataset.

FIGURE 4. Sample BreaKHis images of eight subclasses of breast tumors.

To demonstrate the generalization ability of the proposed
model, a second publicly available and widely used [33],
[34] dataset was used, namely the BACH dataset [14], con-
taining 400 high-resolution (2048 × 1536 pixels) breast
histology microscopy images divided into four classes:
normal, benign, in-situ carcinoma, and invasive carci-
noma (Table 2). Sample images of these are shown in
Figure 5. In the experiments, this dataset was randomly
divided into a training set and a test set in a ratio
of 8:2.

Data augmentation techniques were employed to address
the problem of imbalanced sample distribution in the uti-
lized public datasets, ensuring a balanced sample distribution
across all classes and enhancing the model generalization
ability.
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TABLE 2. Classification of images in BACH dataset.

B. EXPERIMENTAL SETUP
PyTorch version 2.0.0, Python version 3.8, and CUDA
version 12.1 were used for conducting the experiments.
All experiments were performed on a host computer with
NVIDIA GeForce RTX 3060 and Intel(R) Xeon(R) CPU E5-
2686 v4 CPU @ 3.0GHz with 12G video memory.

In the classification task, the initial learning rate was set
to 0.0005, the number of epochs was set to 100, and the
batch size was set to 16. The Stochastic Gradient Descent
(SGD) optimizer [35] was used to optimize the model. The
momentum was set to 0.9 and the weight decay was 0.0001.

C. EVALUATION METRICS
For model performance evaluation, in the experiments
we used four popular metrics, namely accuracy, precision,
recall, and F1-score.

FIGURE 5. Sample BACH images of four classes of breast tumors.

Accuracy refers to the ratio of the number of samples
correctly classified by amodel to the total number of samples,
as follows:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(16)

where True Positives (TP) denotes the number of positive
classes correctly predicted by a model, False Negatives (FN)
denotes the number of negative classes incorrectly predicted
by a model, False Positives (FP) denotes the number of
positive classes incorrectly predicted by a model, and True
Negatives (TN) denotes the number of negative classes cor-
rectly predicted by a model.

Representing the proportion of the samples correctly pre-
dicted as positive classes by a model to the total number of
samples predicted as positive class, precision is calculated as
follows:

Precision =
TP

TP+ FP
(17)

Recall represents the proportion of samples that are cor-
rectly classified as positive among the number of samples that

are truly positive, as follows:

Recall =
TP

TP+ FN
(18)

F1-score is the harmonic mean of precision and recall,
calculated as follows:

F1 =
2.precision.recall
precision+ recall

(19)

D. CHOICE OF FEATURE EXTRACTION NETWORK
As mentioned before, we chose the Swin Transformer [21]
as the feature extraction network for the proposed two-stage
classification model, based on the experimental results pre-
sented in Tables 3 and 4, comparing it to four other networks,
namely ResNet-18 [5], ConvNeXt-tiny [36], EfficientNet-v2
[37], and MobileNet-v2 [38], on the BreaKHis and BACH
datasets, respectively. From these tables, it is evident that
the Swin Transformer significantly surpasses all other net-
works, according to all evaluation metrics (except for only
two cases). Therefore, in the subsequent construction of the
proposed two-stage classification model, the Swin Trans-
former was selected as the feature extraction network in its
both stages.

TABLE 3. Multi-class classification performance of different networks at
various magnification levels on BreaKHis dataset.

TABLE 4. Multi-class classification performance of different networks on
bach dataset.
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E. MULTI-CLASS CLASSIFICATION
1) ON BreaKHis DATASET
The confusion matrices of the proposed ST-Double-Net
model, trained and tested on this dataset, are shown in
Figure 6 for four magnification levels, where the values
along the main diagonals represent the counts of correctly
classified images. Based on these confusion matrices and
formulae (16)–(19), the values of the evaluation metrics,
achieved by the proposed model for each subclass at each
magnification level, are shown in Tables 5–8.

At magnification level of 40×, the ST-Double-Net values
of all metrics reached 100% in five subclasses, proving that
the model performs exceptionally well in the classification
of A, MC, PC, PT, and TA subclasses. At the same time, its
recall value in the F subclass also reached 100%. However,
in the LC subclass, its precision and F1-score only reached
80.56% and 86.57%, respectively (much lower than the other
subclasses), which could be attributed to the high similarity
of samples between subclasses.

At magnification level of 100×, the proposed model
achieved excellent classification results in the A and TA
subclasses, with all metrics reaching 100%. At the same time,
its precision in theMC and PC subclasses also reached 100%.
However, its classification performance in the LC subclass
was low again – reaching only 87.88% for precision, 85.29%
for recall, and 86.57% for F1-score.

Atmagnification level of 200×, the proposedmodel scored
100% for all metrics in two subclasses, proving that themodel
performs exceptionally well in the classification of A and PC.
At the same time, its recall value in theMC and TA subclasses
also reached 100%.

At magnification level of 400×, all metric values of ST-
Double-Net reached 100% for the A and TA subclasses, and
precision for the MC subclass also reached 100%.

Overall, the proposed ST-Double-Net model achieved very
good results across all subclasses at all magnification levels.

TABLE 5. Multi-class classification performance results of ST-Double-Net
at 40× magnification on BreaKHis dataset.

The overall accuracy and the average precision, recall, and
F1-score of the proposed ST-Double-Net model, achieved on
the BreaKHis dataset, are shown in Table 9. It can be seen that
compared with only using the Swin Transformer to extract
global feature information for multi-class classification (c.f.,

TABLE 6. Multi-class classification performance results of ST-Double-Net
at 100× magnification on BreaKHis dataset.

TABLE 7. Multi-class classification performance results of ST-Double-Net
at 200× magnification on BreaKHis dataset.

TABLE 8. Multi-class classification performance results of ST-Double-Net
at 400× magnification on BreaKHis dataset.

Table 3), the fusion of global and local feature information in
ST-Double-Net allows to significantly improve its multi-class
classification performance. More specifically, compared with
only using the Swin Transformer, the overall accuracy of ST-
Double-Net has increased by 1.52∼4.25 percentage points,
the average precision has increased by 1.19∼6.77 percentage
points (with a small drop of 0.57 percentage points at mag-
nification level of 400×), the average recall has increased by
2.86∼5.28 percentage points, and the average F1-score has
increased by 2.05∼6.02 percentage points.

Next, on the same dataset (BreaKHis), we compared the
overall accuracy of the proposed ST-Double-Net model to
that of state-of-the-art models, based on their results reported
in the corresponding literature sources, as summarized in
Table 10. From this table, it is evident that the proposedmodel
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FIGURE 6. The multi-class confusion matrices of ST-Double-Net on BreaKHis dataset at various magnification levels: (a) 40×, (b) 100×,
(c) 200×, and (d) 400×.

TABLE 9. Overall/Average multi-class classification performance of the
proposed model at various magnification levels on BreaKHis dataset.

outperforms all state-of-the-art models at all magnification
levels.

2) ON BACH DATASET
The confusion matrix of the proposed model ST-Double-Net,
trained and tested on this dataset, is shown in Figure 7, where
the values along the main diagonal represent the numbers of

TABLE 10. Overall accuracy of the proposed model vs. state-of-the-art
models at various magnification levels on BreaKHis dataset.

correctly classified images. Based on this confusion matrix
and formulae (16)–(19), the values of the evaluation metrics,
achieved by the proposed model for each class, are shown in
Table 11. As can be seen, ST-Double-Net performed well on
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all four classes, even achieving 100% precision for the in-situ
carcinoma class, and 100% recall for the normal class.

FIGURE 7. The multi-class confusion matrix of ST-Double-Net on BACH
dataset.

TABLE 11. Multi-class classification performance results of
ST-Double-Net on BACH dataset.

Next, on the same dataset (BACH), we compared the over-
all accuracy of the proposed ST-Double-Net model to that
of state-of-the-art models, based on their results, reported
in the corresponding literature sources, as summarized in
Table 12. From this table, it is evident that the proposedmodel
is superior to all state-of-the-art models.

TABLE 12. Overall accuracy of the proposed model vs. state-of-the-art
models on BACH dataset.

F. ABLATION STUDY
We also conducted ablation study experiments with different
components of the proposed model, results of which are
shown in Tables 13 and 14, respectively for the BreaKHis and

TABLE 13. Ablation study results on BreaKHis dataset.

TABLE 14. Ablation study results on BACH dataset.

BACH datasets. In the second step of this study, after building
a two-stage model based on the Swin Transformer, the values
of all evaluationmetrics improved on both datasets, except for
precision at magnification levels of 40×, 100× and 400× on
the BreaKHis dataset. In the third step, after adding the HMC
module to complete the proposed model, all metrics reached
top values on both datasets, except for precision and recall at
magnification level of 400× on the BreaKHis dataset.

V. CONCLUSION
This paper has proposed a two-stage fine-grained classifica-
tion model based on weakly supervised target localization.
Specifically, in response to the problem of easily confused
target objects and backgrounds in breast cancer pathologi-
cal images, the use of a newly designed heatmap cropping
(HMC)module with weakly supervised target positioning has
been proposed. By using the feature extraction capability of
Swin Transformer, the proposed model does not require other
additional information such as labeling boxes. The classi-
fication network in the first stage is focused on the lesion
area in the images; the area is cropped, thereby achieving
extraction of fine-grained global features. In the second-stage
classification network, Swin Transformer is used to extract
local features that are difficult to extract by other traditional
networks. Finally, the local feature map and the global fea-
ture map are fused in the channel dimension and input into
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the classification head to complete the final classification.
Results, obtained on two public datasets, have demonstrated
the superiority of the proposed two-stage classificationmodel
to state-of-the-art models.

However, the proposed ST-Double-Net model has also
some limitations. The model relies on weakly supervised
target localization techniques to extract lesion areas, which
may be limited by the accuracy of target localization. If the
target localization is not accurate, it may lead to inaccu-
rate feature extraction, which affects the final classification
performance.

In view of the small differences between the classes of
pathological images themselves, in the future, we plan to
develop and integrate an attention module as to improve the
performance of the proposed model.
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