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ABSTRACT Concerns have been voiced about the growing significance of cyber-threats, especially in
light of the potentially dire repercussions of false data injection (FDI) assaults. This work investigates FDI
detection in phasor measurement units (PMU), focusing on instances where an attack can be launched simply
by compromising one unit. Simulated post-processing adversarial interventions i.e., noise and non-linearity
were introduced to train and fortify the system against possible attacks and to render it resilient to
perturbations. By learning complex non-linear patterns from the data, a deep de-noising auto-encoder model
is used to de-noise and learn genuine feature representations, improving overall reliability. The suggested
framework performs better than conventional machine learning and 1-D CNN models when it comes to
precisely estimating intrusion, as shown by a comparison study. By using an integrated strategy, power
systemmonitoring and control becomemore accurate and resilient, successfully tackling the changing issues
faced by contemporary electrical grids. The proposed adversarially robust framework is evaluated using
Monte-Carlos simulations and on varying load conditions to better comprehend the impact of adversarial
interventions on the FDI detection accuracy under different load characteristics and attack scenarios. The
proposed framework yielded an average 98.3% inMonte Carlo simulations and an average of 96.5% accuracy
under varying load conditions. Surpassing the conventional ML and 1-D CNN algorithms in successfully
identifying FDI attacks under adversarial vulnerability.

INDEX TERMS False data injections, adversarial interventions, phasor measurement units, smart grids,
intrusion.

I. INTRODUCTION
With the motorization of smart grids, the operation and
control of the grid are becoming more reliant on real-time
data, such as voltages and currents. This measurement data
has enhanced the operation of the smart grid andmade it more
efficient and reliant. However, this moderation has also made
the smart grade prone to cyber threats and cyber-attacks [1].
Accounting for 10.7% of all cyberattacks in 2022, the energy
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industry was the fourth most targeted. Energy is the most
attacked industry in North America, with 20% of attacks
occurring in this sector. 2015 saw a brief interruption in
the provision of electricity to customers when hackers using
the Black-Energy 3 malware remotely gained access to the
information systems of three energy distribution businesses
in Ukraine [2]. Manhattan, New York had widespread power
disruptions on July 13, 2019, as a result of a cyber-attack on
the city’s electrical grid. Critical services were at risk and
electrical power networks were affected as a result of the
attack. Several assaults have recently threatened or affected
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FIGURE 1. Visual depiction of compromised and uncompromised FDI
detection frameworks.

FIGURE 2. A generic block illustration of False Data Injections in PMU
based state-estimations.

electrical power systems, of which these destructive ones are
only a few examples [2], [3].

One of these cyber threats is false data injection (FDI)
attacks where the attacker injects false measurement data
that resembles real data and can bypass bad data detection
(BDD) [4]. For such attacks to be successful, the network’s
full information needs to be known. However, the partial
knowledge of the network can be enough to launch successful
attacks [5]. These attacks if successful, can affect the grid
operation in many ways such as power flows [5], [6],
frequency stability [7], and economic dispatch [8]. Several
approaches have been used to mitigate the risk of FDIs.
A phase lock Value-based approach was presented in [9],
where FDIs time instances are detected with high accuracy,
however, the capability to localize the intrusions and only
detect their occurrences. Other unsupervised approaches
were used such as Isolation Forset, Local Outlier Factor,
and AutoEncoders [10], [11], [12]. These unsupervised
approaches rely on anomaly detection and FDIs are identified
based on their behavior in comparison with the normal
measurement data. However, these approaches are effective
for detecting FDIs as anomalies may not be as effective if the
FDIs are behaving close to normal operational data.

On the other hand, supervised ML approaches, where the
models are trained to detect FDIs and not rely solitary on
FDIs’ animality behavior. Support vector machine, convo-
lutional neural network, and random forest are presented
in [13], [14], and [15]. The ML-supervised-based approaches
often focus on detecting FDIs without considering data noise

or sensor noise and its effect on the detection accuracy.
Also, the power grid requirement is often neglected such
as having enough sensors (RTUs or PMUS) to have full
observability for the state estimator. The power grid operation
relies on monitoring the network through measurement data.
These measurements are obtained from either legacy units
(RTUs) or Phasor measurement Units (PMUs). The RTUs
measure power flow through the grid, and FDI studies that
focus on RTU-based attacks usually deal with DC-estimators
which are linear [2]. Nonlinear estimators can also be used
to estimate the status of AC power networks. Consequently,
launching FDIs that avoid the BDD is challenging [11],
[16], [17]. To recognize FDI assaults, [18] uses signal
processing analysis in conjunction with the wavelet singular
entropy (WSE) approach. Guan and Ge [19] investigate
FDI and jamming attack detection using wireless sensor
networks (WSNs).

PMUs, on the other hand, are more advanced and measure
the bus voltages and currents in phasor form which enables
more robust and efficient situational awareness [20]. While
the PMU network facilitates better information sharing
within a power system, it also creates significant cyber
vulnerabilities. Numerous cyber-threats are known to target
PMU networks [21], [22]. Although, PMU data is well
time-stamped it is not totally immune to Direct Data
Manipulation, meter tempering, data replay attacks of other
data based interventions. In the context of False Data
Injection (FDI) attacks the hackers intercept the data between
in the communication network. There are a myriad of ways to
intercept the PMU data communication, for instance Man-in-
the-middle (MITM) attacks can position the attacker between
the PMU and control center by means of compromised rout-
ing or by exploiting software vulnerabilities, weak wireless
and credentials. A generic FDI injection route for PMU is
shown in Fig. 2. Similarly, Distributed Denial of Service
(DDoS) attacks, for example, have the ability to take PMUs
offline and prevent them from transmitting measurements,
so disrupting PMU operations. Furthermore, there is a chance
that man-in-the-middle attacks will introduce harmful scripts
into PMUs, changing their functionality without warning.
Furthermore, PMUs’ timestamps and measurement data can
be altered by data spoofing attacks. Consequently, several
studies have looked into how different mobile cyber-attacks
are against PMUs. The global positioning system (GPS)
technology has been the subject of investigations [23], [24].
Alexopoulos et al. [25] used a vulnerability analysis to start
FDI attacks of PMUs on power networks. Chu et al. [26]
examine the physical effects of FDI on the
N-1 reliable power technology using real-time contingency
analysis and a secured power dispatch. Distribution grids
are protected against FDI assaults that cause over-voltage
by employing a convex optimization method based on
second-order cone programming [27]. Ding et al.’s [28]
model of PMU positioning as a defensive mechanism against
cyber threats used a bi-level technique. A load redistribution
(LR) attack design, in which attackers and system operators
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FIGURE 3. Block diagram of proposed methodology.

employ distinct resource allocations, makes use of insider
threats to power networks. Liu and Wang [29]. Huang et al.
[30] have improved a technique that was previously used to
defend against coordinated cyber-physical attacks (CPAs) by
reducing the number of PMUs.

As discussed in the literature for PMUbased FDI detection,
state-of-the art machine learning and deep learning based
algorithms are being employed for efficient outcomes.
However, with the raging interest in ML and DL frameworks
for FDI detection, the susceptibility of these frameworks
towards adversarial interventions have increased drastically
as shown in Fig. 1. The adversarial interventions are
attempts to modify the Machine Learning Model’s input,
or manipulate the learned parameters to compromise the
predictions. Mostly, Machine learning models and deep
neural networks are exploited for vulnerabilities which lead to
incorrect outcomes. These adversarial interventions although
are subtle, however, the effect they have on the model
performance is sizeable. Most of these subtle adversarial
attempts are made by introducing small perturbations in
inference pipeline [31], rendering the decision boundary
chaotic with no to little apparent visual cues of their presence.
For sensitive applications of ML such as FDI detections
in PMU, the ramifications of these adversarial attempts
to compromise the model’s integrity are dire [28], [32].
In one such study, Berghout et al. [33] enhanced PMU
data resilience against dynamic disturbances and adversarial
attacks through robust feature engineering, addressing data
scarcity and imbalance with synthetic oversampling and
adaptive learning. It emphasizes defense against false data
injection by simulating adversarial attack scenarios, evaluat-
ing model performance under various levels of disturbances
and synthetic perturbations, to ensure the reliability of
FDI detection in power systems. Similar evaluations of
machine learning classifiers is undertaken in a study by
Kamal et al. [34] which investigates cyber-threats targeting
event classification in micro-PMU measurements, focusing
on poisoning attacks against SVM classifiers. It explores
the impact of compromised event classification on utility
operators and proposes a novel attack detection method to

identify changes in SVM decision boundaries caused by
poisoning attacks, aiding in the detection and evaluation of
the number of poisoned data points in the training dataset.
Adversarial attempts are discrete and potent, therefore it
is imperative to expose the machine learning pipelines to
simulated versions of these attacks or perturbations within the
training data –in order to develop resilience and robustness.
Following the similar approach, a study by Cheng et al. [35]
addresses vulnerabilities of machine learning-based event
classifiers to adversarial attacks on PMU data by proposing
an adversarial purification method based on a diffusion
model. It involves injecting noise into PMU data and utilizing
a pre-trained neural network to remove both the added
noise and perturbations from adversarial attacks, significantly
improving classifier accuracy while maintaining real-time
operability. The proposed method decreases the distance
between original and compromised PMU data, reducing
the impact of adversarial attacks, as validated by empirical
results on a large-scale real-world dataset. Although machine
learning based FDI detection frameworks for PMU have
attained a high accuracy in classifying anomalous activity,
these algorithms themselves are not immune to attacks [36].
Hence, it remains imperative to secure these frameworks at
the application end also, to harness the true potential of these
FDI detection algorithms to mitigate their failures. The works
on False data injection for PMU’s are getting popularity,
especially the adversarial vulnerability of Machine Learning
based FDI frameworks. The aforementioned works investi-
gated and proposed novel methods be it feature engineering
or synthetic perturbations to increase the resilience of ML
models against the attacks. However, the existing works lack
thorough analysis of the impact of the adversarial interven-
tions within the feature space, for a refined understanding.
Moreover, current methods often overlook the complexities
of attacks in terms of non-linearity, which can significantly
affect the decision boundary, making it challenging for
ML models to accurately predict the FDI attacks. Hence,
there is exists a need for further research to thoroughly
analyze the impact of adversarial interventions to gain a
refined understanding of their effects on the accuracy of FDI
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frameworks especially in PMU. As despite the transitioning
of the smart grids from RTU’s to PMU’s, the PMU-
based FDI’s aren’t given the same attention as RTU’s [20].
FDI attack detection methods are mostly inclining towards
ML or DL based frameworks, hence the classification model
must itself be capable enough to withstand any interventions
for a secure and reliable FDI framework.

In view of the gaps within the existing literature towards
the adversarial vulnerability of ML models, this research
proposed a strengthened and robust PMU based FDI pipeline
using deep auto-encoders to increase the reliability of the
False data detection. Not only were the performances of FDI
detection models evaluated under non-linear perturbations
and compared with our model, but the impact of adversarial
interventions on the features were also analyzed via plot
based correlations and dimensionality reduction. Moreover,
FDI research usually does not consider the power grid
operational conditions such as load change, sensor (PMU)
locations, and the full observability of the grid. In this
work, we investigate FDI attacks for PMUs and consider
the operational conditions of the power grid; the main
contributions can be summarized as follows:

• A novel adversarially robust deep-denoising auto-
encoder based FDI detection framework for PMU is
proposed, to identify FDI’s location and instances with
high-accuracy as given in Fig. 3

• The moving averages and correlations are utilized to
identify FDI attacks streams from raw data. Synthetic
noise and non-linear perturbations are introduced later
to analyze the effects of adversarial intrusions on FDI
detection framework and classification accuracy.

• A thorough visual analysis is made to understand the
impact of the adversarial intrusions on the features,
to better comprehend the behaviour of these distur-
bances in the feature space.

• The performance of the machine learning based classi-
fiers was evaluated on these added adversarial pertur-
bations and compared with the proposed auto-encoder
based FDI classification paradigm under multiple sce-
narios.

• The proposed framework is tested on IEEE-14,
IEEE-30, IEEE -39 and IEEE-118 bus system topologies
using Monte - Carlos Simulations and varied load
profiles.

The rest of the paper is organized as follows, Section II
is based on the Measurement and State Estimation in Power
Grids. Section III defines the Methodology and Section III-B
is based on Simulating Adversarial Attempts. Results and
Discussions are defined in Section IV and Finally the
Conclusion is in Section V.

II. MEASUREMENT AND STATE ESTIMATION IN POWER
GRIDS
State estimators use the data from either RTUs or PMUs, and
then based on the acquired data the state estimation process
becomes linear or nonlinear. The RTUs measure the voltage

magnitudes, power flows, and power injections. The PMUs
on the other hand, measure the voltages of the buses and
current flows in phasor form. The measurement model can
be described as follows

The state estimation process in power systems involves
integrating complex representations of voltage (V) and
current (I) measurements, crucial for accurately predicting
the system’s state [37], [38]. These complex measurements
are often expressed as:

Vcmplx = Vm ̸ θv

Icmplx = Im ̸ θi (1)

Here, Vm and Im represent magnitudes, while θv and
θi denote phase angles.
The following are the basic state estimate equations

that have been modified to incorporate these complex
representations:

xo = f
(
xpr , t

)
+ ω (2)

Here, xo is the vector of state variables that need to be
calculated while f is the state transition function that models
the dynamics of a power system. xpr depicts the former
conditions, t is the control input vector and ω is noise in the
process.

Taking into account the intricate nature of voltage and
current data, the core state estimation equations, eq (2),
capture the dynamics of the system. Also, the state variables
(x) are limited within the bounds established by the previous
estimate (xpr ). An objective function J (x) is created to
minimize the difference between the observed values (z) and
the values anticipated by the state estimation (h(x)). Through
optimization approaches, E(x) is minimized to provide a full
and accurate portrayal of the operational state of the power
system, as well as a dependable estimate of its state variables.

E(x) =
1
2
(z− h(x))TL−1(z− h(x))

+
1
2

(
x − xpr

)T M−1 (
x − xprev

)
(3)

where
E(x) is the objective function that is to be minimized.
L−1

= The covariance matrix encapsulating the
measurement errors.

M−1
= The covariance matrix of the state estimation
errors.

xpr = The prior state estimate.

A. ATTACK MODEL
This subsection discusses FDI attacks against PMU-based
smart grids. The adversaries potentially attempt to detectably
fake the measurement and If this fraud is not discovered,
the system’s status may be incorrectly estimated, which
may affect the operators’ operational choices and could lead
to overloading or tripping transmission lines. On the other
hand, it is impossible to arbitrarily fabricate measurements.
In literature, techniques like the Chi-square test and the
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Largest Normalized Residual (LNR) are used as state
estimators to spot manipulated or aberrant measurements.
Therefore, to avoid BDD or LNR detection, the adversaries
must use grid topology to mask these assaults for them
to be successful [13], [39]. Monitoring the data streams
(PMUmeasurements) or creating the attack vector (AV) with
the help of the grid information are two strategies to evade
detection.

The attack vector (1a) corresponding to FDI, the original
measurement equation is given by

a = q(h) + ϵ (4)

In the above equation, a is the output vector of measured
instances and q(h) gives a relation between the state variable h
to the measurements taken and finally, ϵ is the measurement
error. The attack vector (1a) can be expressed in terms of
perturbations added to the original measurements.

(1a) = af − a (5)

af = Erroneous measurements vector.
(1a) = False Data Injection vector.
In order to generate af , a perturbation term taken as

notation α, is scaled via a matrix (K ) representing the grid
information and inter-measurement relationship.

af = q
(
hf

)
+ ϵf (6)

In the above equation, hf = h + K .α and ϵf = ϵ + K .α.
By expanding these above equations, we get:

af = q(h) + ∇q · (K · α) + ϵ + K · α (7)

where, ∇q is the Jacobian matrix for the measurement
function q. Now, the FDI attack vector 1a can finally be
expressed as

1a = ∇q · (K · α) + K · α (8)

Taking into account how sensitive the measurements are to
variations in the state variables, this formulation captures the
impact of the attack vector on the measurements. The grid
information is captured by the matrix K , while the attacker’s
strategic choices about how to skew the measurements are
represented by α. The attacker must maximize α to covertly
modify measurements while taking into account the state
estimators’ detection measures and the grid layout.

III. METHODOLOGY
A. FILTERING AND CORRELATION
Phasor Measurement Unit (PMU) data must be carefully
refined using a moving averageM raw and binary flags Arawin
order to be ready for machine learning or deep learning-based
classification. By doing this, the pipeline is stabilized and
noise and fluctuations are reduced:

M raw =
1
w

w∑
n=0

X rawn (9)

Araw =
1
w

w∑
n=0

Y rawn (10)

The terms M raw and Arawrepresent the moving average of
the raw PMU measurement data X raw and the binary flags
that identify attacked samples Y raw, respectively, in these
equations. The temporal scope of influence is determined by
the window size (w).

The most associated data streams impacted by False
Data Injections (FDIs) are then determined using a Pearson
correlation (Cr ). The data is then segmented for modeling and
validation through supervised learning, guided by the ground
truth:

Cr

=
6M

((
M raw−mean

(
M raw

)) (
Araw−mean

(
Araw

)))√∑
raw

(
M raw−mean

(
M raw

))2 ∑
M

(
Araw−mean

(
AM

))2
(11)

In this correlation process, (M raw assumes the lead as the
moving average of raw PMU measurement data, while (Araw
functions as the moving average of binary flags identifying
attacked samples. The correlation coefficient Cr facilitates
the correlation between them, aiding in the validation of the
accuracy of identified data streams influenced by FDIs.

The window size length that the moving average filter
uses in [40] is also changed in line with the actual
classification for the purpose of modifying the ground
truths. The performance of the classifier was validated by
achieving the true classifications. It is important to maintain
an equal number of measurement samples in both the
converted ground truth and the dataset acquired after the
moving average step. The updated ground truth data will
retain the majority class XM and YM , owing to the majority
voting criteria utilized in the ground truth transformation.
For instance, Yraw = [1, 1, 1, 0] and the moving average
window length is 4. Since ‘‘1’’ is the majority class in Yraw,
this scenario will therefore produce a ground truth value
of YM = [1].

B. ADVERSARIAL INTERVENTIONS AND DEEP
AUTO-ENCODER
Important aspects of our proposed pipeline includes adver-
sarial interventions, which are intended to expose the
model to possible attack scenarios in the pre-processing
phase. In order to simulate various complex assaults, the
adversarial interventions involve adding noise and non-linear
perturbations to the PMU data. Through utilizing these
adversarial samples during training, the model has the ability
to recognize and differentiate between authentic data and
data that has been altered by adversaries. The resilience
of the model and its capacity to identify FDIs in actual
circumstances are much improved by this procedure.

At the heart of this adversarially robust framework is
the deep auto-encoder, a specialized neural network. De-
noising and feature learning are its two main tasks. The
auto-encoder efficiently eliminates noise and distortions from
the PMU data during the encoding and decoding process,
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guaranteeing that the system processes precise and clean
data. The auto-encoder also picks up intricate, non-linear
patterns in the data, capturing crucial feature representations
necessary for precise FDI identification.

The proposed framework is intended to enhance the
detection accuracy and reliability of FDIs by incorporating
these adversarial interventions and utilizing the deep auto-
encoder’s capabilities. This dual strategy will preserve the
integrity of the data required for state estimate and other cru-
cial applications, strengthening the power system’s protection
against cyber-attacks while simultaneously guaranteeing the
stability and security of the electrical infrastructure.

1) NOISE INJECTION
The representation of noisy measurements znoisyembraces
stochastic unpredictability reminiscent of adversarial intru-
sions. Each measurement zinoisy is modeled as a blend of the
true measurement zi and a Gaussian noise term ϵi.

zinoisy = zi + ϵi. (12)

In vector form, this relationship is expressed as:

zinoisy = zi + ϵi. (13)

znoisy = vector of noisy measurements.
z = vector of true measurements.
ϵ = vector of Gaussian noise, introducing the

stochastic nature inherent in adversarial intrusions.

2) NON-LINEARITY INJECTION USING THE HYPERBOLIC
TANGENT
Introducing non-linearity involves applying the hyperbolic
tangent (tanh) function element-wise to the true mea-
surements, simulating complex manipulations similar to
adversarial interventions. Each transformed measurement
zinon−linear is now a function of the corresponding true
measurement zi, providing a non-linear mapping that captures
the intricate nature of adversarial manipulations.

zinon−linear = tanh (zi) (14)

In vector form, this transformation is expressed as,

znon−linear = tanh (z) (15)

The combined effect of noise and tanh based non-linearity is
then represented by,

zfinal = tanh (z + ϵ) (16)

Leveraging tanh as the non-linear activation function
enhances the model’s ability to capture complex relationships
present in power system dynamics and better prepares
it for handling adversarial intrusions during the training
process. This comprehensive representation with tanh based
on non-linearity and injected noise provides a more realistic
and challenging dataset for robust model training.

3) NOISE ROBUST- DEEP AUTO-ENCODER (NR-DAE)
Deep auto-encoders are known for learning inherent struc-
tures and relationship between the data. They’ve been
extensively used in image reconstruction, noise reduction
and anomaly detection due to their ability to learn the latent
representations of the data and then reconstruct it. They’ve
also found their applications in classification tasks, where an
Auto-encoder network is first trained to learn the noise-free
representations by using a clean version of the input data as
ground truth. The network is trained on aMean-squared-Error
objective to increase the reconstruction power and amplify the
ability to extract relevant features. Later the trained encoder
part is detached and attached to a classifier for use in general
classification tasks. This two step approach makes the feature
extraction part robust to noise or any other perturbations,
in constrast to a normal CNN network. This application
is employed in this study to provide a robust False Data
Detection framework and reduce any false predictions.

The deep de-noising auto-encoder named NR-DAE i.e.,
Noise Robust Deep Auto-Encoder given in Fig. 4 – involves
key 1-D convolutional layers denoted by Convx. A con-
volutional layer Conv1 with Leaky Rectified Linear Unit
(Leaky-ReLU) activation, succeeded byMaxPool1 for spatial
reduction and BatchNorm1 for stabilization is used. Strictly
followed by Conv2, which refines the encoded features, a
MaxPool2 which further reduces spatial dimensions, and
BatchNorm2 to ensures stability. Subsequently, Conv3 con-
tributes to additional feature extraction, leading to the final
spatial reduction throughMaxPool3, resulting in the encoded
representation denoted as Encoded. The decoding phase
begins with DeConv1, representing a de-convolutional layer
for spatial expansion, and BatchNorm3 for stabilization.
DeConv2 and DeConv3 refine the decoding process for
up-sampling with BatchNorm4. DeConv4 contributes to the
final decoding, and UpSample3 increases spatial dimensions
to generate the reconstructed output, denoted as Decoded.
The complete auto-encoder model, integrating these layers,
is compiled using the Adam optimizer and Binary Cross
Entropy loss, facilitating the learning process for effective
de-noising and reconstruction of input images.

After the successful training of the Auto-Encoder Network
on the noisy data, the trained encoder is extracted and weights
are frozen. Then trained encoder is then connected to a dense
neural network and tuned for 50 Epochs for training the
parameters of the dense neural network in order to classify
the input features as normal or FDI detected for each time
stamp. Compilation parameters were similar to DAE with
the metric replaced with the Accuracy and Loss, and the
dense layers parameters were 64, 128 and 1 neuron for the
last classification layer with a Sigmoid Activation.

IV. SIMULATION AND RESULTS
This section presents the ML approach for recognizing
PMU-based FDIs. The methodology is assessed using the
IEEE 14-bus,30-bus,39-bus and 118-bus systems. PMUs are
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FIGURE 4. Noise robust - deep auto-encoder (NR-DAE) architecture.

deployed for both systems to ensure total observability,
as shown in Fig. 5 and 5b [9].
The FDIs are tested on both systems using the procedure

described in Section III. According to the proposed method,
PMUs are assumed to measure signals at a rate of thirty
samples per second. Every PMU is expected to measure the
current flow of every bus that borders it.

A. CASE STUDIES
Each PMU is assumed to measure the voltage of the bus
where the PMU is located, and the currents of all adjacent
buses. Each PMU is sending the measurements at a speed
of 30 samples per second. The meter errors of PMU
measurements follow the normal distribution with zero mean
and standard deviation of 10−3. The tests are performed on
the IEEE 14-bus,30-bus,39-bus and 118-bus test systems.

1) DATASET DETAIL
As discussed earlier two primary bus topologies IEEE-14 and
IEEE-30 are taken into consideration for evaluation of our
proposed work. To further validate the performance, IEEE-39
and IEEE-118 Bus topologies were included. A concise detail
for each of the 4 bus topologies are given below:

• IEEE-14 Bus A very small scale system with 14-buses,
9 transmission lines and 5 generators. 4 PMU units are
optimally placed with complete observability in reach
due to the fewer number of components.

• IEEE-30 Bus A medium scale system with 30-buses,
6 generators and 41 transmission lines. The optimal
PMU placement is crucial and challenging for complete

observability. 10 PMU’s are strategically located in the
proposed study for full observability.

• IEEE-39 Bus Includes 39 Buses, 10 generators with
46 transmission lines. Optimal PMU placement is
imperative because of increased number of components.
Similar to IEEE-10 Bus, 10 PMU units are strategically
placed for full observability.

• IEEE-118 Bus A very large network topology
with 118 Buses, 19 generators and 177 transmission
lines. A very delicate and complex PMU placement is
required, usual 118 bus topologies employ 42 PMUunits
placed at strategic points for full observability.

2) EVALUATION SCENARIOS
• Scenario I: EveryMonte Carlo simulation has a random
attack duration and time. The attack’s location and
strength are maintained constant, though.

• Scenario II: Similarly, for the second scenario, every
Monte Carlo simulation has a randomized attack dura-
tion and time. For every simulation, the attack’s position
is also different. The intensity of intrusions is constantly
maintained, though.

• Scenario III: Every Monte Carlo simulation has a ran-
domized attack duration and time. For every simulation,
the attack position and intensity (av) are different.

• Scenario IV: This scenario involves the simultaneous
attack of multiple random PMUs, with a random attack
vector used in each Monte Carlo simulation. There is
additional randomization in the attack’s duration.

Table 1 gives a synopsis of the scenarios listed above.
By varying the moving average window’s size from 2 to 12,
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TABLE 1. Specifications of scenarios used in FDI.

we have conducted numerous trials because these best
match the scenario that was created. Post-processing incur-
sions severely impair the suggested machine learning-based
methodology in [41], making it difficult to detect fraudulent
data streams. Changing the window size, however, has no
effect on the ML model’s performance and is applicable
to both machine learning algorithms’ identifications of
the assaulting samples’ data samples and the correlation’s
location of the impacted bus.

During the preprocessing stages, intentional perturbations,
such as injecting noise and introducing non-linearities, were
incorporated into the dataset. This perturbation aimed to
simulate real-world challenges and evaluate the model’s
resilience to such variations. Interestingly, the performance of
traditional machine learning models experienced a noticeable
drop under these perturbations. The injected noise and
non-linearities introduced complexities that conventional
models struggled to adapt to, resulting in compromised
performance. The effects of these perturbations on the
features are illustrated and explained in different contexts
thoroughly below.

The probability distribution plots in Fig. 6 depict the
transformations in each feature’s statistical distribution.
Before perturbations, we observe certain patterns, such as
normal or skewed distributions. Upon introducing noise and
non-linearity, these distributions shift, widen, and take on new
shapes. Deviations from the original patterns highlight the
impact of perturbations on the feature’s overall distribution.

Hexagon plots in Fig. 7a and 7b provide a visual
representation of feature relationships. Before perturbations,
clusters within these plots exhibit specific patterns. After
injecting noise and non-linearity, clusters disperse or reshape,
indicating changes in the inter-feature relationships. Shifts in
hexagon patterns showcase how the perturbations alter the
inherent structures of the feature pairs.

Similarly, the parallel coordinates plot in Fig. 10 visual-
izes the multivariate relationships among features through
connecting lines. Before perturbations, these lines show
certain smoothness and continuity. The introduction of

noise and non-linearity can lead to irregularities, such as
discontinuities, bends, or fluctuations in the lines. These
alterations signify the perturbation-induced changes in the
relationships between features.

Pair-plot in Fig. 11 offers a detailed view of pairwise
relationships between features. Before perturbations, the
scatter plots, regression lines, and density distributions
exhibit specific patterns. Injecting noise and non-linearity
introduced changes in these visualizations, indicating shifts
in the relationships between feature pairs. Distinct alterations
in scatter plots or regression lines portray the effects of
perturbations.

t-SNE visualizations given in Fig. 12 provide a two-
dimensional representation of the high-dimensional feature
space. Before perturbations, clusters have well-defined
shapes and separations. Introducing noise and non-linearity
can rearrange the points in the t-SNE plot, disrupting
the original cluster patterns. Changes in the arrangement
highlight the perturbation-induced alterations in the feature
relationships and separability.

UMAP visualizations illustrated in Fig. 13 project high-
dimensional data into a lower-dimensional space. Before
perturbations, the distribution and proximity of points exhibit
specific structures. Injecting noise and non-linearity lead to
changes in these structures, with clusters shifting or merging.
The alterations in the UMAP plot reveal how perturbations
impact the relationships and organization of points in the
feature space.

B. ATTACK BUS LOCATION IDENTIFICATION
Prior to subjecting the acquired features to adversarial
perturbations, the data streams for each bus is processed via
person correlation. This process is repeated for different bus
topogies used within this study. The purpose of finding the
pearson correlation between the corresponding data streams
was to identify the highly correlated streams and separate
them from others. As these correlated streams had a higher
probability of being compromised, which is validated via
ground truths. For our simulated data, different scenarios
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FIGURE 5. IEEE test systems with full observability.

were designed ranging from infecting a single random PMU
unit to compromising multiple PMU units. The scenarios
were iterated randomly for all four bus type topologies.
With the primary topologies i.e., IEEE-14 Bus and IEEE-30
Bus types being subjected to all four scenarios and the
remaining types to some of these for validation purpose as
given in Table 2. For each scenario of the respective bus
type, different streams of data were compromised which
were detected proficiently with the correlation based method

FIGURE 6. Distribution of features (a) Original features (b) Perturbed
features.

TABLE 2. Performance evaluation of proposed pipeline under different
attack scenarios for IEEE-14,30,39 and 118 bus topologies.

as shown in in the Fig. 8. Additionally, it can be seen in
Fig. 9 – where 5 different data streams attained from
IEEE-14 Bus topology for one of the scenario are shown in
green and red. TheRed streams are compromised by synthetic
FDI attacks while the Green streams are normal. The attacked
measurements are skewed to a very minimum measurements
as in pragmatic circumstances, the attackers only compromise
a few measurements that guarantee a successful attack due
to the computational expense. The correlation between all
streams are calculated and the two correlated streams are
singled out, these are then compared with the ground truths
to calculate the error and accuracy. As it can be seen, the
predicted attack streams are detected with high accuracy.

C. EVALUATION ON PROPOSED NR-DAE METHOD
Our proposed auto-encoder named NR-DAE showcased a
remarkable degree of robustness to these pre-processing
perturbations. The inherent ability of auto-encoders to learn
intricate patterns and abstract representations enabled them to
effectively de-noise and reconstruct the input data, even in the
presence of intentional disturbances. Where the conventional
Machine Learning models flailed, our proposed method sig-
nificantly showed adaptability and prowess. This resilience
underscores the advantageous capacity of auto-encoders
in handling real-world data variability, highlighting their
potential for applications in scenarios where pre-processing
challenges may arise. The evaluation of our proposed
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FIGURE 7. Hexagon plot for original and perturbed features.

FIGURE 8. Pearson correlation based bus identification accuracy for false data injection (FDI) attacks.

adversarial intervention method on the same scenarios as [41]
is extended, and compared in the below section.

1) EVALUATION ON SCENARIO: I
The comprehensive assessment of the presented scenarios in
Table 3a elucidates distinct patterns in model performance.
In Scenario I, a meticulous examination of confusion
matrices, F1-scores, and ROC Curves reveals noteworthy
outcomes. Auto-encoders, integral to the novel method,
exhibit effectiveness in detecting false-injected data within
the network, surpassing the performance of conventional

approaches i.e., CNN and Machine Learning Models by
achieving an accuracy of 98.44 and F1 score of 98.76,
compared to the max F1-Score of approx. 90.25 achieved
by XG-Boost and SVM. By observing the confusion matrix,
it can be seen that the model’s bias towards one class
was more which might have been an implication of the
simulating conditions. The overall efficacy of the novel
method is evident in the training curves in Fig. 14.
Table 1 and 2 provide additional insights into different
variations of attacks with the targeted PMU location being
the same for all three bus topologies, with the strategy
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FIGURE 9. Location identification using person correlation.

FIGURE 10. Parallel coordinate plot (a) Before perturbations (b) After
perturbations.

and duration kept constant and short. This is reflected in
the average F1-Score and Accuracy, as the short simulated
duration of attack lacked the adequate sample diversity
to learn the mappings properly. Yet the results from
our proposed model were good enough even under these
configurations. Moreover, the attack localization accuracy
from the correlation technique showed lower variability in the
accuracy values as for the scenario 1 the localization accuracy
remained between 99.5% to 100 %, when just one random
PMU was compromised. The performance of different bus
system topologies was also good, with the highest accuracy

value achieved by IEEE-30 by acquiring a value of 98.83%,
followed by IEEE-14 Bus and IEEE-39 Bus systems.

2) EVALUATION ON SCENARIO: II
Shifting focus to Scenario II given in Table 1 and 2, the
prominence of auto-encoders becomes apparent. Despite
the intricacies introduced during later-stage perturbations,
auto-encoders consistently outperform conventional machine
learning and 1D-CNN model by a large margin, achieving
an accuracy of 98.66%. This underscores the robustness of
auto-encoders in capturing and reconstructing meaningful
features, thereby enhancing overall detection outcomes. The
improved accuracy in comparison to scenario I can be
attributed to a longer attack duration and a larger sample
size with the variability in attack vectors that were properly
distinguished by the proposed techniques. However, the
difference between the average results of the two scenarios
is marginal and varies between different ML models.
Furthermore, the confusionmatrix for scenario II also showed
a balanced classification between the fault samples and
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FIGURE 11. Pair-plot (a) Before perturbations (b) After perturbations.

TABLE 3. Performance evaluation of different ML and DL models for all scenarios.

FIGURE 12. t-SNE (a) Before perturbations) (b) After perturbations.

the normal samples contrary to scenario I because of the
larger sample size for the attacked vector and dynamic
conditions. Additionally, the high accuracy for FDI attack
localization remained similar with little variations in contrast

FIGURE 13. U-map (a) Before perturbations (b) After perturbations.

to Scenario I. The performance of all four IEEE bus system
topologies was somewhat higher than that of scenario I, with
the highest accuracy value of 98.67 % acquired by IEEE-30
Bus system, sharply followed by IEEE-14 with a value
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FIGURE 14. Val- accuracy of proposed RN-DAE model for all four
scenarios.

of 98.66%. However, IEEE-39 Bus system performed better
under Scenario I then at Scenario II.

3) EVALUATION ON SCENARIO: III
The power system complexities of the IEEE-30 bus dataset
highlight the difficulties caused by occlusions in Sce-
nario III. Using their ability to learn complex representations,
autoencoders perform exceptionally well in this case, achiev-
ing accuracy and F1-Score of 99.10 and 99.12, as seen
by the confusion matrix and ROC curve in Fig. 15a and
Table 3c. Because of their capacity to manage occlusions
well, it is possible to distinguish between samples that have
been attacked and those that have not, making them a reliable
option for power system cyber-security applications. The
key factor that distinguishes the operating conditions of
scenario III from the other two is the variability in attack
duration. The dynamic attack duration must’ve provided
optimal data points which resonated well with the learning
capabilities of the model, yielding high accuracy. It can
also be observed that IEEE-30 Bus system topology per-
formed exceptionally across all scenarios with the maximum
accuracy value 99.10% achieved in scenario III, strictly
followed by IEEE-14 Bus system yielding 99.06% and
IEEE-118 Bus system moving along with 99.03% accuracy.
It is evident that not only a single bus system topology
performed well under these operating conditions but all four
bus system topologies performed well under varied attack
duration.

4) EVALUATION ON SCENARIO: IV
The resiliency of auto-encoders is seen even more in Scenario
IV, which combines the difficulties of later-stage pertur-
bations and occlusions. The complex interactions between
noise and non-linearities presented a significant obstacle for
conventional machine learning models, as demonstrated by
the SVM, XGB, and QDA algorithms performance declines.
Nevertheless, auto-encoders continuously beat other models,
demonstrating their flexibility in handling intricate situations
in the IEEE-30 bus dataset with accuracy and F1-Score of
99.05 and 99.01%, as illustrated in Fig. 15b and Table 3d.
The simulating conditions for scenario IV were similar to

FIGURE 15. Evaluation results and ROC curves.

scenario III, with the only difference being the number of
compromised PMU units. Herein, multiple random PMU
units underwent simulated attacks, and the scenario was
implemented on only two bus type topologies i.e., IEEE-30
Bus and IEEE-118Bus type. Both achieved a higher accuracy,
similar to scenario III with a marginal decline in comparison.
The identical performance metrics allude to a single common
variable being responsible for the improved performance
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TABLE 4. Performance average measure of DL and ML models for all
scenarios.

which is the variable attack duration. The highest accuracy
value was achieved by IEEE- 30 Bus system i.e., 99.05% and
IEEE-118 Bus system also performed well with an accuracy
of 99.03% at case 7.

D. EVALUATION ON VARIED LOAD PROFILES
To further evaluate the performance of our proposed adver-
sarially robust framework, varied load profiles are used to
analyze and assess the impact of different load characteristics
on False Data Injection (FDI) detection. In this regard,
four diffent scenarios were proposed with different load
variations, to evaluate how variations in the electrical load
affect the performance of FDI detection algorithms.

• Load Scenario I: Increasing Load by 10%
Both the suggested auto-encoder model and theMachine
Learning (ML) models show stable performance in
Scenario I, where the electrical demand is increased
by 10% as given in Table. The proposed auto-encoder
model achieves an F1-Score of 93.27% and an Accuracy
of 95.44%, whereas in ML models, SVM achieve an
average F1-Score of 89.27% and an average Accuracy
of 90.36% — followed sharply by XGB and QDA.

• Load Scenario II: Decreasing Load by 10% In
comparison to Scenario I, there is a little drop in
performance for some ML models in Scenario II due
to a 10% reduction in electrical demand, while SVM
retained its performance by achieving an accuracy
of 92.13% whereas the XGB and QDA had their
accuracy values at 87.27% and 80.05%. From Table 5b
it can be observed, that the suggested auto-encoder
model continues to outperform the ML models by
attaining an average F1-Score of 97.21% and an average
Accuracy of 96.67%. While the CNN based network
also surpassed the ML models by achieving an accuracy
of 94.10%.

• Load Scenario III: Increasing Load by 20%
In comparison to Scenarios I and II, Scenario III was
simulated with a 20% increase in load demand, which
causes performance indicators to drop even further
compared to the 10% increase in load. The suggested
auto-encoder model continues to perform better than
the ML models in spite of this drop, with an average
F1-Score of 95.04% and an average Accuracy of
95.23%, compared to the highest ML models’ F1-Score
of 98.76% and Accuracy of 90.57%.

• Load Scenario IV: Decreasing Load by 20%
Lastly, the performance of each model was seen to
have been noticeably improved in Scenario IV, where
the electrical load is reduced by 20%. The highest
performing i.e., SVM obtained an F1-Score of 91.44%
and an Accuracy of 92.15%, whereas the suggested
auto-encoder model retained its stability with an aver-
age F1-Score of 97.99% and an average Accuracy
of 98.63%.

1) RESULT ANALYSIS OF FDI DETECTION UNDER VARIED
LOAD CONDITIONS
The dynamic nature of power grid networks and numerous
model-inherent elements can be attributed to the observed
difference in performance across various load scenarios.
First, variations in the load cause the grid’s distribution of
electrical parameters to shift, which in turn causes changes
in the patterns and characteristics of the signals. Performance
may suffer if traditional machine learning models, such SVM
and XGB, are unable to generalize to these changing patterns.
On the other hand, the suggested auto-encoder model is more
flexible to changing load conditions because of its capacity
to identify and depict intricate relationships within the data.
emphasizes how crucial it is to use cutting-edge machine
learning methods that can adjust to the dynamic nature of
power grid networks. Furthermore, the deep learning-based
method extracts robust features by utilizing the hierarchical
representations that it learnt during training, which improves
its ability to distinguish between abnormal and normal grid
activity under various load scenarios. Furthermore, typical
machine learning models that rely on linear assumptions
or predefined characteristics may face difficulties due to
the inherent non-linearity and complexity of power grid
dynamics. On the other hand, deep learning models—like
CNN—are by nature better at identifying complex patterns
and non-linear correlations, which enables them to continue
operating steadily even under severe load variations. All
things considered, the better performance of the suggested
CNN and auto-encoder models under various load scenarios
highlights how crucial it is to use cutting-edge machine
learning methods that can adjust to the dynamic nature of
power grid systems.

E. COMPARISON WITH THE EXISTING WORKS
The performance of the proposed approach is shown in
Table 4, where it is compared with [41] and other popular
methods. It can be seen that the measurement noise detror-
ieates the performance of QDA, SVM, and XGB of [41].
Comparing with the other ML and DL methods shows the
superiority of our approach (NR-DAE).

A comparative evaluation is established in Table 6 to
compare our proposed method to Phase Lock Value (PLV)
from [9]. Our method suggests simulating constrained
adversarial interventions within acquired features to assess
their sensitivity under different scenarios. Although the
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TABLE 5. Performance evaluation of different ML and DL models for varying load scenarios.

TABLE 6. Performance comparison with existing literature.

performance metrics particularly F1 - Scores for PLV show
a significant prowess in detecting the FDI, the reliability
of the method under post-processing adversarial attempts
can be put into question. The PLV methods usually rely on
phase information, however a slight corruption in the phase
information can compromise the integrity of the method.
Moreover, the PLV method can be desensitized to true
patterns by the added noise, resulting in misleading learning
curves. Additionally, the PLV method is sensitive to window
sizing aswell. On the contrary, the underscoring contributions
of our proposed method are locating compromised PMUs,
providing invariance to window sizing, and the robustness to
adversarial interventions at post-processing stages, resulting
in a reliable detection.

V. CONCLUSION
This research tackles the escalating worries about cyber-
threats, concentrating especially on the serious effects of

false data injection (FDI) assaults on PMUs and the
vulnerability of ML based FDI frameworks. To strengthen
the FDI framework against adversarial attacks and improve
the classification accuracy of False Data Injection attacks,
a novel framework is proposed using auto-encoders. The
proposed auto-encoder network performs well under a range
of load circumstances and Monte Carlo simulations. The
system’s resistance to cyber-attacks is further increased by
incorporating non-linear interventions and adversarial noise
into the FDI framework during pre-processing. According
to quantitative evaluation, the auto-encoder model achieves
high FDI detection accuracy, averaging 98.3% identification
accuracy in Monte Carlo simulations and 96.5% accuracy
on average under different load scenarios. When adversarial
noise is introduced, the model gains proficiency in distin-
guishing authentic data from fabricated inputs, which results
in a notable enhancement in the accuracy of FDI detection
when compared to traditional machine learning models.
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Furthermore, the model’s capacity to identify anomalous
behavior is further enhanced by non-linear interventions,
such as non-linear activation functions, which allow the
model to capture the intricate correlations present in the
data. By enhancing the power grid’s entire security posture
and protecting against cyber threats, the combined strategy
not only increases the accuracy of FDI detection but also
ensures the stability of electrical infrastructure. Subsequent
studies can investigate sophisticated cybersecurity strategies
and integrate cutting-edge technologies to adjust to changing
risks in power system operations.

In the future, wewill investigate the effects of different load
characteristics on FDI detection. This will involve converting
constant MVA loads into a mixture of different load profiles,
including constant MVA, current, and admittance. This
study will clarify how load variations affect the system’s
resilience and FDI detection accuracy, opening the door to
the development of more flexible FDI detection frameworks.
In addition, we will investigate cutting edge approaches like
deep learning and machine learning with more refined adver-
sarial interventions to improve the detection performance
under various load conditions, supporting power grid security
and reliability.
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