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ABSTRACT One of the greatest challenges of Emergency medical services providers is to handle the large
number of Emergency Medical Service (EMS) calls coming from the population. An accurate forecast of
EMS calls is involved in ambulance fleet dispatching and routing to minimize response times to emergency
calls and enhance the efficacy of assistance. Yet, the demand for emergency services exhibits significant
variability, posing a challenge in accurately predicting the future occurrence of emergency calls and their
spatial-temporal distribution. Here, we propose a stacking ensemble machine learning model to forecast EMS
calls, combining different base learners to enhance the overall performance of generalization. Additionally,
we conducted experiments using Boruta, Lasso, RFFI and SHAP feature selection methods to identify the
most informative attributes from the EMS dataset. The proposed ensemble model integrates a base layer and
a meta layer. In the base layer, we applied four base learners: Decision Tree, Gradient Boosting Regression
Tree, Light Gradient Boosting Machine and Random Forest. In the meta layer, we used an optimized Random
Forest model to integrate the outputs of base learners. We evaluate the performance of our proposed model
using the R%-score and four different error metrics. Based on a real data set including spatial, temporal and
weather features, the findings of this study demonstrated that the proposed stacking-based ensemble model
showed a better score and the minimum errors compared to the traditional single algorithms, online machine
learning methods and voting ensemble methods. We achieved a higher score of 0.9954, mse of 0.8938, rmse
of 0.9454, mae of 0.2923 and mape of 0.0724 compared to state-of-the-art models. This work is an aid for
emergency managers in making well-informed decisions, improving outcomes for ambulance dispatch and
routing, and enhancing ambulance response time.

INDEX TERMS Ambulance demand forecasting, artificial intelligence, EMS call forecasting, ensemble
machine learning, feature selection, offline/online machine learning.

I. INTRODUCTION

Emergency medical services (EMS) play a crucial role in
providing citizens with a higher probability of survival
by ensuring short response times to emergency calls,
especially urgent ones, and faster ambulance arrivals at
their destination [1], [2]. EMS managers tackle this task
by studying the distribution of incoming call requests
and formulating resource deployment plans, specifying the
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number of ambulances and emergency response personnel
required for current and future periods [3].

In smart cities, uncertain demand patterns pose challenges
for EMS centers as emergency call volumes fluctuate
significantly throughout the day. EMS providers face also
significant challenges due to geographical disparities, and
temporal fluctuations. Accurate forecasting is crucial for opti-
mizing ambulance deployment, improving response times,
and enhancing patient care [2]. Accurate and real-time pre-
diction of ambulance service demand is complex, requiring
routing algorithms to dynamically adapt to changing demand
patterns while improving response times. Developing precise
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algorithms that account for factors such as time, location,
and weather is essential to effectively address these varying
demand patterns and ensure optimal resource allocation.
While several studies address EMS demand forecasting,
identifying the best algorithm with minimal error and
shortest execution time remains challenges. Such challenges
can impact ambulance planning and allocation. Given the
significance of call time and location, implementing a precise
algorithm that considers these parameters is essential.

Geographic information system (GIS) emerges as a
powerful tool for collecting, managing, analyzing, and
representing geo-referenced health data and identifying
gaps in health systems [4], [5], [6], [7], [8]. GIS enables
researchers to integrate spatial (e.g., health service locations,
patient addresses, and ambulance dispatch centers) and
non-spatial (e.g., descriptive information about geographic
features, work hours, waiting lists) data into a unified
framework, facilitating better-informed decision-making [6].
Additionally, the temporal aspect must be considered, since
ambulance demand can vary depending on the time of
day [9]. An accurate demand forecast can aid in improved
ambulance management planning. The effective management
of emergencies is expected to serve as a fundamental service
in modern smart cities, exerting a direct influence on urban
safety and the perceived quality of life while dealing with the
impacts of climatic changes [10].

The main objective of this paper is to use an ensemble
machine learning model for the analysis and forecasting of
EMS calls to enhance the management of ambulance fleets
in time and by location. This paper introduces a stacking
forecasting method described as an ensemble, incorporating
spatial, temporal, and climatological parameters to support
tactical decisions for ambulance deployment and planning.
The workflow is summarized in four significant ways: Firstly,
we started with a data collection of EMS calls by time and
location and integrated the weather data to form our final
dataset. Secondly, we aggregate the temporal and spatial
call numbers per zone since ambulances are deployed per
zone. Thirdly, we design a stacking ensemble machine
learning model that predicts the number of calls considering
spatial, temporal, and weather parameters. Lastly, we add
online algorithms [11], as baseline to approximate real-time,
stream EMS calls, and encompass temporal, spatial, and
weather parameters for accurate time and location prediction.
We explore various Machine learning (ML) and Deep learn-
ing (DL) algorithms both offline and online to achieve the
objectives of this research work. We conduct a comparison
between the best single offline, online models/algorithms
and voting ensemble with our proposed ensemble model to
predict EMS calls.

In this paper, we propose an ensemble EMS demand
prediction method that takes into account time, location
and weather parameters. The implementation of effective
Emergency medical services (EMS) systems hinges on the
accurate forecasting of ambulance demand, a critical aspect
that significantly influences emergency response strategies
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and overall healthcare outcomes. The need for robust ambu-
lance demand forecasting arises from the dynamic nature of
emergency incidents, making it essential to anticipate and
allocate resources efficiently. Accurate forecasts empower
EMS providers to optimize ambulance deployment, strategi-
cally position medical resources, and enhance response times,
ultimately leading to improved patient care and outcomes.
By leveraging advanced forecasting models, EMS systems
can proactively address the challenges of varying demand
patterns, geographical disparities, and temporal fluctuations,
fostering a more resilient and responsive emergency health-
care infrastructure.

Furthermore, the integration of computational time consid-
erations in ambulance demand forecasting models becomes
imperative. Efficient computational processes ensure timely
and real-time decision-making, allowing EMS systems to
dynamically adapt to evolving scenarios. By leveraging
advanced forecasting models with optimized computational
efficiency, EMS systems can proactively address the chal-
lenges of varying demand patterns, geographical disparities,
and temporal fluctuations, fostering a more resilient and
responsive emergency healthcare infrastructure. To the best of
our knowledge, our system is the first to propose a stacking
ensemble model for EMS call forecasting, considering spa-
tial, temporal and weather parameters, with the performance
analysis based on score, and errors. Using a real dataset,
our primary objective is to identify the most accurate model
for predicting the next EMS calls based on historical EMS
call data. We evaluate the forecast results of the proposed
model against the following ML algorithms for regression
problems: Gradient Boosting Regression Tree (GBRT), Light
Gradient Boosting Machine (LGBM), Decision Tree (DT),
Random Forest (RF), Artificial Neural Network (ANN),
Long Short-Term Memory (LSTM), Online-Linear Regres-
sion, and Online-ANN.

The originality of this paper lies in its integration of
different machine learning techniques into a stacking model
that simultaneously considers time parameters, location
parameters, and climatological parameters for EMS demand
forecasting. Single machine learning algorithms can make
different types of mistakes when predicting outcomes from
data. Some may have more bias, while others may have
more variance. To handle these issues and improve the
score, ensemble methods combine results from multiple
algorithms. This helps reduce errors overall. Stacking is one
such approach that uses a meta-learner, to blend predictions
from various basic machine learning models and enhance
score by addressing bias and variance problems.

The contributions of the paper are as follows:

« We propose a comparative study of the feature selection
method as an explanatory data analysis through the
potential features that contribute towards EMS calls and
ambulance demand.

e We compare the most used single offline and
online machine learning models and DL models for
spatial-temporal forecasting of EMS calls: GBRT,
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LGBM, ANN, RF, DT, ANN and LSTM, aiming to
determine the best-performing approach and identify
models that offer minimum prediction error and
adaptability to EMS calls patterns, which were then
integrated as base learners in the first layer of our
proposed model.

« We propose a novel stacking ensemble method to fore-
cast EMS calls while incorporating spatial, temporal,
and climatological parameters. The proposed model
consists of two layers: the base layer and the meta layer.
In the base layer, DT, GBRT and LGBM models consist
of our best base learners. In the meta layer, we employ
an optimized Random Forest model as our meta-learner.

« We prove that our proposed stacking strategy out-
performs state-of-the-art models when applied to the
real datasets. It demonstrates reduced prediction errors,
ensuring reliability and robustness in capturing under-
lying EMS calls data patterns. Its enhanced adaptability
and interpretability make it a valuable and versatile tool
for practical applications in a higher resolution.

The rest of this paper is organized as follows. Section II
presents the related work and provides an overview of
the proposed prediction approaches in ambulance demand
forecasting. Section III provides a detailed explanation of
our research methodology and describes the implementation
of the proposed workflow. Section IV outlines the experi-
mental tool and performance evaluation. Finally, Section V
concludes the paper.

Il. RELATED WORK

In this section, we present approaches and algorithms
for EMS call prediction, present in the literature review.
We divided in four different groups: empirical estimation
models, classical time series models, probabilistic models
and learning based models.

A. EMPIRICAL ESTIMATION MODELS

Empirical estimation models are among the first classic
models widely used in industry. They are characterized by
predefined statistical calculations, such as averaging over
observations at different time intervals, such as seasons,
months, or weeks. The most well-known empirical models
are the Naive Predictive (NP), the High Availability (HA),
and the MEDIC [12]. The NP provides a cost-effective
forecast using the last observed demand value. The demand
at time ¢, knowing the demand at the time before r — 1,
is assumed to be proportional to the demand at time t.
HA averages all available historical observations of the
corresponding distribution region over the previous year to
produce a forecast. MEDIC is a common industry practice
deployed in cities such as Toronto and Charlotte [12], [13].
It involves averaging the last Z same-hour observations from
several previous months of the forecast. The MEDIC method
can be considered as a combination of the HA method and
the naive method, taking into account the daily behavior of
the demand. For example, in [14], the authors set Z = 20,
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in line with the practice in 2021. Similarly, the work of [12]
averaged the corresponding demand densities in the previous
4 weeks for any 2-hour period in March 2007. These
empirical models are static and do not account for changes in
EMS demand over time and other factors that may influence
the demand patterns. As a result, their predictions may not be
as accurate as models that consider additional variables and
spatio-temporal dynamics in EMS demand forecasting.

B. CLASSICAL TIME SERIES MODELS

Time series models are statistical methods that describe the
linear autocorrelations in a variable that evolves over time.
Some of the commonly used time series models include
Auto-Regression (AR), Vector Auto-Regression (VAR),
and Seasonal Auto-Regressive Integrated Moving Average
(SARIMA) [15], [16], [17], [18], [19]. The VAR model is
particularly useful for multivariate time series as it captures
the linear interdependencies between different variables,
which is relevant for representing spatial correlations in our
case. In [14], Wang employed AR, VAR, and SARIMA
as baseline models for EMS demand forecasting. Vile [20]
proposed Singular Spectral Analysis (SSA) to generate
accurate demand forecasts for the Service Medical d’Urgence
(SMU). SSA is a non-parametric technique used for the
analysis of time series. This method allows for a multimodal
decomposition of EMS demand into periodic, trend, and
noise components, enhancing the understanding of the under-
lying patterns. Considering the time-of-day and day-of-week
effects, Cheng [9] investigated the use of the SARIMA with
external regressor (SARIMAX) model to forecast the hourly
occupancy of the Emergency Department (ED) up to 4 hours
ahead. The SARIMAX method utilizes readily available
data in most emergency departments to generate prediction
intervals, making it a promising technique for real-time
forecasting of emergency department occupancy. While these
time series models consider the temporal distribution of
EMS demand, they do not explicitly account for the spatial
distribution of EMS calls and the potential effects of other
events on this variation. To create more comprehensive EMS
demand forecasting models, it is important to incorporate
both temporal and spatial aspects, along with other relevant
factors that may influence EMS demand.

C. PROBABILISTIC MODELS

Probabilistic models are based on statistical inferences.
There are several probabilistic models used to forecast
EMS demand, such as Gaussian models, kernel density
estimation, and Bayesian models. Zhou et al. [12] proposed a
Gaussian Mixture Model (GMM) to estimate the distribution
of ambulance demand in Toronto. This model utilizes the data
distribution to fix the distributions of mixture components
over all time periods, addressing data sparsity and accurately
describing the spatial structure of Toronto. The GMM
captures complex spatio-temporal dynamics through time-
varying mixture weights, which include weekly seasonality
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and a conditional autoregressive priority on the mixture
weights of each component. Xu et al. [21] proposed a locally
adaptive Space-Time Kernel Density Estimate (ST-KDE) to
model EMS queries as an InHomogeneous Poisson Process
(IHPP). ST-KDE is a non-parametric method for estimating
probability density functions in statistics. This method
weighs the spatial kernels by functions based on the corre-
sponding time dependence in each community area, enabling
the incorporation of complex spatio-temporal variations in
EMS applications. Steins et al. [22] proposed a Zero-Inflated
Poisson (ZIP) regression to forecast ambulance calls in
Swedish counties. ZIP models account for zero-inflation and
Poisson processes, enabling more reliable predictions for
count data with excess zeros. Their study estimated EMS
calls per hour and geographical zone, involving historical data
analysis and spatial-temporal features for improved accuracy.
Standard Poisson regression assumptions may be violated in
real-world scenarios with excessive zeros, posing challenges
for selecting the most appropriate forecasting model for the
EMS context, considering various models’ strengths and
weaknesses. Nicoletta et al. [23] presented a Bayesian model
using MCMC for posterior inferences. The method predicted
present-day requests based on past probabilities, showing
effectiveness. However, the city division aspect has limita-
tions, categorizing areas into four traffic levels. Emergency
centers consider multiple factors for division. Enhancing
predictions could involve considering short, medium, and
long-term variations, public holidays, and other relevant
factors. To improve applicability, the model should consider
various characteristics beyond location-based predictions.

D. LEARNING BASED MODELS

The learning-based model integrates Machine Learning (ML)
and Deep Learning (DL) methods. This model involves
collecting large number of examples to identify underlying
patterns and use them for predicting new ones. Her-
mansen et al. [26] presented Multi-Layer Perceptron (MLP)
and LSTM methods for medical service request prediction in
Oslo. They tested split and complete approaches with weather
data in 1 km radius at 1-hour intervals. A high resolution
led to sparse data, challenging predictions. MLP performed
better, considering temperature and precipitation’s impact.
Peak days, population density, and probabilistic predictions
should be explored for enhancement, along with user mobility
and weather variations. Lin et al. [25] compared six machine
learning methods (Regional Moving Average (RMA), LR,
Support Vector Regression (SVR), MLP, Radial Basis
Function Network (RBFN), and LGBM. LGBM performed
best for both 7-day and 30-day predictions based on EMS
demand and social aspects of populations. Response time
and additional features influencing EMS demands should be
considered for more comprehensive comparisons and real-
life applicability. Wang et al. [14] used daily human mobility
data to improve spatial correlations’ representation. They
introduced a Heterogeneous Multi-Graph Convolution Net-
work (HMGCN) and a Spatio-Temporal Interlacing Attention
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Module (STIAM) to predict EMS demand, outperforming
nine other models by incorporating dynamic human mobility.
Validating the approach with small-resolution patterns (e.g.,
weekend mobility, daily periods, holidays) is necessary.
Applying the method to more spatio-temporal prediction
tasks would further validate its effectiveness. Nakai et al. [29]
developed a machine learning model for predicting the
number of heat stroke victims in Kobe City using past weather
observation data and emergency dispatch records. The Partial
Least Squares Regression (PLSR) method was employed
for medium-term (4-7 days) predictions using past weather
forecast data. However, they only used weekly weather
forecast elements as explanatory variables, leaving room for
exploration of other explanatory variables. Jin et al. [30]
focused on three main factors influencing EMS demand:
population density, socioeconomic factors of the study area,
and hospital conditions. They proposed a bipartite com-
putational graph neural network (BiGCN) to exploit these
features and achieved promising results compared to other
methods. Rautenstrauss et al. [28] introduced a Convolutional
Neural Network (CNN) for ambulance demand prediction,
transforming time series information into heatmaps. While
the CNN method performed well in terms of prediction
error, its known drawback is the time-consuming execution.
In summary, the learning-based models hold promise for
EMS demand forecasting, and considering various factors,
exploring different resolutions, and optimizing model execu-
tion time are areas for improvement and future research.

The literature encompasses a wide range of models, which
contribute significantly to the field. Accurately predicting
ambulance demand for emergency medical services is of
utmost importance, as it directly impacts the allocation of
ambulances to emergency calls [31]. By achieving a more
precise and diverse estimate of demand behavior, we can
enhance the reallocation and routing of ambulances across
different areas. This optimization leads to minimized ambu-
lance response time [32], thus increasing the likelihood of
timely patient care and follow-up. Table 1 shows a summary
of previous studies in ambulance demand prediction, their
proposed methods and the metrics used. While several studies
address EMS demand forecasting, identifying the best algo-
rithm with minimal error and shortest execution time remains
challenging. Existing methodologies, such as traditional
statistical models and basic machine learning algorithms,
often struggle with these dynamic and complex patterns.

In the domain of EMS forecasting, there is a growing
need to harness the power of artificial intelligence (AI)
tools, particularly machine learning (ML) models. ML,
a subset of Al, is instrumental in crafting accurate predictive
models for EMS operations. However, individual ML models
may exhibit weaknesses and limitations. To address these
challenges effectively, the concept of ensemble learning
(EL) emerges. EL involves combining multiple ML models
to create a stronger, more robust forecasting framework
tailored for EMS operations. Given the complex and
nonlinear nature of EMS data, EL methods have garnered
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TABLE 1. Methods and metrics used in other related studies.

Authors, Year Feature names FS Method(s) Methods ML Metrics
Zhou et al. [24] 03 time periods No FS MEDIC, Average log score
2015 21 location cells naiveKDE,
GMM, stKDE.
Chen et al. [4] Year, season, month, day, day of week,  Data Analytics (DA)  SVR, Sinusoidal Regression, RMSE, MAPE
2015 time bucket, weekend, rush hour, MA, ANN
past state of EMS demand and rainfall
Lin et al. [25] Spatial, temporal, and demographic No FS RMA WAPE
2020 Linear Regression, MAE
SVR, MLP MSE
LightGBM
Hermansen et al. [26]  Hour, day, day of week, month, No FS MEDIC, ANN, LSTM MSE, MAE, CCE

2021

precipitation, temperature

Martin et al. [3]
2021

Call time, call location coordinates,
responding ambulance identifier,
assigned call priority, patient
problem description, call response
outcome the time in route and
arrival time, and a primary
incident number.

K-means, Boruta

ARIMA,

Holts—Winters (HW),
MEDIC Hourly Forecasting
(MHF),

MLP

Mean absolute
deviation (MAD),
(MAPE)

Nicoletta et al. [23] time, type of zone Posterior inference Markov chain Monte Carlo MAE,
2022 precipitation, temperature Empirical coverage
Van et al. [27] Hour, day, day of week, month, Statistical Simple moving average (SMA)  MSE, MAE
2023 precipitation, temperature decomposition: MEDICis, MLP
(STL, SSA) - No FS  Naive forecast (NF)
GA-ANN
Rausten et al. [28] Temperature, wind speed, humidity, Shap CNNss, MSE

2023 dew point, sea level pressure,
precipitation public holidays,

school holidays, and events

Multilayer perceptrons (MLP),
Decision trees (DT),
Random forests (RF), MEDIC

considerable attention. By integrating diverse ML models,
EL not only mitigates the limitations of individual models
but exploits their varied perspectives to enhance prediction
accuracy. Furthermore, EL contributes to error reduction,
faster computation, and improved generalization of EMS
forecasts. By stacking different learning approaches, we can
improve predictions, reduce errors, leverage computations,
and create more generalizable forecasts for EMS situations.

lll. METHODOLOGY

In this section, we propose an effective stacking ensemble
learning model by taking advantage of ensemble learning
properties. The proposed model is used for EMS call
forecasting. We begin by formulating the problem of
EMS call forecasting. We introduce the geo-grid division
strategy along with K-means and DBSCAN for data spatial
aggregation. We present both single offline and online
machine learning algorithms that aim to predict EMS call.
Figure 1 illustrates the workflow of our forecasting model.
It encompasses the definition of the data collection, the
data aggregation and feature selection, the introduction of
our proposed ensemble forecasting model and the metrics
for performance analysis. This figure represents the main
steps we take to achieve the objectives of the analysis and
prediction of EMS calls for better ambulance allocation and
dispatching.
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A. PROBLEM FORMULATION

Emergency medical systems provide first aid and vital
medical assistance, including transportation and victim
transfer [33]. Calls are received via designated emergency
numbers or alarm systems, and the urgency and location of
each call are assessed to dispatch ambulances promptly. The
aims of this research work are to forecast the ambulance
demand y(t,z) = d!, representing the number of incidents
(demand d) at time step ¢ in zone z for z € Z (with
z € N¥). Z represents a set of spatial clusters or zones,
and N* represents the set of positive integers. For a given
geographical area, the larger the number of zones in Z, the
higher the spatio-temporal resolution of the EMS demand
forecasts. With a higher resolution and shorter time steps,
more information is available to strategically dispatch ambu-
lances. However, using a high spatio-temporal resolution also
presents challenges, as the data becomes sparser and more
stochastic, making forecasting more difficult.

B. DATA PREPROCESSING

Data preprocessing ensures that the data is free from
inconsistencies, errors, and missing values, leading to more
accurate and reliable results in predictive modeling and
decision-making processes. Moreover, it involves collection,
cleaning, transforming, and organizing data to improve its
quality and make it suitable for forecasting. After removing
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FIGURE 1. The workflow of the proposed methodology for EMS call forecasting.

missing and meaningless values in the dataset, we encoded
categorical variables into a numerical format that can
be easily understood and processed by machine learning
algorithms using ordinal encoding and one-hot encoding [34].
In ordinal encoding, each unique category value is assigned
an integer value. One-hot encoding creates binary vectors for
each category in the categorical variable. These techniques
are commonly employed when dealing with categorical
features in regression tasks, and its help to enhance machine
learning model compatibility and interpretability while
ensuring the effective utilization of diverse types of data.
After that, we evaluate the feature importance. To accurately
estimate the target variable y(f,z) = dZ’ , we carefully
assess and analyze the importance of spatial, temporal, and
climatological features. Notably, the spatial and temporal
features heavily rely on clustering techniques, enhancing our
understanding of the data’s spatial distribution and patterns.

C. SPATIAL CLUSTERING AND FEATURE SELECTION

1) SPATIAL CLUSTERING

To allow our results for being used for ambulance dispatching
and routing, we divided the area of study in zones/cluster
based on the location of the ambulance demand and the
time. The spatial cluster represents the base stations where
the ambulance is stationed. An effective aggregation in
space will ensure a better coverage by EMS providers and
reduce the waiting time. We aggregate data in small clusters.
Inspired by [35], the comparison will focus on evaluating the
effectiveness and performance of three methods into creating
divisions that represent the service area efficiently.

o The geo-grid division, is a rectangular clustering based
on latitude and longitude locations. The study area is
divided into small rectangular zones. The number of
zones is the number of splits, calculated as describe
in Equation (1):

Nbones = Lat grig ¥ Lngg,id, €))]
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where Latgrig and Lng,,, are integers obtained by
dividing the range of latitude (Maxrasiruge — MinLatitude)
and longitude (Maxpongitude — Minpongitude) into the
desired number of splits.

o K-means clustering is an unsupervised clustering
algorithm within machine learning that dynamically
assigns data points into K distinct, non-overlapping
clusters [35], [36].

« Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) is a clustering algorithm for data
sets with varying density. It groups points based on
density within a specified radius [37]. DBSCAN excels
in processing large databases and has been applied in
real case studies [35], [38], [39], [40].

After the aggregation of data, we selected the most important
feature from spatial, temporal and weather data.

2) FEATURE SELECTION

We compared recent feature selection methods for data
regression using machine learning algorithms. Boruta [3],
LASSO Regression (L1 Regularization), Random Forest
Feature Importance (RFFI) and SHAP (SHapley Additive
exPlanations) [28], used in [41], [42], and [43]. Boruta
iteratively compares the importance of original features to
shadow features and selects those with importance above the
threshold. LASSO introduces a penalty term to the regression
equation, driving some feature coefficients to exactly zero
and, identifying critical features. In RFFI, feature importance
is measured by the average decrease in impurity across all
trees, highlighting critical features for predicting the target
variable. SHAP is a unified framework for explaining the
output of machine learning models by assigning a value to
each feature’s contribution in to a prediction [44], [45]. These
feature selection methods could reduce dataset dimensional-
ity and improve model interpretability and performance in our
forecasting task.
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FIGURE 2. Stacking ensemble learning algorithm.

D. PROPOSED STACKING ENSEMBLE MODEL

The proposed ensemble model is designed based on the
concept of stacking models, with the intention of leveraging
the distinct components that can be identified in a spatio-
temporal series, such as seasonality, trend, inertia, and spatial
relations. By stacking different architectures, each focused on
modeling a specific component, we aim to prevent redundant
information from flowing through the model and to capitalize
on the strengths of each approach [46]. Consequently,
employing multiple layers of interpretability enables us to
gain deeper insights into the problem being modeled and
verify that our model is performing as expected. Figure 2
illustrates the stacking ensemble learning method. For a given
input of k£ spatial, temporal and climatological features x; €
{x1,...,x}, and the target variable y(t,z) = d! € R_{
representing the ambulance demand in zone z at time step f,
we utilize a collection of different selected forecasting models
denoted as M = {M,..., M,}. The individual model
predictions are represented by P = {Py, ..., Py}.

The steps of the ensemble technique that combine
information from multiple predictive models and use them
as features to generate a new model can be described in
Algorithm 1. The K-fold helps to find the optimal values
of hyperparameters that give the best performance for each
model in different subsets of data. The K-fold is a valuable
tool when working with ensemble techniques, as it helps in
both the evaluation and training phases, resulting in more
robust and generalizable models. Stacking is a method that
uses a special learning technique to figure out how to combine
predictions from different machine learning models. It works
by using predictions made by these models on new data,
which they haven’t seen before. These predictions, along with
the actual outcomes, are then used to teach another model,
called the meta-model. This meta-model learns how to best
combine the predictions from the base models. In regression,
the base models predict actual values.
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Algorithm 1 Ensemble Stacking Model With Multiple Base
Models and K-Fold Cross-Validation

1: Input:

k spatial, temporal and climatological features x; €
{x1, ..., x¢}

2: Target: variable y(t,z) = d! € R

3: Step 1: Select a K-fold split of the dataset

4: Step 2: Select m base models
Base Models: Define M = {My, ..., My}

GBRT, LGBM, DT, RF as describe in Table 6.

5: Step 3: For each base model, evaluate using K-fold cross-
validation, store all out-of-fold predictions and fit the
model on the full training dataset and store it.

6: Step 4: Fit the optimized metamodel Random Forest on
the out-of-fold predictions from the base models.

7: Step 5: Evaluate the meta-model on the test set.

8: Output: The evaluation metrics

The stacking ensemble method is powerful because it
can leverage the strengths of different models to produce a
more accurate prediction. In our proposed model, denoted
as GBRT+LGBM+DT+RF, we integrate the stacking of
GBRT, LGBM, DT, and RF comparing with others single
models. Our meta-model is an optimized Random Forest. The
models included in our stacking ensemble were selected after
many comparisons with machine learning models like GBRT,
LGBM, LSTM, RF, DT, ANN, Online-LR, and Online-ANN,
based on their proven effectiveness in EMS call forecasting.
The chosen base learners GBRT, LGBM, DT, and RF perform
well in regression tasks and capture complex patterns in
EMS data. Our ensemble approach integrates its advantages,
resulting in superior predictive accuracy and overall perfor-
mance across multiple metrics, including R-squared (R?),
MSE, RMSE, MAE, MAPE, and computational time.

E. SELECTED SINGLE BASELINE ML ALGORITHMS

This subsection presents the selected and proposed Artificial
Intelligence (AI) based algorithms for EMS call prediction.
The following prominent learning-based models are consid-
ered for the assessment in this study.

1) OFFLINE FORECASTING METHODS

Offline or batch learning refers to traditional learning over
all the observations in a dataset at once. We investigate six
offline models for forecasting EMS call demand at different
hours of the day: GBRT, LGBM, DT, RF, ANN and LSTM.
These models represent the baseline models proposed by
some authors [14], [25], [26], [29], [30], [47].

o Gradient Boosting Regression Tree (GBRT) is a
boosting ensemble method that iteratively fits a new
regression decision tree to the forecasting errors at each
step. Figure 3 represents the diagram of the GBRT

algorithm.
Let x;, yi(t, z) indicate the sample data, where x; €
{x1,...,xx} represents the spatial, temporal and
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Training set

FIGURE 3. Diagram of the GBRT algorithm [48].

climatological features, and y;(f,z) = dz’ denotes
the target, described as the ambulance demand at
time ¢ in zone z. The specific steps of GBRT are as
follows [48], [49]:

— Step 1: The initial constant value y is obtained as:

N
Fo(x) = argmin »_ L(yi. y), @)
Vo=l
where L(y;, y) is the loss function.
— Step 2: The residual along the gradient direction is
denoted by:

. [ OL(yi, F(xi))

dF (x;) @

]f(X)=fn1(X)
where n indicates the number of iterations and
n=12,...,N

— Step 3: The initial model T (x;; o) is obtained by
fitting the sample data, and the parameter o, is
calculated based on the least squares method (4).

an_argman(Yz BT (s ) (4)
o.p

i=1

— Step 4: By minimizing the loss function, the weight
of the current model is expressed as:

N

ya = argmin > L(yi, Fyo1(0) + yT(xis o)) (5)
Yoozt

— Step 5: The model is updated by:
Fu(x) = Fuo1(x) + v T (xi; otn) (6)

This loop is performed until the specified number
of iterations or the convergence conditions are met.
The GBDT has two key advantages. Firstly, it effec-
tively captures complex nonlinear interactions between
variables and the response without requiring a direct
physical model [50], [51]. Additionally, GBDT demon-
strates minimal overfitting issues, resulting in superior
performance during the training phase compared to the
test phase [26], [51], [52], [53].

Light Gradient Boosting Machine (LGBM) belongs to
the gradient boosting framework and is specifically
optimized for large datasets and high-dimensional
feature spaces. LGBM utilizes a tree-based ensemble
approach, constructing an ensemble of decision trees
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sequentially, with each tree correcting the errors of its
predecessors [54]. What sets LGBM apart is its ability
to handle categorical features efficiently and its use
of a histogram-based learning process, which speeds
up training by discretizing continuous features. This
algorithm is known for its fast training speed, reduced
memory usage, and excellent predictive performance
[55]. The pseudocode used for LGBM regression is
represented in Algorithm 2.

Algorithm 2 Pseudocode for LGBM Regression

Input: Data: EMS calls

1:
2:
3:

4:

Import packages and dataset (features and target).
Describe the features) and the target.

Train the model: Define a LGBMRegressor()
function and fit the model using Xyain and yrain-
Test the model with the testing set.

Output: R?, MAE, MSE, RMSE, Execution Time.

« Artificial neural networks (ANN) are inspired by early

models of sensory processing in neurons and brains [56],
[57]. These networks can be simulated on a computer,
replicating the behavior of model neurons. Through
algorithms mimicking real neuron processes, ANNSs can
learn to solve various problems, including EMS call
forecasting [13], [26], [58], [59]. The model neuron,
known as a threshold unit, receives inputs from other
units or external sources, weighs each input, and sums
them up.

As shown in (7), the goal is to approximate some
function f; of the input x = (xi, ..., xg) weighted by
a vector of connection weights w; = (Wi 1,..., Wiq)
completed by a neuron bias b; and associated with an
activation function ¢, which is denoted by

= fi(x) = ¢i({wi, x) + bi). (N

The predicted output is compared with the actual output
to compute the error/loss in each observation. The
loss function L is the sum of differences between the
observed output y and the true output y. The goal
is to reduce the error values as much as possible to
approximate the function in (7). To achieve this, the
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backpropagation algorithm is used. It compares the
desired output of the neural network with the network’s
output, computes errors, and adjusts weights and biases
to get closer to the desired output after each iteration.
The weights w and biases b are updated through
backpropagation during the training process, using the
gradient descent algorithm to solve the optimization
problem [60]. The weight and bias update between
layers k and k + 1 is performed using gradient descent,

which is denoted by:
oL
Wkl — Wk — (_k)
ow 8)
bk+1 — bk - %
abk )’

where the learning rate n > 0O controls the step
size towards convergence in gradient descent. A small
n value ensures a careful convergence, while a high
value may lead to divergence. Thus, n influences
the convergence of gradient descent towards the local
minimum. In this paper, we use a particular type of ANN
with more than three layers called MLP (Multi-Layer
Perceptron). MLP is a fundamental architecture and one
of the earliest and most widely used neural network
models. MLP regressor trains using backpropagation
with no activation function in the output layer.

o Decision Tree (DT): A decision tree is a simple tree-like
model used for both classification and regression tasks.
It splits the data into different segments based on
the input features, creating a hierarchical structure of
decision nodes. Each leaf node represents a specific
class or a numerical value for regression.

« Random Forest (RF): Random Forest is an ensemble
learning method based on decision trees. It builds
multiple decision trees during training and combines
their predictions through voting (for classification) or
averaging (for regression). Each tree in the forest is
trained on a random subset of the data and features, mak-
ing the model more robust and reducing overfitting [30].

o Long-Short-Term Memory (LSTM) is a kind of
Recurrent Neural Network (RNN) with the ability to
remember values from earlier stages for future use.
An RNN is a special case of a neural network where the
objective is to predict the next step in the sequence of
observations concerning the previous steps observed in
the sequence [26], [61].

2) ONLINE FORECASTING METHODS

Online machine learning is a type of machine learning in
which data are acquired sequentially and used to update
the best predictor of future data at each step. We used the
online versions of two offline forecasting methods to make
the models dynamic and get the most out of the available
data. We adapted the online forecasting algorithm from [26].
But instead of using their hybrid approach based on using
offline for training and online learning on validation /test,
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we used the online learning for the whole process of training
and testing. Online machine learning for EMS call forecasting
is described in the pseudocode Algorithm 3. The difference
between online machine learning and more traditional batch
machine learning is that an online model is dynamic and
learns on the fly. Online learning solves a lot of pain points in
real-world environments, mostly because it does not require
retraining models from scratch every time new data arrives,
and will be more useful in eHealth [11].

Algorithm 3 Online Prediction Algorithm for EMS Calls
1: Input: offline model and data calls

. Initialization: predictions < ()

: F: a number representing the frequency of data

: to receive data and split in inputs and targets

x < inputs[t : t + F]

.y < targets[t 1 t + F]

7 < model.predict(x)

: predictions.append(z)

: update the model (model.train(x,y))

: Output: predictions

© N R W

—_
=]

F. EVALUATION METRICS

Once the model is trained, it is important to evaluate its
performance on a separate test set of data to ensure that it can
accurately predict EMS calls in the region. As used differently
in [3], [4], [23], [25], [26], [27], and [28], we used five
different metrics to evaluate ML models, including [62]: the
R?—SCORE, the Mean Squared Error (MSE), the Root Mean
Squared Error (RMSE), the Mean absolute error (MAE), and
the Mean Absolute Percentage Error (MAPE). Considering
m as the number of observations, y; as the observed value,
y; as the predicted value and y; the scores of all outputs are
averaged with uniform weight:

e R? — SCORE: represents the proportion of the variance
of the dependent variable that is predictable from
the independent variable(s). It indicates how well the
model’s predictions approximate the real data points,
with a value closer to 1 indicating better performance.

> G —vi)?

2= y?

o Mean Square Error (MSE): represents the average error
between the observed values and the predicted values.
MSE emphasizes larger errors due to squaring, making
it useful for identifying models that make significant
errors.

R> —SCORE =1 — )

R
MSE(,$) = — > (i = y)? (10)
i=1

« Root Mean Square Error (RMSE): represents the square
of the MSE. RMSE can show a more accurate error
rate by squared MSE metric. RMSE provides a more
interpretable measure of error by bringing the units back
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to the original scale, and it penalizes larger errors more
than smaller ones.

RMSE(y, y) = (11)

1 m
— E Oi — yi)?
m

i=1

o« Mean Absolute Error (MAE): measures the average
magnitude of errors in a set of forecasts, regardless of
their direction. Lower values of MAE indicate better
model performance.

N
MAE(y.5) = — Zl 19 — il (12)
<

o« Mean Absolute Percentage Error (MAPE): is the
average error over time as a percentage of the actual
values. MAPE measures the percentage error of the
forecast about the actual values. For example, a MAPE
value of p% means that the average difference between
the forecasted value and the actual value is p%. The
lowest MAPE indicates the best performance.

m A
mApE = > 122 (13)
i=1
Based on the evaluation results, the model can be refined by
adjusting its parameters or by adding new features to improve
its accuracy. Based on these evaluation metrics, we can decide
which algorithm performs better on EMS call prediction.
Once the model has been refined and its accuracy has been
validated, it can be deployed to predict the occurrence of EMS
calls in a certain zone at a certain time. This can involve
integrating the model into a larger EMS dispatch system to
provide more accurate and timely response to emergency
calls.

IV. RESULTS AND EVALUATION

This section presents the evaluation results obtained from
the offline and online machine learning algorithms and the
proposed ensemble-based method for EMS call prediction.
We discuss the impact of the number of clusters on RMSE,
the evaluation of the machine learning algorithms in terms
of scores, and their forecasting errors. Then, we compare
different our stacking approach with the voting one.

A. DATA COLLECTION AND PREPROCESSING

For our experiments, we collected real historical emergency
data from [63] and weather data per hour from [64]. The
first dataset comprises EMS call records from the 911 EMS
number in Montgomery Territory, Pennsylvania (USA).
Montgomery spans an area of 1,260 km? with an approximate
population density of 685 persons per km>. The data covers
the period from December 2015 to July 2020 and includes
three types of emergencies: fire, traffic, and illness. The
dataset contains 663,522 rows and 10 columns, representing
various characteristics, such as latitude, longitude, emergency
description, title, date and time of call, municipality (twp:
township), address, index, and call type.
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The frequency of EMS calls is also influenced by weather
conditions [4], [23], [26], [27], [28]. Inspired by these
previous works, we incorporated the weather dataset into
the historical emergency dataset by adding meteorological
parameters to each entry. We collect weather data through
the weather API, made available by Meteomatics online
shop [64]. These weather-based features serve as additional
inputs for our models. In total, we include 10 weather-based
features, which are concatenated with the existing spatial and
temporal features. These extra features contain parameters,
such as the amount of precipitation, dew point temperature,
fresh snow, relative humidity, surface pressure, temperature
(mean, min, or max over the selected time interval), total
cloud cover, visibility, wind speed, and effective cloud cover.

We preprocess the whole data by handling missing values
and unnecessary columns through imputation. We encode
categorical variables and standardize numerical features.
Moreover, we apply several decompositions and transforma-
tions to make the data more suitable for analysis, leading to
the creation of new features. Based on date time we extracted
season, month, day of the week, day, weekend, and part of the
day. Using the geo-grid division in Section III-C, we obtained
lat_grid and Ing_grid and aggregated our target accordingly.
For each occurrence in our final dataset, we are limited to
18 spatial, temporal and climatological features, consisting
of 8 categorical variables, and 10 continuous variables. Each
record in the final dataset includes information about a call
for an ambulance, as illustrated in Table 2. This table presents
an overview of the three distinct feature sets used in the
paper: spatial, temporal, and weather. The feature names
and their corresponding descriptions are organized clearly
and concisely, facilitating an easy understanding of the data
characteristics used for the forecasting model. The summary
of the final dataset after preprocessing is described in Table 3,
with 16 0242 rows. Moreover, for EMS call forecasting,
we use the number of calls as the target and the outer
parameters described above as features. Then, we split the
data into 80% for training and 20% test.

B. IMPLEMENTATION TOOLS AND DETAILS

Python 3.8.10 [65] was used in making both the baseline
models and our proposed stack ensemble model. We chose
the Jupyter Notebook environment because its interactive
and user-friendly features made iterative development and
debugging much easier [66]. In the implementation process,
we used various libraries, Mlens [67] is what we relied
on for ensemble machine learning methods, while Scikit-
learn [68] served us well with single machine learning
functions and clustering methods. To design online ML
algorithms, we use one extension library of Python called
River [69]. As far as construction, training LSTM networks
and TensorFlow were involved. Regarding data manipulation
and analysis, we used Pandas, whereas Numpy handles
numerical computations. The implementation takes place
on the Google Colab [70] platform, while the GPU has
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TABLE 2. Feature description of EMS call final dataset.

Feature Sets Feature Names Feature Description Type
Latitude [39.00, 41.00] Continuous
Spatial Longitude [-77,-74] Continuous
Lat griq Integer values representing the split of the latitude. Categorical
Lngiq Integer values representing the split of the longitude. Categorical
Season Integer values (1 to 4) corresponding to the seasons (winter, spring, summer, autumn). Categorical
Month Integer values (1 to 12) representing all months of the year (January to December). Categorical
Temporal Day of the week Integer values (1 to 7) representing all days of the week (Monday to Sunday). Categorical
Day Integer values (1 to 30 or 1 to 31) indicating the day of the month. Categorical
Weekend Binary values (0 or 1), where 1 indicates a weekend and O otherwise. Categorical
Part of the day (day_part) Three parts of the day: "8 am - 4 pm,” "4 pm - 12 am," "12 am - 8 am." Categorical
Amount of precipitation ~ Precipitation measured in millimeters per hour. Continuous
Dew point temperature Dew point temperature at a height of 2 meters in Celsius. Continuous
Fresh snow Fresh snowfall measured in centimeters per hour. Continuous
Relative humidity Relative humidity at a level of 2 meters in percentage. Continuous
Weather Surface pressure Surface pressure measured in pascals. Continuous
Temperature Mean, minimum, or maximum temperature at a height of 2 meters. Continuous
Total cloud cover Cloud cover measurement in octas. Continuous
Visibility Visibility measurement in feet. Continuous
Wind speed Wind speed at a height of 10 meters in kilometers per hour. Continuous
Effective cloud cover Effective cloud cover measurement in octas. Continuous
TABLE 3. Summary statistics of input dataset.
count mean std min 25% 50% 75% max
month 160242.0 6.46 3.76 1.0 3.0 7.0 10.0 12.00
week 160242.0 26.50 16.55 1.0 11.0 27.0 41.0 53.00
dayofweek 160242.0 2.89 1.95 0.0 1.0 3.0 5.0 6.00
day 160242.0 16.00 8.67 1.0 9.0 16.0 23.0 31.00
day_part 160242.0 1.21 0.71 0.0 1.0 1.0 2.0 2.00
lat_grid 160242.0 1.44 0.83 0.0 1.0 1.0 2.0 4.00
Ing_grid 160242.0 4.25 1.12 0.0 4.0 4.0 5.0 6.00
category 160242.0 0.86 0.91 0.0 0.0 1.0 2.0 2.00
precip_lh:mm 160242.0 0.18 0.80 0.0 0.0 0.0 0.0 21.06
dew_point_2m:C 160242.0 5.69 10.28 -234 -1.9 5.6 14.6 25.70
fresh_snow_lh:cm 160242.0 0.01 0.10 0.0 0.0 0.0 0.0 3.30
relative_humidity_2m:p 160242.0 67.02 20.83 18.0 50.1 65.0 86.4 100.00
sfc_pressure:Pa 160242.0  100655.62 760.13  98019.0  100205.0  100691.0  101137.0  103131.00
t_min_2m_1h:C 160242.0 11.84 10.43 -15.3 34 114 20.6 34.20
total_cloud_cover:octas 160242.0 4.76 3.16 0.0 2.0 6.0 8.0 8.00
visibility:ft 160242.0 94271.56  27758.64 299.5 86993.8  104424.8  112049.9  120257.70
wind_speed_10m:kmh 160242.0 7.53 6.45 0.0 1.7 6.7 11.7 36.80
effective_cloud_cover:octas 160242.0 4.02 2.99 0.0 1.0 4.0 7.0 8.00
count 160242.0 18.30 13.71 1.0 8.0 15.0 25.0 97.00
been used as a hardware accelerator to improve pro- 2500
cessing. To implement all the methods, we did a search _
2000 1908
grid between different configurations presented in Table 6 v T
and Table 5. 1417 —e—Geo-grid

C. IMPACT OF THE NUMBER OF CLUSTERS RMSE

This section investigates the effect of increasing the number
of clusters on the prediction error of machine learning
algorithms. We consider different numbers of cluster labels:
2%3, 3%4, 4*5, 5%7, 7*10, 10*15 and 20*25 (Figure 5). The
results demonstrate that as the number of clusters increases,
the average error decreases. Furthermore, we observe that
the decrease in average error for the DBSCAN and K-means
algorithms is slight compared to the other algorithms, show-
ing their weaknesses for spatial clustering of the ambulance
call. However, with the geo-grid algorithm, increasing the
number of clusters drops the average error dramatically; it
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FIGURE 5. RMSE vs Numbers of zones (clusters).

starts at 8.005 when the number of classes is 2*3, then
ends at 1.596 when the number of classes is 20*25. This
indicates that geo-grid, which depends on the rectangular
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TABLE 4. Spatial clustering Methods and parameters settings.

Method
Geo-grid division

Hyperparameters
2%x3,3%x4,4x5,5x7,7x10,
10 x 15,20 x 25

K-means Number of clusters =
2x3,3x4,4x5,5x7,7x10,
10 x 15,20 x 25

DBSCAN epsilon = 0.1, min_samples = 800

TABLE 5. Feature Selection Methods and parameters settings.

FS Method  Hyperparameters

RFFI n_estimators = 100,
random_state = 42

SHAP No hyperparameters

Boruta n_estimators = ’auto’,
verbose = 0, max_depth =5

LASSO alpha =0.1

zones to separate data, is highly impacted by increasing
the number of clusters. Based on these observations and
the recommendation in [35], we conclude that the geo-grid
division yields better performance in terms of average error
compared to other algorithms when varying the number of
clusters. For the remaining implementation, we assume the
around the middle value of 5*7 clusters, which is close
to half of 68 counties present in Montgomery County.
The number of clusters has been more investigated for
ambulance positioning in [71]. The clusters represent the
station area for the coverage of ambulances as presented
in [72]. Figure 6 provides a visualization of each division
strategy.

D. FEATURE SELECTION RESULT
In this section, we present the results of the investigation of
feature importance and selection. We analyzed the relevance
of spatial, temporal and climatological features on the
occurrence of EMS call. We considered the whole dataset and
used four recent and well-known feature selection techniques:
RFFI [43], LASSO [42], SHAP [28] and Boruta [3]. The
results, presented in Figure 7, reveal that all variables show
importance in predicting the target when using RFFI and
SHAP. The RFFI values provide an indication of the relative
importance of each feature in the dataset. Features such as
“lat_grid”, “Ing_grid”, and “‘category” appear to have rel-
atively higher importance compared to others, while features
like “fresh_snow_1lh:cm” and “precip_lh:mm” have lower
importance. SHAP values provide insights into the impact
of each feature on model predictions. Features like ‘“‘day-
ofweek”, “day_part”, and ‘effective_cloud_cover:octas”
exhibit relatively higher SHAP values, indicating their strong
influence on predictions. These values align with the RFFI
analyses, highlighting the importance of all the collected
features for EMS call forecasting.

However, LASSO excludes two features, namely
‘fresh_snow_1lh:cm’ and ‘total_cloud_cover:octas’. Mean-
while, Boruta recommends excluding only the feature
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TABLE 6. The hyperparameter values of the ML methods for grid-search.

Methods Hyperparameters/Configuration
LR solver = Ibfgs

max_iter = 2000
GBRT, n_estimators = [50, 100, 200, 300, 400, 500, 600],
LGBM, learning_rate = [0.2, 0.1, 0.01, 0.001, 0.0001],
DT, max_depths =[1, 2, 3, 4, 5, 10, 15, 20, 25, 30]
RF max_depth=5, random_state=0,

loss="absolute_error’, warm_start = True
ANN/MLP max iter = 200, 500, 1000

activation = relu, tanh

random_state=1
LSTM Dropout (Layer 3) Rate: 0.25

LSTM (Layer 4) Units: 50

Dropout (Layer 4) Rate: 0.25

Dense (Output) Units: 1

Compilation Optimizer: Adam, Loss: MSE

Training Epochs: 50, Batch Size: 32
Online-LR optim.SGD, (Ir’: [.1, .01, .005]),

optim.Adam, ("beta_1": [.01, .001],

’Ir’: [0.1, .01, .001]),

optim.Adam, ("beta_1": [0.1], ’Ir’: [.001]),
Online-ANN 05 layers Activations

(Sigmoid, ReLU, ReLU, Identity),
optimizer=optim.SGD(le-3), seed=42

category. These outcomes from the three methods collectively
suggest that incorporating spatial, temporal, and climato-
logical features is crucial for accurately forecasting EMS
calls. LASSO values indicate the coefficients assigned to
each feature by the LASSO regression model. Some features
have large positive or negative coefficients, indicating their
significant impact on the target variable. Features such as
“dew_point_2m:C” and “sfc_pressure:Pa” have notably
large coefficients, suggesting their importance in the model.
Boruta feature selection technique identifies features that
are deemed important for model prediction. All features are
labeled as “True” by Boruta, suggesting that none of the
features are redundant or can be safely removed from the
dataset.

In conclusion, the analysis using different feature selec-
tion techniques provides complementary insights into the
importance and impact of each feature on model predictions.
While certain features consistently emerge as important
across multiple techniques, the results also highlight the
nuanced nature of feature importance and the need for
considering multiple perspectives when selecting features for
predictive modeling. This comprehensive approach enhances
the understanding of the dataset and aids in building more
robust and accurate predictive models. For the rest of the
implementation, we consider three different scenarios of
feature selection: the inclusion of all features as suggested by
the output of RFFI and SHAP method, and the consideration
of 17 features obtained using Boruta and 16 features resulting
using LASSO. The findings emphasize the significance of
integrating various types of features to achieve improved
EMS call predictions.
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FIGURE 7. Feature importance result. (a) with RFFI. (b) with SHAP. (c) with LASSO (d) Boruta.

E. EVALUATION OF OUR PROPOSED MODEL

We compare the performance of offline and online machine
learning algorithms based on the score and four different
errors metrics with the aim of EMS calls forecasting. Table 7,
Table 8 and Table 9 present performance analysis of various
forecasting models, including Artificial Neural Networks
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(ANN), Long Short-Term Memory (LSTM), Light Gradient
Boosting Machine (LGBM), Gradient Boosting Regression
Trees (GBRT), Random Forest (RF), Decision Trees (DT),
Online Linear Regression (Online-LR), Online Artificial
Neural Networks (Online-ANN), and the proposed model.
We conduct the implementation based on the three scenarios
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from the feature selection process. Each model is evaluated
based on various performance metrics, including R-squared
(Rz), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE).

1) EVALUATION BASED ON ALL FEATURES (RFFI AND SHAP)
Table 7 summarizes the performance of various baseline
forecasting models equipped with spatial, temporal, and
climatological features, evaluated using different metrics.
The models assessed include offline models (i.e., GBRT,
LGBM, LSTM, RF, DT, and ANN) [14], [25], [26], [28],
[29], [30] and online learning models (i.e., Online - LR and
Online - ANN) [11], [26].

TABLE 7. Performance of the baseline forecasting models with all spatial,
temporal and climatological features (RFFI and Shap).

Models R? MSE | RMSE | MAE | MAPE
ANN [3], [27] | 0.1935 | 156.5079 | 12.5103 | 8.9668 | 0.8586
LSTM [26] 0.8681 25.580 | 5.0577 | 3.7538 | 0.3531
LGBM [25] | 08874 | 21.834| 4.6727 | 3.5481 | 0.3275
GBRT 0.8359 | 31.841 | 5.6428 | 3.8395 | 0.3093
RF 0.9933 1.2928 | 1.1370 | 0.5429 | 0.1103
DT 0.9883 22658 | 1.5052 | 0.3618 | 0.0884
Online-LR 0.1584 156.91 | 93519 | 12.5263 | 1.0728
Online-ANN | 0.6383 67.435 | 82118 | 5.9029 | 0.4005
Proposed 0.9950 | 0.9705 | 0.9851 | 0.3151 | 0.0775

Among the models, LSTM and LGBM demonstrate
notable performance with high R-squared values of
0.8681 and 0.8874, respectively. These models also exhibit
relatively low MSE, RMSE, MAE, and MAPE, indicating
their effectiveness in capturing the underlying patterns in
the data. In contrast, the performance of some other models
such as ANN and Online-LR appears to be comparatively
poorer, with lower R-squared values and higher error metrics.
Online models struggle to accurately predict the target
variable based on all features. Interestingly, it appears that
tree-based models, such as RF and DT, outperform in
capturing the patterns and explaining the variance in the EMS
call data, resulting in significantly lower errors and higher
R-squared values. Overall, the proposed model stands out
with an impressive R-squared value of 0.9950 and minimal
error metrics, including a remarkably low MSE of 0.9705.
These results highlight the efficacy of our proposed model in
forecasting ambulance demand, showcasing its potential for
tactical decisions in EMS management.

2) EVALUATION BASED ON 17 FEARURES (BORUTA)

Table 8 presents a comprehensive performance analysis
of the different models using the Boruta feature selection
technique. Compared with Table 7. We can easily observe that
Boruta feature selection results improve the result of EMS
forecasting using LGBM, GBRT, RF and DT. The results
confirm the effectiveness of the choice of these models as
base learners in layer 1 of our proposed model. These models
also demonstrate minimal error metrics, with low MSE,
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RMSE, MAE, and MAPE, indicating their effectiveness in
accurately predicting the number of EMS calls at a time, in a
specific zone and based on weather.

TABLE 8. Performance analysis of the ML forecasting models with Boruta.

Methods R? MSE | RMSE MAE | MAPE
ANN [27] 0.1598 | 163.04 | 12.7688 | 9.2380 | 0.9857
LSTM [26] | 0.8562 27.90 5.282 | 3.9029 | 0.3722
LGBM [25] | 0.8897 | 21.3976 | 4.6257 | 3.5227 | 0.3282
GBRT 0.8346 | 32.0869 | 5.6645 | 3.8211 | 0.3084
RF 0.9938 | 1.1955 | 1.0934 | 0.4999 | 0.1048
DT 0.9890 | 2.1310 | 1.4598 | 0.3331 | 0.0841
Online-LR | 0.1592 | 156.75 | 9.3466 | 12.5202 | 1.0721
Online-ANN | 0.6466 | 65.8797 | 5.9745 | 8.1166 | 0.5398
Proposed 0.9954 | 0.8938 | 0.9454 | 0.2923 | 0.0724

Similarly, the proposed model stands out as a top-
performing model, with an exceptional R-squared value of
0.9954 and minimal error metrics. The proposed model’s
superior performance underscores its capability to capture
the underlying patterns in the spatial, temporal and weather
data and make accurate EMS call forecasts, highlighting its
potential for practical applications in forecasting ambulance
demand. On the other hand, models such as ANN and
Online-LR exhibit relatively poorer performance, with lower
R-squared values and higher error metrics. These models
struggle to effectively capture the complex relationships
within the data and make accurate predictions.

3) EVALUATION BASED ON 16 FEARURES (LASSO)

With the aim to analyze the behavior of the base model
in scale and the impact of feature selection on EMS call
forecasting, Table 9 expands the analysis to the exclusion
of two features, proposed by LASSO. The same evaluation
metrics are provided to compare the models’ performance.
We can observe that, except GBRT, all the performances
of other models are significantly decreasing. This table
reaffirms that our ensemble model maintains its superior pre-
dictive score, even with the exclusion of two climatological
features: ‘fresh_snow_1lh:cm’ and ‘total_cloud_cover:octas’.
However, the performance of the ANN model significantly
deteriorates, suggesting that the exclusion of the two clima-
tological features may not be suitable for the EMS call model.

TABLE 9. Performance analysis of the ML forecasting models with Lasso.

Methods R2 MSE | RMSE | MAE | MAPE
ANN [27] 0.1697 | 161.122 | 12.6934 | 9.8007 | 1.1501
LSTM [26] | 0.8484 | 29.4016 | 5.4223 | 4,000 | 0.3767
LGBM [25] | 0.8890 | 21.5404 | 4.6411 | 3.5326 | 0.3287
GBRT 0.8349 [ 32.0372 | 5.6601 | 3.8296 | 0.3085
RF 0.9936 | 1.2304 | 1.1092| 0.5040 [ 0.1052
DT 0.9885 | 22179 | 1.4892| 0.3394 [ 0.0861
Online-LR | 0.1575 | 157.08 | 9.3589 | 12.5335 | 1.0737
Online-ANN | 0.6347 | 68.103 | 5.9474 | 8.2524 | 0.6834
Proposed 0.9949 | 0.9823 | 0.9911 | 0.3199 [ 0.0786

Therefore, Table 7, Table 8 and Table 9 underscore the
importance of selecting appropriate features and models to
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achieve accurate and efficient forecasting results. The result
underscores our model’s ability to effectively capture under-
lying data patterns and produce highly accurate forecasts,
positioning it as a promising solution for real-world EMS
call forecasting applications and ambulance dispatch and
routing. Overall, understanding the trade-offs between score,
errors and computational time is critical in selecting the most
suitable model for the given task.

F. COMPARATIVE ANALYSIS

1) OUR PROPOSED STACKING VS BAGGING AND VOTING
For further investigations, we compared our proposed
stacking ensemble machine learning with voting and bagging
strategies. Voting consists of taking only the best model
in layer 1 to pursue the second level of prediction, while
bagging is using the best model n times as base learners.
Table 10 and Table 11 present a comparative analysis of
our proposed stacking ensemble model with voting and
bagging ensemble model between the best base models:
GBRT, LGBM, DR, and RF. We consider the best scenario of
feature selection obtained with Boruta: 17 spatial, temporal,
and climatological. The performance metrics are the same.

TABLE 10. Performance analysis of 5 ML forecasting models with Boruta.

Methods R? MSE | RMSE | MAE | MAPE
Bagging | 0.9890 | 2.1253 | 1.4578 | 0.3318 | 0.0838
Voting 0.8897 | 21.3976 | 4.6257 | 3.5227 | 0.3282
Proposed | 0.9954 | 0.8938 | 0.9454 | 0.2923 | 0.0724

TABLE 11. Performance analysis of 2 ML forecasting models with Boruta.

Methods R2 MSE | RMSE | MAE | MAPE
Bagging | 0.9890 | 2.1253 | 1.45785 | 0.3318 | 0.0838
Voting 0.8897 | 21.3976 | 4.6257 | 3.5227 | 0.3282
Proposed | 0.9954 | 0.8938 | 0.9454 | 0.2923 | 0.0724

Bagging and Voting achieved respectively scores of
0.9890 and 0.8897 using the same base learners. Furthermore,
the proposed stacking maintains its superiority, achieving an
outstanding R-squared value of 0.9954 and minimal error
metrics. By combining the strengths of the different best
models in the base layer and using the RF model in the
meta layer, we proposed an effective and accurate predictive
model.

2) OUR PROPOSED MODEL VS RELATED WORKS

The comparison presented in Table 12 offers valuable insights
into various EMS call forecasting approaches and their
respective performance metrics. For instance, Chen et al.
[4] employed data analysis techniques and ANN to forecast
ambulance demand, achieving notable results with a R? value
of - and a RMSE of 0.26. Similarly, Lin et al. [25] utilized
LGBM alongside other methods, obtaining a R? score of
- and an RMSE of 10.2. Van et al. [27] leveraged data
analysis and a genetic algorithm-MLP (GA-MLP) approach,
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yielding an R” of - and an RMSE of 21.68. The CNN
architecture in [28] outperforms MLP, Medic, RF, and DT
by 9.83%, 9.98%, 11.26%, and 14.84%, correspondingly.
In comparison, the proposed method, employing feature
selection techniques such as Shap and Boruta in conjunction
with a stacking ensemble model, demonstrated superior
forecasting performance, achieving an R? value of 0.9954 and
an RMSE of 0.8938 for the Boruta-based approach. These
findings highlight the effectiveness of our proposed EMS
call forecasting model in accurately predicting ambulance
demand, showcasing its potential to enhance emergency
response systems and optimize resource allocation strategies.

3) COMPUTATIONAL TIME
In addition to showcasing the performance metrics of various
EMS call forecasting approaches, it’s crucial to underscore
the significance of employing a stacking ensemble model,
as demonstrated in our proposed method. Stacking leverages
the collective contribution of multiple machine learning mod-
els, each with its unique strengths and weaknesses, to deliver
more robust and accurate predictions. By comparing diverse
models such as GBRT, LGBM, RF, DT, MLP, and LSTM,
our approach harnesses the complementary capabilities of
these algorithms. This amalgamation not only enhances
prediction accuracy but also improves the model’s resilience
to uncertainties and variations in EMS call data. Thus, the
adoption of a stacking ensemble model represents a strategic
approach to EMS call forecasting, enabling more reliable and
effective decision-making in emergency response operations.
Figure 8 presents the computational time of all the models
and our proposed model. From the given data, we observe
a wide variation in the time taken by different models to
complete the task. The fastest models are LGBM and DT,
with execution times of 1.5797 seconds and 1.6916 seconds,
respectively. On the other hand, ANN takes the longest time
to execute, with a time of 4934.43 seconds, followed by
LSTM with 1771.80 seconds. The disparity in execution
times could be attributed to various factors, including the
complexity of the model, the volume of data processed, and
the computational resources available. For instance, models
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FIGURE 8. Computational Time of different models using Boruta.
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TABLE 12. Comparison of Ambulance demand forecasting approaches.

Author Feature selection Methods Comparison R’ MSE RMSE MAE MAPE
Chen et al. [4] Data Analysis ANN SVR, SR, MA - - 0.26 - 51.92
Lin et al. [25] - LGBM RMA, LR, SVR, MLP - 10.2 - 2.09 -
Van et al. [27] Data Analysis GA-MLP SMA, MEDIC, MLP, NF - 21.68 - 3.64 -
Martin et al. [3] Boruta MLP ARIMA, HW, MEDIC - - - - 35.56
Rausten et al. [28]  Shap CNN MLPs, DTs, RF, MEDIC 14.66 - - - -
Proposed Shap Stacking  GBRT, LGBM, RF, DT, MLP, LSTM 0.9950 0.9705 0.9851 0.3151 0.0775
Proposed Boruta Stacking GBRT, LGBM, RF, DT, MLP, LSTM 0.9954 0.8938 0.9454 0.2923 0.0724

like LGBM and DT, being ensemble methods based on
decision trees, tend to have faster execution times compared
to more complex models like ANN and LSTM, which involve
iterative optimization processes and handling sequential data.
With 68.83 seconds, our proposed ensemble model gives
a good trade-off between score, error minimization and
execution time than the traditional and individual machine
learning methods.

G. LIMITATIONS

Although our proposed stacking ensemble machine learning
model demonstrates promising results, it is important to
mention its limitations to ensure a well-rounded interpre-
tation of our findings. Firstly, the effectiveness of our
model is influenced by the quality and diversity of the
features in the dataset. While we employed a comprehensive
dataset and feature selection, having access to larger and
more varied datasets could confirm the model’s ability to
generalize. Secondly, although our model exhibits the highest
score and the minimum errors, there remain opportunities
for enhancement, especially in scenarios involving real-
time management. Further optimization of the model could
reduce its computational time in real-world environments.
Lastly, the deployment of this work could be limited by
the considerations given to data privacy used in emergency
intervention, especially when handling sensitive information
related to emergency situations and patient details.

Despite these constraints, our stacking ensemble model
for EMS call forecasting represents a notable advancement
in the field, providing valuable insights for optimized
ambulance dispatch and routing [72]. An effective forecasting
model should accurately predict the number of incidents
(volume) based on time, location (distribution) and weather.
Our accurate results improve ambulance response times,
enhance patient outcomes, and maximize the efficiency of
emergency medical services. Additionally, this is practical
because it helps decide how many staff members are
needed for a shift and where resources should be located
to respond quickly. The forecasting capability presented
here is important because it enables informed resource and
ambulance demand and is applicable across hospitals and
general medical facilities.

V. CONCLUSION
In this paper, we proposed a stacking ensemble model for
EMS call forecasting to facilitate the ambulance dispatch
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and routing planning. A precise distribution forecast plays
a crucial role in strategically positioning ambulances to
minimize response times. This paper provides a compre-
hensive literature review, emphasizing the importance of
understanding and addressing the challenges posed by EMS
call forecasting for ambulance dispatching and routing.
We compared the most common ML models used for EMS
call forecasting, including GBRT, LGBM, ANN, RF, DT,
and LSTM. We used the best ones as base learners in our
proposed model. In addition, we used the voting ensemble
model and the online ML, an approach that embraces change
and adaptability for comparative study with our proposed
model.We used a real-dataset to evaluate the effectiveness
of the models. During the evaluation process, we consider
different metrics: the Rz—score, the Mean Squared Error
(MSE), the Root Mean Squared Error (RMSE), the Mean
Absolute Error (MAE), and the Mean Absolute Percentage
Error (MAPE). Moreover, we ensure the accessibility and
reproducibility or our research findings since we used real
and public dataset. The findings affirmed the effectiveness of
our proposed stacking ensemble model to enhance the overall
performance in all metrics errors and good score by including
GBRT, LGBM, DT and RF. In addition, Our stacking model
outperforms all the traditional single, online, bagging and
voting ensemble in the three different scenario of feature
selection. Our proposed model is the most accurate to predict
ambulance demand in different areas and times, allowing for
proactive deployment of resources. For future work, We will
explore the impact of others features like demographics,
sociologics and special events in the occurrence of EMS
call. Integrating additional data type could contribute to
the refinement of our model. Future research can access
the scalability of modeling handling larger datasets and
meeting growing computational demands in eHealth.We plan
to evaluate the obtained results for ambulance allocation
and routing in smart cities, aiming to enhance emergency
response systems.
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