
Received 20 July 2024, accepted 12 August 2024, date of publication 19 August 2024, date of current version 27 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3445371

Segmentation of Overlapping Cells in Cervical
Cytology Images: A Survey
E CHEN 1, HUA-NONG TING 1,2, JOON HUANG CHUAH 3,4, (Senior Member, IEEE),
AND JUN ZHAO 5, (Member, IEEE)
1Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
2Faculty of Medical Engineering, Jining Medical University, Jining, Shandong 272067, China
3Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
4Faculty of Engineering and Information Technology, Southern University College, Skudai, Johor 81300, Malaysia
5School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

Corresponding author: Hua-Nong Ting (tinghn@um.edu.my)

ABSTRACT Pap smear testing is crucial for early diagnosis of cervical cancer, but cell overlapping poses
a significant challenge to diagnostic accuracy, as improper processing of overlapping cells can lead to
misclassification.While significant research efforts have been devoted to segmenting overlapping cells, there
is an absence of thorough reviews covering existing studies. This survey represents the first comprehensive
exploration of technologies aiming to segment overlapping cells in cervical cytology images. Initially, we col-
lected over 100 relevant papers from various open-source databases using diverse keywords. Subsequently,
we conducted a thorough analysis covering various aspects, including datasets, evaluation methods, and
data augmentation techniques. We then categorized the applications into conventional machine learning and
deep learning approaches, further subdividing both methods into three groups. We summarized articles that
utilized conventional machine learning methods and compared the outcomes with those employing deep
learning methods. Finally, we provide insights into current challenges and prospects in this critical domain.

INDEX TERMS Cervical cells, overlapping, segmentation, machine learning, survey.

I. INTRODUCTION
Cervical cancer is the fourth most prevalent cancer among
women worldwide, with around 604,000 new cases diag-
nosed in 2020 [1]. As cervical cancer advances, symptoms
such as abnormal vaginal bleeding, discharge, and discom-
fort in the pelvic area may manifest. In its early stages, the
disease may not exhibit any signs or symptoms [2]. Can-
cer progression is not an abrupt process, the progression
from benign stages to severe phases usually spans more
than 5 years [3]. This disease is entirely preventable and
curable when precancerous lesions are identified and treated
in time, thereby reducing the occurrence and mortality of
cervical cancer [4]. Pap smear was first introduced in the
late 1920s and has been extensively used in the early-stage
diagnosis of cervical cancer and other related diseases [5],
[6]. The traditional Pap smear testing collects cervical cells
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then stained with hematoxylin to reveal the general mor-
phological characteristics of lesions [7], [8]. Subsequently,
the sample was examined by the Pathologists under an opti-
cal microscope to identify the degree of abnormalities [9].
A smear, comprising over 5000 cells, often displays various
distortions including uneven dyeing, artifacts, overlapping
cells, mucus, and blood [10]. The process of analyzing such
smears is time-consuming, labor-intensive and subjective,
and heavily relies on specialized expertise [11]. As artificial
intelligence advances, machine learning (ML) has become
more prevalent in automating the identification of cervical
cells. Both conventional ML and deep learning (DL) methods
used for segmenting and classifying individual cervical cells
have shown promising accuracy, comparable to that of human
experts [12], [13], [14], [15], [16], [17], [18], [19].

However, during the preparation process of Pap smears,
cells tend to cluster together, and cervical cells on the slide
are stacked in multiple layers. Cells from upper layers may
partially obscure those underneath, indicating that cells in
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FIGURE 1. Survey comparisons regarding overlapping cell segmentation.

cervical cytology images often overlap and cannot be effec-
tively used for classification [20], [21]. Even Herlev, the
manual cropping single-cell dataset for classification task,
contains overlapping regions [22]. The large amount of over-
lapping regions increases the complexity of the cell seg-
mentation. Moreover, classification tasks based on cervical
cytology images without proper segmentation of overlapping
cells are not feasible, since overlapping cells and malignant
cells both can exhibit abnormal shapes and textures, posing a
risk of false positive result [23]. Neglecting overlapping cells
could consequently lead to false negatives result, impacting
the accuracy of diagnosis. While DL-based classification
methodsmay not require precise segmentation of cervical cell
contours, segmenting cervical cell regions remains a founda-
tional step for cell analysis. Therefore, precise segmentation
of overlapping cells presents significant potential for enhanc-
ing the accuracy of cervical cell classification, subsequently
enhancing the efficiency of diagnosing and treating cervical
cancer.

The initial endeavor to detect overlapping nuclei from
cervical cytology images was introduced in 1981 by
Bengtsson et al. [24], utilizing the smoothed difference code.
Despite this pioneering work, the progress in this area has
been hampered by various factors, including privacy con-
straints on image acquisition, the requirement for specialized
expertise and tools for data annotation, and the incomplete
development of segmentation algorithms. This landscape
changed with the organization of ISBI challenges and the
first open-source dataset was released in 2014. Consequently,
more researchers began to focus on this field, resulting in
a proliferation of studies in cluster cervical cells segmenta-
tion. Considering these advancements, there is a conspicuous

absence of literature specifically addressing the segmenta-
tion of overlapping cervical cells since existing reviews on
precancerous lesion detection based on Pap smears focus on
single cell segmentation and classification. To provide a clear
overview, we conducted a thorough examination of existing
survey literature and generated a histogram (Figure 1). High-
lighting the number of articles dedicated to the analysis of
overlapping cells in the context of cervical cancer analysis.
This histogram serves as a comparative tool to illustrate the
contributions of each surveyed paper, highlighting the need
for our proposed studies in this underexplored area.

This review aims to offer a comprehensive investigation of
the existing technologies in automated segmentation of over-
lapped cervical cells based on Pap smear images. To prepare
this review, we conducted searches across various databases,
including Google Scholar, PubMed, arXiv, IEEE, Springer
and Elsevier. The retrieval terms included ‘‘Pap smear’’,
‘‘cervical cytology’’, ‘‘overlap’’, ‘‘deep learning’’, ‘‘segmen-
tation’’ and ‘‘cervical cancer’’.We excluded studies primarily
focused on segmentation without analyzing overlapping cer-
vical cells, even if they claim effectiveness for overlapping
conditions, alongside non-English research articles. Addi-
tionally, we scrutinized the references and citations within
all selected papers. The selected papers encompass various
methods, incorporating both conventional machine learning
and deep learning approaches. After assessing the full-text
articles, over 100 were included in this review, with yearly
distribution depicted in Figure 2.
This paper is organized into five sections. Section I pro-

vides an overview of the background and objectives of the
survey. Section II introduces open-source datasets and evalua-
tion metrics. In Section III, a comprehensive review of cluster
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FIGURE 2. Number of studies in overlapping cervical cells segmentation in recent years.

TABLE 1. Summary of open-source datasets.

cervical cell analysis is presented, covering both ML and DL
approaches. Section IV discusses challenges, future direc-
tions, and insights in this field. Finally, Section V concludes
this work.

II. DATASETS AND EVALUATION METHODS
In this section, we summarize the open-source datasets used
in overlapping segmentation tasks, as outlined in Table 1.
We excluded the Herlev and SIPaKMeD datasets from our
study. While they are utilized in certain research for tasks
such as overlapping fragment segmentation and boundary
detection, they lack multiple whole cells in a single image.
Our focus is primarily on segmentation tasks; hence we chose
to overlook datasets that provide only class labels without
boundary annotations. The description of the open-source
dataset is presented in Table 1, and a single image retrieved
from the open-source dataset is shown in Figure 3.

ISBI 2014 [37], the first open-source dataset for the
Overlapping Cervical Cytology Image Segmentation Chal-
lenge, was released by the IEEE International Symposium
on Biomedical Imaging. The dataset comprises 16 non-
overlapping fields of view images at 40× magnification,
containing 645 cells with boundary annotations for cyto-
plasm and nucleus. The image resolution is approximately
0.185 µm/pixel.

ISBI 2015 [38]. This dataset was released in 2015 for
the second cervical cell segmentation challenge. The ISBI
2015 expanded from ISBI 2014 to include 945 images
through a synthesis process, which involved manually
annotating the cytoplasm of 13 isolated cervical cells.
images in ISBI 2015 exhibit a range of cell counts, span-
ning from 2 to 10, and overlapping coefficients ranging
from 0 to 0.5.

Cervix93 includes 93 stacks of images at 40× magni-
fication, each stack containing between 10 and 20 images
acquired from evenly distributed field views spanning from
the slide’s top to bottom, with manually marked internal
points and boundary information of nuclei. [39]. This dataset
includes varying levels of cell overlap, with 2705 nuclei
annotated via bounding boxes.

Dataset used in BTTFA [40], An LBC-based dataset com-
prises 104 images, each sized at 1024 × 768, with nucleus
boundary labels assigned to every image by professional
pathologists. Compared to conventional Pap smear, LBC
requires an additional sample treatment process to remove
impurities. As a result, LBC offers superior image quality but
also comes at a higher cost.

The CCEDD dataset, introduced by Liu et al. [41] com-
prises 686 cervical images, each sized in 2048× 1536 pixels.
Optical magnifications of 100× are applied for patients with
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FIGURE 3. Image from A. ISBI, B. Cervix93, C. BTTFA, D. Cx22, E. CNSeg.

negative cervical cancer, and 400× for those with positive
cervical cancer. The cytoplasm and nucleus boundaries in this
dataset were annotated by six expert cytologists, with each
CCEDD image containing only a label for the cell edges,
making it unsuitable for instance segmentation due to the lack
of specific object labels. In contrast, Cx22 is based on the
CCEDD. Zhao et al. [42] manually delineated the contours of
7473 instances of nucleus and cytoplasm across 1320 images,
cropping the original images to 512 × 512 pixels. Cx22
includes two subsets: Cx22-Multi and Cx22-Pair. In Cx22-
Pair, images consist of two overlapping cervical cells, while
Cx22-Multi comprises training (Cx22-Multi-Train) and test-
ing (Cx22-Multi-Test) datasets.

The CNSeg dataset comprises 1530 samples scanned at
40× magnification [43]. The dataset uses LabelMe to delin-
eate the boundaries of the nuclei. The CNSeg dataset consists
of three subsets: the PatchSeg, which includes 85882 nuclei
in 3487 images with a size of 512 × 512; the ClusterSeg,
which includes 34,311 nuclei in 2361 images with overlap-
ping nuclei; and the DomainSeg dataset, which comprises
two different staining method datasets. TargetA includes
381 images, with 145 images labeled for testing, while Tar-
getB consists of 332 images, with 57 images labeled for
testing.

In the domain of segmentation tasks, the primary eval-
uation metrics operate at the pixel level. Foremost among
these is the Dice coefficient (DC), followed by precision
(Prec), sensitivity (Sens), and recall (Rec), These metrics are
primarily used to evaluate the effectiveness of conventional
machine learning methods. These metrics are also applicable
for evaluating the segmentation performance of deep learning

methods. Additionally, other evaluation metrics include the
average Jaccard index (AJI), panoptic quality (PQ), Haus-
dorff distance (HD), F1 score, intersection over union (IoU),
and Zijdenbos similarity index (ZSI).

Object-wise evaluation metrics, such as False Negative
Rate (FNRo), are comparatively less prevalent but still rel-
evant. Overall, the formulas for these metrics are adapted to
suit segmentation tasks, with the IoU and Jaccard Index (JAC)
formulas being interchangeable, and the F1 formula being
equivalent to DC. All the metrics are listed in Table 2.

III. IMPLEMENTATIONS
In this section, we summarize literature regarding various
ML and DL models in the overlapping cervical cells separa-
tion. Conventional machine learning methods rely on hand-
crafted feature extraction guided by prior knowledge. This
process typically involves preprocessing, coarse segmenta-
tion, fine segmentation, and data enhancement techniques
like smoothing and denoising. In contrast, deep learning
methods utilize multi-layered architectures and millions of
parameters. They use data augmentation techniques including
rotation and flipping. Additionally, pre-trained models are
frequently employed in deep learning applications. Addition-
ally, we summarize the performance of deep learning models
in segmenting the overlapping cells.

A. DATA ENHANCEMENT
1) QUALITY ENHANCEMENT
Pap smear images commonly contain impurities during stain-
ing. Additionally, limitations in imaging techniques may
result in out-of-focus, low-resolution and poor contrast in
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TABLE 2. Summary of evaluation metrics.

cervical cytology image. Image preprocessing techniques
such as median filtering, guided filter, histogram normal-
ization, histogram equalization, contrast enhancement and
edge sharpening was applied to improve the image qual-
ity [44]. Malm et al. [45] applied a multi-step approach
based on the area, shape, texture and intensity to remove the
debris. Advanced techniques, such as contrast local adaptive
histogram equalization (CLAHE) and integration with the
Diffusion-Stop-Function, were employed to enhance contrast
and eliminate noise [46]. Conversely, Gaussian noise and salt
pepper noise were introduced to enhance generalization [47].
Furthermore, a gradient decomposition method was applied

to enhance edges and suppress artifacts in the images [48].
Kaur and Sahambi [49] proposed a multiscale top-hat trans-
form and h-maxima to enhance in images with very low
contrast and where cells are touching.

The common use of the RGB color space in image anal-
ysis poses challenges in addressing issues such as poor
contrast and uneven illumination during slide acquisition.
This has prompted a preference for the CIE L∗a∗b∗ color
space, renowned for its superior capabilities in managing
brightness and representing a wide range of colors. Since
the L∗ channel represents the brightness level and a∗ chan-
nel represents variations between red and green, researchers
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employed the a∗ channel for background extraction [50], [51].
Zhang et al. [52] transformed the original images to grayscale
by extracting the V channel value from the HSV color space
to enhance the contrast.

2) QUANTITY ENHANCEMENT
Data augmentation has been proven to be an effective solu-
tion for overcoming the challenge of limited datasets and
insufficient diversity when using DLmodels. Traditional data
augmentation methods include inversion, rotation at multiple
angles, flipping, and scaling were employed to enrich image
diversity, leading to a significant improvement in accuracy
and robustness [53]. Cervical cells are typically distributed
across multiple focal planes. Researchers initially capture
images containing single cells from various focal planes,
manually delineate them to establish the ground truth, and
subsequently convert these delineated images into a sin-
gle extended depth of field (EDF) image. Lu et al. [38]
constructed 945 synthetic overlapping images from single
EDF cervical cell images, i.e., ISBI 2015. Umadi et al. [54]
obtain an additional 280 images for training based on the
same EDF image. Researchers also applied the Beer-Lambert
Law to reconstruct the pixels of the overlapping parts.
Mahyari et al. [55], [56] generated 5000 and 100,000 new
overlapped images from the ISBI 2014 dataset. Generative
Adversarial Network (GAN) were also applied for image
synthesis, Geng et al. [57] applied conditional GANs, com-
bining U-Net, DenseBlock and semantic segmentation net-
work to generate 5000 blurred images from single-focus and
few-focus images.

B. CONVENTIONAL MACHINE LEARNING
We categorize conventional machine learning approaches
employed for segmenting overlapping cervical cells into the
following categories: region-based methods, pixel intensity
methods, and contour methods.

1) REGION-BASED METHODS
Region-based segmentation methods partition an image into
distinct areas based on criteria such as color, texture, or inten-
sity, allowing for deeper analysis and understanding of image
content. Commonly utilized approaches in this category
include superpixel, region growing, watershed, Voronoi and
Graph cut. Description and results of region-based segmen-
tation methods are presented in Table 3 and Figure 4.

The Superpixel algorithm, renowned for its ability to
divide pixels into perceptually meaningful atomic regions
based on similar sizes, intensity, texture and distance, pro-
vides a robust method to reduce complexity and improve
computational efficiency. This pre-segmentation method is
particularly promising for handling low-contrast images. Yet,
improper selection of hyperparameters, such as superpixel
size and color space distance measurement can result in
either over-segmentation or under-segmentation. The Simple
Linear Iterative Clustering (SLIC) is designed for superpixel

generation [58]. Initially, the algorithm transfers the
original image to the CIE-Lab color space, creating a
five-dimensional vector V[L, a, b, x, y] for each pixel,
comprising (L, a, b) color values and (x, y) coordinates.
Then, k seed points are randomly initialized, and neighboring
pixels with similar vectors are iteratively grouped until all
pixels are classified. Subsequently, the algorithm recalculates
cluster centers and performs clustering until convergence.
Notably, SLIC ensures boundary continuity by constraining
the search region to a size proportionate to the superpixel
size, achieving linear complexity with respect to pixel count
and independence from superpixel quantity. Tareef et al. [59]
employed the SLIC algorithm to produce an over-segmented
superpixel map, dividing the image into locally coherent clus-
ters with homogeneous regions. Lee and Kim [60] utilized
the SLIC method to generate over-segmented superpixels.
Subsequently, mean intensity values are calculated for each
region to create the mean-value image for extracting cellular
clumps. Diniz et al. [61] utilized the SLIC algorithm to detect
nucleus candidates by partitioning the original image into
regions with approximately equal sizes, consistent intensity,
and pixel distance.

Mean Shift, a non-parametric density estimation method
employed for generating superpixels was proposed by
Comaniciu and Meer [86]. It involves iteratively shifting data
points in feature space towards the direction of maximum
local density until convergence to the peak of the density
estimate, followed by clustering of the data. Zhang et al. [74]
applied mean shift to partition the cells into different
color segments. Quick Shift generates superpixels through
a mode-seeking segmentation approach [87]. It begins seg-
mentation via a medoid shift procedure. where point in the
feature space is then shifted to its nearest neighbor, aim-
ing to converge towards the peak of the density estimate.
Harangi et al. [66] employed the quick shift to delineate the
boundaries among nuclei and cytoplasm. Khadidos et al. [68]
employed the quick shift to segment the EDF image into
regions representing cells and background. The output is a
superpixel map consisting of regions assigned values in the
range [0,1].

Region growing segment the image by connecting pix-
els with similar characteristics and iteratively grouped
together to form regions, based on predefined criteria such
as intensity, color, or texture similarity. While effective,
this method is sensitive to initial seed selection, incorrect
seeds may lead to over-segmentation or under-segmentation.
Sulaiman et al. [79] applied preselected pixels as initial seed
points and set preselected minimum values as threshold val-
ues for cytoplasm and nucleus pixels. These seed pixels were
expanded to neighboring pixels, incorporating them into the
region until their pixel values were less than or equal to the
preselected threshold.

The Watershed algorithm, inspired by geographical
‘‘watersheds,’’ interprets the image as a topological surface,
with pixel values resembling heights. It identifies regional
minimal values as catchment basins and maximal values
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TABLE 3. Description of region-based methods.

FIGURE 4. A. original image, B. Superpixel, C. Region growing, D. Watershed, E. Voronoi and F. Graph cut.

between neighboring basins as ridge lines. The goal of
watershed-based segmentation is to detect these ridge lines
within the image. This method is commonly applied to
the gradient image, where objects correspond to basins and
boundaries to ridges. Zhang et al. [74] utilized the water-
shed algorithm to split superpixels and filter nuclei based
on their eccentricity, average gray value, and area size.
Tareef et al. [75] introduced a Multi-Pass Fast Watershed
(MPFW) method for automatic separation of nucleus and
cytoplasm from clustered cells. The first watershed pass inte-
grates intensity gradient details to segment nuclei. The second
and third passes are used to segment partially overlapped
and highly overlapped cytoplasm. The disadvantage of this
method is that noise and local irregularities in the gradient
may lead to under-segmentation.

The Voronoi algorithm, named after mathematician
Georgy Voronoi, divides a plane into distinct areas based
on the closest distance to a specific group of points called
seeds or generators. In image segmentation, each pixel is

associated with the seed closest to it. This method is sen-
sitive to the distribution of seed points and may result
in irregular boundaries, leading to uneven segmentation.
Ushizima et al. [67] partitioned the image into convex poly-
gons, ensuring that each Voronoi polygon encompasses one
nucleus. Ramalho et al. [73] utilized a combination of the
Voronoi diagram and ellipse shape to detect the cytoplasm
border. Yang et al. [84] utilized the Voronoi diagram to gen-
erate the initial boundary of each cell based on the labeled
points.

Graph partitioning treats the image as a graph, with nodes
representing pixels and edges illustrating their relationships.
The complexity remains unaffected by the number of tar-
get objects. By employing the max-flow/min-cut method,
t minimizing the energy function to distinguish the cellular
from the background. Graph cuts become slower with higher
image resolutions due to the increased number of nodes.
Typically, Graph Cut is applied to pre-segmented or coarsely
segmented results and requires specifying foreground and
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TABLE 4. Description of pixel intensity-based methods.

background to accurately extract target objects from the
background. Zhang et al. [51] proposed global graph cuts
for cytoplasm segmentation and local graph cuts for nuclei
segmentation. They applied multi-way graph cuts to the
image enhanced with the a∗ channel for cytoplasm segmenta-
tion. Additionally, they employed graph cuts combined with
intensity, texture, contour, and region information for nuclei
segmentation. Song et al. [76] utilized a graph partitioning
model to enhance spatial consistency, resulting in accurate
delineation of objects based on the superpixel segmentation.
Zhang et al. [88] utilized a graph-based random walk model
to delineate the cytoplasm contour. This model constructs an
edge between two nodes in a 4-connected neighborhood grid,
with edge weights computed using a Gaussian function based
on the similarity measure between neighboring nodes.

2) PIXEL INTENSITY-BASED METHODS
Pixel intensity-based methods segment images by the bright-
ness or color values of individual pixels to distinguish
between different regions or objects. These methods, include
thresholding, morphological operations, k-means, and dis-
tance transform, assign pixels to specific regions based on
their intensity levels. The pixel intensity-based segmenta-
tion methods and their corresponding results are detailed in
Table 4 and illustrated in Figure 5.
Thresholding methods segment images into distinct

regions based on the intensity or value of each pixel. They
are among the simplest, easiest, and fastest segmentation
methods available. Yet, finding an appropriate threshold that
effectively separates the image into two groups is not always
straightforward. Moreover, this method relies on the assump-
tion that the foreground and background in the image have
significantly different intensity values, which may not always
be the case. In scenarioswith low image contrast, local thresh-
olding may be preferred over global thresholding to more
effectively adapt to varying intensity levels across the image.
The Otsu, analyzes the histogram of pixel intensities in the
image to identify an optimal threshold to divide the image into
foreground and background [108]. This approach relies on the
grayscale intensity values of the image, The implementation
of a single threshold can effectively segment the cervical
cells from the image [89], [90]. Zhang et al. [74] applied
a brightness threshold to remove the background using the

luminance histogram. Somasundaram et al. [92] proposed a
multi-thresholding method to segment the nucleus from the
background. This method was inspired by the observation
that multiple peaks in the histogram correspond to different
objects in the image. Iram Hoque et al. [109] introduced an
adaptive thresholding method with seven tunable parameters
to enhance nucleus segmentation in cervical images.

Morphological operations are a set of image process-
ing techniques employed for analyzing and processing
shapes within images. They involve manipulating morphol-
ogy (shape and structure) in images through operations like
dilation, erosion, opening, and closing. These operations
serve to fill holes in the image, connect or separate objects,
and excel in tasks such as noise removal, edge detection,
and feature extraction. Conversely, they are vulnerable to
image noise and may alter the size and shape of objects,
risking loss of detail or introduction of artifacts. Additionally,
traditional morphological operations utilize a uniform size
of the structural element (SE) on all cells, which may pro-
duce unwanted outcomes when handling overlapping cells.
Afaf Tareef et al. [103] employed morphological filters,
including opening and closing operations, to smooth areas
with extreme values. This process resulted in flat maxima
within the cellular clump. Wang et al. [64] introduced a flex-
ible morphological operation tailored for overlapped cells.
They defined the maximum and minimum erosion radius of
the structural element based on cytological knowledge and
image characteristics. Zhao et al. [101] utilized morpholog-
ical operations to eliminate false nucleus edges extracted by
the Canny operator, which were caused by noise. The process
involved applying dilation and erosion to the binarization of
the nucleus ROI.

The K-means clustering technique, aims to divide a set of
n observations into k clusters. In the context of segmenting
cell images, it partitions them into distinct clusters based on
pixel intensity or other feature vectors. Each pattern cluster
maintains a single center throughout the process. This method
iteratively recalculates the centroids to minimize the sum
of squares within each cluster. Guven and Cengizler [23]
utilized k-means clustering based on two texture features and
three shape features to determine the presence or absence of
overlapping. In their study, Guan et al. [48] combined mor-
phological filtering with the K-means clustering algorithm

VOLUME 12, 2024 114177



E Chen et al.: Segmentation of Overlapping Cells in Cervical Cytology Images: A Survey

FIGURE 5. Segmentation results, A. 2-thresholding, B. 3-cluster FCM, C and
D. 2-thresholding and Morphological operations.

for pre-segmentation. Initially, they employed morphological
filtering tomitigate contamination effects. Subsequently, they
categorized pixels into four groups—nuclei, dark cytoplasm,
light cytoplasm, and background—based on the L∗ channel
of the CIELAB color space using the K-means clustering.
Additionally, they merge pixels with median gray levels into
a single class representing the cytoplasm. Riana et al. [99]
employed the K-means to detect cytoplasm, utilizing color
features extracted from the Lab image, which includes the
L (luminance), a (red color), and b (blue color) components.
Umadi et al. [54] applied a four-cluster K-means algorithm to
group pixels by intensity, to create a cell clump mask.

The fuzzy c-means (FCM) clustering, unlike K-means
clustering, takes into account the fuzzy relationship between
each pixel and each cluster center. In FCM, data points
may have memberships in multiple clusters, with degrees
ranging from 0 to 1, and the centroids are determined by
the weighted average of these memberships. Clustering is
achieved through an iterative algorithm that updates cluster
centers and coefficients during each iteration. Eventually,
all observations are assigned to distinct clusters by the con-
clusion of the iteration process. Guven and Cengizler [23]
employed FCM based on two texture features and three shape
features to discern the presence or absence of overlapping.
Their approach yielded a higher F1 score and faster process-
ing compared to k-means clustering. Standard FCM typically
only considers intensity information and lacks spatial infor-
mation. Saha et al. [90] utilized FCM in conjunction with
a spatial shape function, enabling precise segmentation of
nuclei.

The GMM (Gaussian Mixture Model) models data dis-
tribution as a linear combination of multiple Gaussian dis-
tributions. The EM algorithm trains the GMM by learning
the parameters of each component and assigning pixels to
the component with the highest probability for segmentation.
Jung et al. [107] utilized GMM to segregate overlapping

nuclei. This method was also employed to separate cell clus-
ters from background [71], [80].

3) CONTOUR-BASED METHODS
Contour-based methods separate images by detecting and
tracing the boundaries of objects or regions of interest. These
methods analyze the edges or outlines present in the image to
delineate distinct shapes or textures by identifying changes
in pixel intensity or gradients. Nevertheless, these methods
are sensitive to initialization, as poor starting points can lead
to convergence on local minima or struggle in low-intensity
regions. Additionally, they may perform poorly when seg-
menting touching boundaries or blurred edges and can be
computationally complex. Table 5 provides an overview of
contour-based methods, while Figure 6 showcases the results
of edge detection.

An active contour, also known in the field as snake, is a
deformable curve within an image that evolves based on
both internal and external forces. Internal forces arise from
the curve itself, encompassing properties like smoothness
and length. Meanwhile, external forces stem from image
information, such as edges or object boundaries. This elastic
curve starts from an initial position, provided either inter-
actively by the user or through higher-level processes, and
moves towards features to extract by minimizing energy. The
accuracy of the performance relies on the initial curve place-
ment, necessitating its positioning around the target region
for evolution. Plissiti et al. [110] introduced a method akin to
ACM, integrating physically based modeling with an active
shape model. This approach utilized prior knowledge of the
anticipated shape and variable weights in the computation
of the image force to achieve accurate segmentation of two
overlapping nuclei. Similarly, Araújo et al. [111] employed
active contours to segment overlapping cells, demonstrating
robustness in handling a vast number of cells and highly
overlapped instances.
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TABLE 5. Description of contour-based methods.

FIGURE 6. A. Scharr edge, B. Sobel edge

Edge detection is crucial in image processing as it reveals
discontinuities in physical, photometric, and geometric prop-
erties of objects within a scene, providing important visual
information. This operation involves extracting object con-
tours while ignoring extraneous details, thereby simplifying
image analysis by reducing data volume. There are two main
categories of edge detection methods: gradient-based tech-
niques, which utilize first-order derivatives and are relatively
simple to implement with lower computational costs but are
sensitive to noise. Examples include Sobel, Prewitt, Roberts,
and Canny operators. In contrast, Laplacian-based methods
employ second-order derivatives to assess the rate of change
in image gradients. These methods capture the acceleration
of intensity changes, making them suitable for high-precision
and complex edge detection tasks. While they are less sensi-
tive to noise, they may struggle with coarse or blurred edges.
Kumar et al. [95] converted the image into a binary format
to obtain the edges of cell clusters. Tareef et al. [59] utilized
the Anisotropic Diffusion Filter (ADF) to eliminate noise and
extraneous details while retaining edge information in the
image. Plissiti et al. [110] utilized the Canny edge detector
on preprocessed images to detect strong boundary edges
as the optimal matching position for searching the initial
model. Phoulady et al. [80] used a pre-defined similarity
metric to detect the approximated boundaries. Researchers
have also employed transformers for edge detection in small-
scale datasets [132].

The Level Set method, a widely used image segmentation
technique, iteratively evolves a contour within the image
domain by minimizing an energy functional derived from
features like gradients, intensities, or edges. This dynamic
adjustment, often constrained by iterations, contour size,
length, an ellipsoidal shape prior, and cytoplasm curvature.
The performance of the Level Set algorithm is influenced
by the placement of seed points or initial contours. This
approach involves initially determining the estimated position
of the cell cytoplasm and then selecting the surrounding
region for evolution. Negar M. Harandi et al. [94] employed
an automatic circular decomposition method to generate
the initial contour for overlapping cells. Lu et al. [69] uti-
lized constraints based on a single contour area, length,
and an assumption of elliptical shape as the initial curve
for evolution, and subsequently utilized unary and pairwise
constraints for generating the initial curve [37]. Unary con-
straints were determined by contour area, edge strength, and
cell shape, while pairwise constraints were derived from the
areas of overlapped regions. Islam and Haque [116] pro-
posed a Multi-step Level Set approach to delineate nuclei and
cytoplasm from overlapped cells. This method incorporates
parameters including cytoplasm curvature, retention duration
of segmented cytoplasm, boundary information, and a pace
controller dependent on cell homogeneity. Nisar et al. [96]
proposed initializing the Level Set with a circle of radius 20.
Tareef et al. [70] utilized cell boundaries as the initial curve
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based on the classification result of SLIC. Li et al. [71]
utilized a square grid with a fixed width as the initial region.
addressed the problem of erroneously detected fragments that
resulted from faulty initialization of contour points by apply-
ing a signed distance function. Wang et al. [120] obtained
seed contour points from a gradient map to generate a rough
segmentation contour, which was further improved through
Distance Regularized Level Set Evolution (DRLSE).

Shape models, describe object shape features using prior
knowledge or sample data. Researchers use statistical-based
predefined templates, such as ellipses and star shapes,
to match the shapes of the objects in the images. This
expected description aids in precise localization and seg-
mentation of cell boundaries. The elliptical shape prior is
commonly used in delineating the single-cell boundary in
cluster cells [73], [78], [110], [119]. Instead of employing
elliptical shapes, Song et al. [47] introduced a dynamic
multiple-template deformation model, utilizing multiple cell
labels as input. They integrated structural and contextual
information to deform cell shapes effectively. Following this,
they trained a shape prior model to achieve precise segmenta-
tion results. Nosrati and Hamarneh [85] utilized a star-shaped
prior rather than elliptical shapes for segmentation. Following
the attainment of precise segmentation in polar coordinates,
they converted back to Cartesian coordinates to obtain the
results. Zhao et al. [133] employed star-convex polygons
to estimate and locate cervical cells in Pap smear images.
Tareef [127] introduced an Adaptive Shape Prediction Model
for overlapped cell segmentation, relying on the cellular clus-
ter boundary. This approach involves deformation based on
contours and shapes.

C. DEEP LEARNING
We categorize deep learning methods into semantic
segmentation, instance segmentation, and GANs. Seman-
tic segmentation typically employs CNNs and U-Net and
requires post-processing to achieve precise cell edges.
Instance segmentation commonly utilizes networks such as
Mask R-CNN and incorporates enhanced feature extraction
modules. GANs employ adversarial approaches for segment-
ing overlapping cells.

1) SEMANTIC SEGMENTATION
Semantic segmentation categorizes an image into three
classes: cytoplasm, cell nuclei, and background, assigning
each pixel to one of these categories. This approach does not
differentiate between individual cell instances or effectively
segment overlapping regions. To address the segmentation
of overlapping cells, post-processing methods are employed.
These methods are used to refine the boundaries of indi-
vidual cells within overlapping areas. Harangi et al. [66]
applied an ensemble approach combining FCNNs and con-
ventional machine methods to localize cell cluster boundaries
at the pixel level. Two variants of FCNNs, namely FCN-8
and FCN-16, were utilized in conjunction with results of

the quickshift. Additionally, two consensus methods were
employed to integrate the outputs of deep learning and con-
ventional machine methods.

FIGURE 7. U-net.

FIGURE 8. Result of semantic segmentation.

U-Net, the other semantic segmentation networks,
is famous for its encoder and decoder architecture with
skip connections to mitigate the issue of vanishing gra-
dients, enabling effective capture of spatial information
while maintaining high-resolution output. The architecture
and segmentation results are depicted in Figure 7 and
Figure 8, respectively. While this architecture efficiently
captures rough contours of cell nuclei and cytoplasm, cannot
classify overlapping pixels [134]. As a result, they often
require post-processing to extract individual complete cells
from overlapping regions. Zhang et al. [88] utilized U-Net
with soft Attention Gates (AG) to capture detailed informa-
tion from deep layers for accurate nuclei prediction. They
then constructed polar coordinates based on the nuclei to
detect cell boundaries, followed by refining them using a
graph-based Random Walk. Mahyari and Dansereau [55]
combines the cytoplasmic region using the results of two
methods: the first is based on CNN, and the second is
generated using a multi-layer random walker based on
nuclei. These two results are integrated using the Hungarian
algorithm. Riana et al. [135] utilized a UNet model with
VGG encoders to detect areas of cytoplasm and regions of
overlapping cells, refining the results using the Watershed
method. Zhang et al. [136] utilized ResNet-101 for cell
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TABLE 6. Summary of semantic segmentation methods.
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TABLE 6. (Conitnued.) Summary of semantic segmentation methods.

boundary detection, utilizing a global feature pyramid to
acquire the global context and multi-scale features of both
semantics and edges. They then leveraged the complemen-
tarity between semantics and edges to enhance the accuracy
of segmentation.

Furthermore, recent advancements in feature extraction
methods and modules have significantly enhanced segmen-
tation performance. Jianwei Zhang et al. [40] introduced a
Binary Tree-like Network that integrates nucleus features
extracted from 5-layer of ResNeXt. These features are sub-
sequently fused using attention to generate the final fea-
ture map. Zhao et al. [137] introduced an encoder-decoder
network with integrated attention-learning modules within
skip connections, complemented by a context encoding
layer within the encoder. This architecture facilitates the
extraction of contextual information across various resolu-
tions, incorporating both contextual and attention mecha-
nisms for nucleus segmentation. Yang et al. [138] utilized
the Gating Context-aware Pooling module to enhance the
model’s ability to perceive long-range dependencies and
global context. They used a pre-trained ResNet-34 model
as an encoder and a decoder with a Global Context Atten-
tion (GCA) block for nucleus detection. Luo et al. [139]
presented a dual-supervised network for nuclei segmentation
from whole-slide images (WSI). The autoencoder com-
prises a down-sampling network and a super-resolution
network. A feature extraction module, employing a resid-
ual network, extracts semantic information. The decod-
ing module integrates feature fusion, segmentation, and

edge detection techniques for precise nuclei segmentation
within WSI. This approach achieves equivalent segmenta-
tion accuracy while offering a five-fold increase in speed
compared to U-Net. Chowdary and Yogarajah [140] pro-
posed an encoder-decoder architecture for nuclei segmen-
tation in images. They enhanced the network by replacing
convolutional layers with a combination of residual blocks
and Squeeze-and-Excitation (SE) module. This modification
aimed to enhance the ability to discern between local and
global information. Rasheed et al. [53] introduced a C-UNet
for the segmentation of cervical nuclei. This architecture inte-
grates features from diverse spatial resolutions and domains
using a Cross-scale features integration (CSFI) module.
Boundary detection and semantic segmentation is based on
two interconnected linked decoders. Ji et al. [134] employed
multiple semantic segmentation methods, including U-Net
andU-Net++, for nucleus and cytoplasm segmentation using
the Cx22 dataset. They generated final predictions by apply-
ing an unweighted average ensemble method to combine
results from multiple models. This approach does not involve
post-processing to segment overlapping regions. Table 6 sum-
marizes the methods employed in semantic segmentation
along with their performance evaluation.

2) INSTANCE SEGMENTATION
Instance segmentation uses masks to detect targets, enabling
multiple detections of individual pixels, which aligns with
the logic of overlapping regions where a single pixel may
belong to multiple cell instances. In contrast, semantic
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segmentation assigns each pixel to only one semantic
category.

FIGURE 9. Mask R-CNN.

FIGURE 10. Original image and instance segmentation result.

MaskR-CNN expands the Faster R-CNNnetwork by intro-
ducing an extra branch to predict segmentation masks [147].
The architecture and the instance segmentation result are
depicted in Figure 9 and Figure 10, respectively. This allows
Mask R-CNN to generate pixel-level masks for each detected
object, enabling accurate delineation of object boundaries
and precise segmentation. Additionally, the two-stage archi-
tecture of Mask R-CNN, with separate region proposal and
refinement stages, enhances both speed and accuracy,

Chen and Zhang [148] utilized Mask R-CNN for seg-
menting overlapping cells. Zhou et al. [149] employed Mask
R-CNN along with the Duplicate Removal Module and
Instance Relation Module to achieve improved performance.
Following that, they presented a deep semi-supervised frame-
work for overlapped cell segmentation. This framework
includes a teacher branch and a student branch, both built
upon the backbone architecture of Mask R-CNN [150].
Jiang et al. [151] segmented overlapping cells into Intersec-
tion Layer and Complement Layer using Mask R-CNN, and
then recombined overlapping and non-overlapping regions
using the Semantic Consistency guided RecombinationMod-
ule. Liu et al. [42] created a dataset of cervical cytology
images called Cx22, comprising the boundaries of 14,946
cell instances from 1320 images. They introduced a region-
of-interest (ROI) based label cropping algorithm for annota-
tion using the annotation tool, LabelMe. Additionally, they
proposed both semantic and instance segmentation meth-
ods as baseline approaches. Zhao et al. [133] proposed
using Residual Attention Embedding (RAE) blocks to focus
on cell boundaries, employing two heads: one for object

probability and another for polygon distance prediction. They
completed instance segmentation using post-processing tech-
niques. Summary of instance segmentation methods is pro-
vided in Table 7.

FIGURE 11. GAN.

3) GANs
GenerativeAdversarial Networks (GANs) [155], proposed by
Goodfellow in 2014, operates as a two-player game involving
a generator and discriminator. The generator learns to pro-
duce synthetic instances that closely mimic authentic data,
whereas the discriminator is trained to distinguish genuine
examples from artificial ones. Hao et al. [156] introduced
a two-stage segmentation approach: first, a cellular region
proposal network for coarse segmentation of nuclei and cyto-
plasm, followed by a pixel-level segmentation network utiliz-
ing a GAN-based model to enhance segmentation accuracy.
Huang et al. [142] introduced Cell-GAN, which segments
cells based on guiding factors such as the nucleus. In Cell-
GAN, non-overlapping cellular components are considered
as the background. The generator is responsible for producing
segmented cell images, while the discriminator learns the
probability distribution of cells by assessing the variance
between segmented images and ground truth.Moreover, Cell-
GAN utilizes the nucleus as a guiding factor for cell local-
ization. Both methods involve cropping the input image into
small sizes. The architecture of GAN is shown in Figure 11,
with the evaluations of GANs-based approaches summarized
in Table 8.

IV. DISSCUSSION AND CHALLENGES
A. DATASETS
High-quality datasets are crucial for cell segmentation.
Although the ISBI dataset, one of the earliest released open-
source datasets, has a small amount of data, it has been
widely used due to its accuracy and has become an established
benchmark dataset. Following a comprehensive investigation,
the existing datasets utilized for overlapping cervical cell
segmentation demonstrate several key characteristics. First,
data imbalance is a common issue, as cells typically occupy
only a small portion of the image, leading to sample imbal-
ance during training. Additionally, the diversity of data styles
due to varying staining techniques and imaging methods
results in significant differences in color, size, and image
resolution. These factors lead to different magnification lev-
els and a mixture of color and grayscale images. Moreover,
the labels are diverse; cell nuclei, having prominent visual
features, are relatively easy to label, whereas cell cytoplasm
ismore challenging to delineate accurately due to overlapping
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TABLE 7. Summary of instance segmentation methods.

TABLE 8. Summary of GANs methods.

cells, low contrast, and staining issues, adding complexity
to the segmentation task. Finally, the data volumes vary
widely, with sample sizes ranging from hundreds to tens of
thousands.

Based on this analysis, several challenges related to
datasets need to be addressed. Privacy issues limit data
acquisition, resulting in a scarcity of available data. Addi-
tionally, the diversity of data, including variations in staining

techniques, data acquisition methods, and imaging specifica-
tions, lacks unified standards, complicating data integration
and comparison. The same issues also arise in the acqui-
sition of EDF images and the definition of overlap degree.
Furthermore, the processes of data collection and annotation
require specialized personnel and tools, making them both
time-consuming and labor-intensive, which results in a short-
age of large-scale data.
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B. METHODS
We categorize the machine learning methods for overlapping
cell segmentation into two types: conventionalmachine learn-
ing and deep learning.

Conventional machine learning methods rely on hand-
crafted features designed and extracted based on prior knowl-
edge for induction and feature selection. Due to the absence
of a one-size-fits-all tool, a combination of multiple methods
and stages is typically necessary, including preprocessing,
coarse segmentation, and fine segmentation. Region-based
methods and pixel intensity-based methods are commonly
employed for coarse segmentation to identify the approxi-
mate areas of cells. For accurate segmentation of overlapping
regions, contour-based methods, such as level set and its
variants, are used. These methods require high-quality data,
and their performance and accuracy are often limited. Data
enhancement techniques, primarily focusing on smoothing,
denoising, and contrast enhancement, aim to improve model
capabilities. While these methods offer good interpretability,
they often struggle with complex datasets.

Deep learning methods, characterized by their multi-
layered architectures and millions of parameters, possess
the capacity to fit almost any dataset. As the dataset size
increases, models can learn richer features and patterns from
a wider variety of samples, thereby reducing the likelihood
of overfitting. Data augmentation plays a significant role in
deep learning, with common techniques including rotation,
flipping, and other transformations. Additionally, pre-trained
models are extensively utilized in deep learning applications.
These methods, such as data augmentation and pre-training,
are generally not applicable to conventional machine learning
approaches.

Deep learning methods are increasingly becoming the
mainstream approach in the field of overlapping cell segmen-
tation, but there is still potential for improvement in segmen-
tation performance. Advanced feature extraction networks,
particularly those that incorporate attention mechanisms, sig-
nificantly enhance the model’s capability to capture relevant
features in complex datasets. On the other hand, considera-
tions regarding model complexity and efficiency are crucial;
the scale of network parameters and the speed of training and
inference directly impact the practical applicability of deep
learning models.

C. PRACTICAL IMPLEMENTATION
In medical imaging, segmentation involves not only isolating
cell or lesion areas from images but also providing precise
diagnostic insights for clinicians. This highlights the impor-
tance of segmentation outcomes seamlessly integrating with
other processes, such as data acquisition enhancement and
final classification, to ensure accurate diagnostic conclusions.
Hence, segmentation tasks must not only prioritize techni-
cal accuracy and efficiency but also align with the broader
medical image analysis workflow to enhance diagnostic
efficacy.

V. CONCLUSION
In this comprehensive survey, we present a detailed overview
of overlapping cervical cell segmentation, encompassing
datasets, evaluation methods, and techniques for nuclei and
cytoplasm segmentation. we utilized the specified algorithm
to segment overlapping cells, demonstrating its effective-
ness and making the algorithm easier to understand through
detailed visual results. In the task of cell boundary detec-
tion, methods are classified into two classes: conventional
machine learning and deep learning approaches. The most
used methods in conventional machine learning are super-
pixel, thresholding, and level set method. Semantic methods
require post-processing to address overlapping regions, while
instance segmentation offers a direct approach to segment
overlapping cells. Although GANs have been utilized in this
domain, their applicability is constrained by specific condi-
tions. This summary underscores the diverse methodologies
employed in overlapping cell segmentation, illustrating ongo-
ing efforts to enhance accuracy and efficiency in biomedical
image analysis.
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