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ABSTRACT Fifth-generation (5G) and beyond communication systems, assisted by Intelligent Reflecting
Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged
latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with
roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel
estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS.
The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy
under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics
is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching
Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction
stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of
Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel
estimation based on predicted array response vectors without increasing the pilot overhead. Simulation
results demonstrate that our proposed approach can offer precise channel estimation with significantly
reduced training overhead.

INDEX TERMS Channel estimation, compressive sensing, high mobility, intelligent reflecting surface,
millimeter wave communications, vehicular communication.

I. INTRODUCTION
Conventional wireless communication systems often func-
tion in an unpredictable environment where the line-of-
sight (LOS) connection is unavailable primarily due to
obstacles and the signals span on multiple paths, resulting in
differences in time and angle before arriving at the destina-
tion. Hence, wireless systems may come across some issues,
including low trustworthy communication, high energy con-
sumption and increased latency. Recently, Intelligent Reflect-
ing Surfaces (IRS) has evolved as an effective solution to
subdue these hassles [1], [2], [3], [4]. IRS can carry out
passive reflections to aid the wireless systems in satisfying
the demands of the fifth generation (5G) and beyond commu-
nication systems. IRS stood out as an economical solution to
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achieve an intelligent and reconfigurable wireless transmis-
sion environment by adaptively adjusting signal reflections
and subsequently enhancing the system performance. In spe-
cific, IRS is a controllable metasurface consisting of multiple
passive reflective elements, and each of them will be able to
independently modify the phase and/or the amplitude of the
incident signal. Thus, the IRS can aid in circumventing obsta-
cles and improving the multi-antenna/multiuser channel rank
condition. Because of passive reflections, the IRS exhibits
lower power consumption and hardware cost.

Most existing research on channel acquisition in IRS-aided
wireless systems focused on static channel conditions,
where the base station positions, IRS, and the user remain
unchanging. In such static scenarios, acquiring the channel
state information (CSI) through channel estimation algo-
rithms is convincing. However, for the high mobility cases,
the computational complexity and time requirement of such
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estimation methods are incredibly high, leading to the recur-
ring communication outage for high-mobility users. Signifi-
cant efforts are in the pipeline to achieve high-performance
communications that involve high-speed vehicles. However,
the increasing demands for the rapidly time-varying wireless
channels due to high-mobility users are always the barrier
in achieving the ultra-reliable, low-latency and high-capacity
vehicle-to-everything (V2X) communications.

IRS-aided communication systems are well studied for
various wireless systems with methodologies including
multiple-input multiple-output (MIMO) [5], [6], orthogo-
nal frequency division multiplexing (OFDM) [7], [8], [9],
non-orthogonal multiple access (NOMA) [10], [11], and
simultaneous wireless information and power transfer
(SWIPT) [12]. Estimating accurate channel state infor-
mation (CSI) in IRS-assisted systems is challenging due
to the passive nature of IRS reflecting elements. There
are two primary techniques for IRS channel estimation.
The first approach is semi-passive IRS channel estima-
tion, where fewer low-power active sensors are interlaced
between passive reflective elements. The second approach
is fully-passive IRS channel estimation, in which only pas-
sive reflective elements are engaged in the cascaded channel
acquisition. In both methods, as the number of reflective
elements increases, the training overhead increases, resulting
in reduced throughput. Various techniques are available in
the literature to address this, including element grouping in
IRS [7], [13], anchor-aided channel acquisition [14], ref-
erence user-based methods [15], [16], and sparse channel
estimation [17].

The knowledge of accurate channel state information (CSI)
between BS-IRS-user is essential to achieve a high passive
beamforming gain [18]. Since the IRS can perform passive
reflections only, channel estimation in IRS systems is very
challenging [19], [20], [21]. A possible practical strategy is
to perform channel acquisition using pilot transmission [22].
Since the IRS has many passive reflective elements, high
training overhead lowers the data transmission throughput.
To tackle this issue, grouping adjacent reflecting elements
with good spatial correlation into a subsurface is proposed
in [8], [10]. Random beamforming is suggested in [23] to
reduce the training overhead. Another method to reduce the
training overhead using sparse matrix factorization is pro-
posed in [24]. Information regarding the location and statis-
tical CSI is also suggested [21].

Most existing works focus on time-invariant, slow-fading
channels with low-mobility users. For high mobility cases,
due to the random scattering of environment and vehicle
velocity, the signal arrives after multiple reflections and the
high Doppler frequency results in a fast-fading channel. This
severely degrades the reliability of communication and the
achievable rate. Transmitting pilot symbols during each time
block for estimating the time-varying channel between the
user and the IRS increases the training overhead. In addition,
the continuous feedback of estimated channel coefficients
from the base station to the IRS controller results in obsolete

CSI as the channel varies rapidly due to the high mobil-
ity conditions. A method of placing IRSs at multiple fixed
positions to aid high-speed communication is given in [25].
A channel estimation scheme for time-varying channels with
Doppler shift is proposed in [26]. In [27], the authors pro-
posed a roadside Intelligent Reflecting Surface (IRS)-aided
vehicular communication system. By leveraging symmetrical
IRS deployment and cooperation among nearby controllers,
they introduced a two-stage channel estimation scheme for
efficient passive beamforming. The design utilizes existing
uplink pilots and achieves high IRS gain. The proposed
method enhances communication throughput in high-speed
vehicular scenarios. In [28], [29], and [30], the authors
focused on two-timescale channel estimation and beamform-
ing for IRS. These approaches aimed to reduce training and
signaling overhead by leveraging the static base station (BS)
to IRS channel. However, challenges remain: additional pilot
symbols from users were required for IRS channel estimation,
which leads to increased overhead and protocol modification
requirements. Moreover, designing IRS reflection based on
BS-acquired CSI introduced feedback delays which affects
effectiveness in high-mobility scenarios. Authors in [31]
and [32] propose a unified tensor-based approach that com-
bines massive MIMO technology for efficient communi-
cation and sensing. They optimize the antenna system to
handle both tasks simultaneously. By parameterizing the
high-dimensional communication channel, they link channel
state information with target parameters, including angular,
delay, and Doppler dimensions. Additionally, they investigate
tensor factorization’s uniqueness conditions and determine
the maximum number of resolvable targets. The authors
in [33] proposed a tensor decomposition-based approach to
estimate multi-path channel parameters, including azimuth
and elevation angles, as well as complex gain coefficients
in a general scenario without IRS. The proposed method
enables the reconstruction of wireless channels between any
pair of transmit and receive movable antenna positions. They
introduced a two-stage Tx-Rx successive antenna movement
pattern for pilot training and expressed received pilot sig-
nals as a third-order tensor. Factor matrices are obtained via
canonical polyadic decomposition to estimate angle and gain
parameters. However, for dynamic cascaded channels in the
presence of IRS, the efficiency and computational complexity
are still to be charted.

Efficient channel estimation methods are yet to be
explored in time-varying channels with fast-moving users.
In this paper, we propose a new, practically demand-
ing, low-complex channel estimation strategy for improv-
ing the performance of high-speed vehicular communication
mmWave systems with roadside IRS. The major contribu-
tions of this paper are outlined as follows.

The proposed strategy for estimating the cascaded chan-
nel in IRS-aided systems under dynamic channel condi-
tions consists of two stages to improve the efficiency and
accuracy of the assessment. The first stage is the sensing
stage, which aims to establish an initial learning of the
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channel characteristics. For this, we assume significantly
fewer RF chains in the IRS controller side for various signal
processing associated with the estimation, ensuring mini-
mum power dissipation. We also consider that the channel
between the base station and the IRS and between the IRS
and the IRS controller is static. In the sensing stage, these
static channels and the dynamic channel between the IRS
and the fast-moving user are estimated. The CSI acquisi-
tion in this stage involves exploiting the sparse nature of
the cascaded IRS mmWave channel. For this, Compressive
Sampling Matching Pursuit (CoSaMP) algorithm [34] is
employed for improved accuracy and reduced computational
complexity. The second stage is the prediction stage, which
involves real-time channel tracking and prediction of the
Angle of Arrival (AoA) and Angle of Departure (AoD) is
done using Extended Kalman Filter (EKF) [35], [36], thereby
determining the array response vector at the IRS and the user.
The dynamic channel estimation can be done based on the
predicted array response vectors.

The rest of this paper is organized as follows. The system
model and problem formulation are explained in Section II.
In Section III, the proposed channel estimation methodol-
ogy is explained in detail. The simulation results are given
in Section IV and summarized in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, IRS-aided mmWave MIMO communication
system with fast-moving users is presented. We then formu-
late the channel estimation as a compressive sensing-based
sparse recovery problem with the aim to reduce the computa-
tional complexity and increase accuracy.

A. SYSTEM MODEL
Consider a narrow-band mmWave system with a uniform
planar array type IRS furnished with N passive reflecting
elements stationed to improve the system performance. The
base station (BS) is set up with an Nt-antenna uniform linear
array (ULA), and the user equipment (UE) is assumed to have
a single antenna. We assume that the line-of-sight (LOS) path
between the UE and the BS is blocked due to surrounding
obstacles. We consider a high-mobility vehicular communi-
cation system supported by roadside IRSs deployed on both
sides of the road. Without loss of generality, we assume
one base station (BS) and a single mobile user with an
intelligent reflecting surface (IRS) deployed on one side of
the road, as shown in Figure 1. We assume the IRS-user
channel with block-fading and is considered to stay roughly
invariant during each block of transmission. However, due
to the user’s movement, the channel is supposed to change
from block to block. Let each block duration be Tb, which
is selected as small compared to the coherence time of the
channel. To consider the influence of mobility, we consider
K successive time blocks in one transmission frame. Between
two consecutive

Blocks, the Angle of Arrival (AoA) and Angle of Depar-
ture (AoD) in the BS-IRS link are assumed to be constant,

FIGURE 1. Roadside IRS-aided communication for serving high-speed
vehicles.

while the same in the IRS-UE link varies due to the mobility
of the user.

Let the complex baseband transmitted signal be xb (t) and
the channel coefficient between the BS and the l th reflecting
element is denoted as αle−jϕl , where l ∈ {1, 2, . . .N }. The
received signal ỹl (t) at the l

th reflecting element is given by:

ỹl (t) = Re{αle−jϕlxb (t) ej2π fct } (1)

The reflection coefficient in the l th reflecting element is
given by βl and let tl be the time delay experienced by the
incident signal, then the reflected signal from the l th IRS
element, yl (t) is given as:

yl (t) = βl ỹl (t−t l) (2)

= Re{βkαke−jϕkxb (t−tk) ej2π fc(t−tk )} (3)

Taking into consideration, the narrowband assumption,
(3) can be rewritten as:

yl (t) ≈ Re{[βle−jθ lαle−jϕlxb(t)]ej2π fct } (4)

where θl denotes the phase shift introduced by the l th reflect-
ing element. Thus,

yl (t) ≈ Re{βle−jθ lx
′
b (t) ej2π fct } (5)

where x ′
b (t) = αle−jϕl xb (t) is the baseband equivalent

of ỹl (t). Equation (5) can thus be re-written as:

yl (t) ≈ Re{xob (t) ej2π fct } (6)

where xob (t) = βle−jθ lx
′
b (t) is the baseband equivalent

of yl (t). Within a single transmission block, from the
l th reflecting element to the mobile UE, the IRS reflected sig-
nal will undergo similar narrowband flat fading and the base-
band channel coefficient is given by αrl e

−jϕrl . During the same
transmission block, the received passband signal at the UE via
the IRS, yrl (t) is thus given as:

yrl (t) = Re{[αle−jϕlβlejθ lαrl e
−jϕrl xb(t)]ej2π fct (7)

The CSI in the cascaded channel model in (7) can be
written as H∗

bi = αle−jϕl and H [q]∗

iu = αrl e
−jϕrl , where H∗

bi
corresponds to the channel coefficients between BS and
l th reflecting element and H [q]∗

iu denotes the corresponding
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IRS-UE link in an arbitrary selected block q. Equation (7)
can thus be re-written as

yrl (t) = Re{[H∗
biβle

jθ lglxb(t)]ej2π fct } (8)

= Re{yl (t) e
j2π fct } (9)

Neglecting coupling effects, the resultant baseband signal
from all the N reflecting elements can thus be shown as:

y (t) =

(∑N

l=1
H∗
biβle

jθ lH [q]∗

iu

)
xb (t) (10)

= HH
biQH

[q]
iu xb (t) (11)

where channel coefficients HH
bi = [H∗

bi1,H∗
bi2. . .,H∗

biN ],

H [q]
iu =

[
H [q]
iu1,H [q]

iu2. . .,H [q]
iuN

]T
and the reflection matrix

Q = diag(β1ejθ1 , β2ejθ2 . . . , βN ejθN ), is a complex diag-
onal matrix of size N × N . The diagonality is because
of the assumption that there is no coupling effect among
IRS elements and the elementwise reflections are purely
independent. The above model can be now be extended to the
Multiple Input Multiple Output (MIMO) case with Nt trans-
mit antennas, N IRS elements and a single receive antenna
and the received signal can now be expressed as:

Y =

(
HH
BIQH

[q]
IU

)
X + N (12)

where, HBI ∈ CNt×N and HIU ∈ CN×1. The incident signal
shall get scattered if the dimensions of object are compara-
ble to the wavelength, but here the dimensions of reflecting
elements are much larger than the wavelength of signal and
because of the same, the incident signal shall get reflected.
In general, the channel through IRS can thus be expressed as:

HIRS =

∑L

l=1
αIRSl a[q]R

(
ϑ r
l , ϕ

r
l
)
a∗T

(
ϑ t
l , ϕ

t
l
)

(13)

where αIRSl denotes the path gain corresponding to the
l th IRS-aided path. aT and aR represent the array response
vector at the transmitter and the receiver respectively with
azimuth angle ϑ and elevation angle ϕ. An IRS can govern
the angles of arrival ϑ r

l and ϕrl . For convenience, we will
split the entire channel into two different parts, the first one
being the BS-IRS channel and the latter one being the IRS-UE
channel. The array response vector at the IRS is obtained as
the Kronecker product of steering vector functions along two
perpendicular directions of the IRS plane. The IRS – user
channel during the qth block is assumed to be a time varying
channel due to the high mobility of the user as well as the
relatively shorter distancewith respect to the serving IRS. The
overall cascaded channel in the qth block, i.e.,HH

BIQH
[q]
IU may

thus be represented as H [q]. We also assume that there is no
direct link between the user and the base station.

B. PROBLEM FORMULATION
In this section, we will formulate the channel estimation
problem for an IRS-aided mmWave system. By intelligently
altering the phase shifts of each reflecting element, the signal
received at the IRS will be directed to the user equipment

without involving any time delay. Our primary task is to
estimate the cascaded channel H. It is important to note
that for a mmWave channel, the number of multipath com-
ponents, L is often less than the dimension of the channel
matrix. This results in a sparse matrix with very few non-zero
coefficients. Precise estimation of channels is difficult in
IRS-assisted cascaded mmWave systems. The channel state
information (CSI) can be estimated using pilot symbol trans-
mission in a conventional wireless communication system.
However, the reflecting elements in IRS systems are passive;
hence, they do not possess any signal-processing capability.
This makes channel estimation challenging in practice. Most
existing research works consider perfect CSI for designing
the precoding and phase shift matrices at the base station (BS)
and IRS, respectively. However, this presumption is hard to
achieve in practice. Many estimation techniques and algo-
rithms were proposed to handle these concerns.

Considering the sparse character of mmWave, where the
L number of multipath is typically much less than the channel
dimensions, the channel matrix between the base station and
the IRS can be expressed in more detail as:

HBI =
(
Ux ⊗ Uy

)
ALUH

BS (14)

where ⊗ denotes the Kronecker product and Ux, Uy are
defined with its columns having the one-dimensional steering
vector functions ax and ay respectively. The IRS is assumed as
an Nx × Ny uniform planar array (UPA). The steering vector
functions depend on the antenna/element spacing, angles of
arrival/departure and the signal wavelength. AL is a diagonal
matrix with L non-zero values which denotes the channel path
gains. HBI can be rewritten as

HBI ≜ UIRS,bALUH
BS (15)

Similarly, the BS – IRS channel can be represented as:

HH
IU ≜ UuserAL′U

H
IRS,u (16)

where,Uuser,UIRS,u and AL′ are also defined as in the above
case. Uuser and UIRS,u depends on array response vectors
aIRS,u and auser , which in turn depends on the Angle of
Arrival (AoA) and Angle of Departure (AoD) between the
user-IRS link. The cascaded channel can now be expressed as:

h = vec (H) = vec
(
UIRS,bALUH

BSQUuserAL′U
H
IRS,u

)
(17)

h ≜
(
UT
IRS,u ⊗ UIRS,b

)
vec

(
ALUH

BSQUuserAL′
)

≜
(
UT
IRS,u ⊗ UIRS

) (
AT
L
′ ⊗ AL

)
vec

(
UH
BSQUuser

)
≜

(
UT
IRS,u ⊗ UIRS

) (
AT
L
′ ⊗ AL

) (
UT
user ⊗ UH

BS

)
vec (Q)

≜
(
UT
IRS,u ⊗ UIRS

) (
AT
L
′ ⊗ AL

)
Uq (18)

where, U =
(
UT
user ⊗ UH

BS
)
and q = vec (Q). Based on this

the received signal can be written as:

y = vec (Y) = vec (H)X + vec (N)

≜
(
UT
IRS,u ⊗ UIRS

) (
AT
L
′ ⊗ AL

)
UqX + n (19)
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where, n = vec (N) . If we consider the precoder matrix P,
then:

y = P
(
UT
IRS,u ⊗ UIRS

) (
AT
L
′ ⊗ AL

)
UqX + n

≜ (UT
⊗ q

T
⊗ (XT

⊗ P))
(
UT
IRS,u ⊗ UIRS

)
×

(
ATL ′ ⊗ AL

)
U + n

≜ (UT
⊗ q

T
⊗ (XT

⊗ P))
(
UT
IRS,u ⊗ UIRS

)
h′

+ n

≜ 9h′
+ n (20)

where, 9 = (UT
⊗ qT ⊗ (XT

⊗ P))
(
UT
IRS,u ⊗ UIRS

)
and

h′
= AT

L
′ ⊗ AL. Because of very few non-zero entries, h′ is

sparse in nature and the channel estimation thus tends to be a
sparse recovery problem based on compressive sensing. The
traditional estimation methods are meant for time-invariant
slow fading channels. In this research, we consider a highly
mobile user, which is moving at a velocity v. This results
in a Doppler shift in the frequency and, thereby, a signifi-
cant decrease in the coherence time (Tc). As coherence time
goes much below the symbol duration, the channel quickly
fades and becomes time-varying. This condition is appli-
cable for IRS-aided vehicular communication systems with
high-mobility users.

As shown in Figure 1, HBI and HCI are assumed to be
static channels, and HIU is considered time-varying because
of usermobility. If we go for a pilot-based channel estimation,
the training overhead increases especially for time varying
channels as we need to transmit pilots before the start of each
block of transmission and this eventually results in the reduc-
tion in throughput. To the best of our knowledge, fully effi-
cient and tangiblemethods are not available in the literature to
estimate highly mobile time-varying IRS-aided 5G mmWave
channels. Even though some sparse estimation methods are
available in the literature, performance–complexity trade-off
exists for all techniques due to rapid changes in the channel
and the estimation is extremely challenging.

III. PROPOSED CHANNEL ESTIMATION SCHEME
In this paper, we propose a 2-stage channel estimation strat-
egy developed to improve the performance of mmWave
wireless communication systems. The first estimation stage
involves pilot-based estimation of channels HCI , HBI
and HIU using computationally efficient method with Com-
pressive Sampling Matching Pursuit (CoSaMP) algorithm.
In the second stage, real-time tracking and prediction of
Angle of Arrival (AoA) and Angle of Departure (AoD) is
done using Extended Kalman Filter (EKF) and are used to
predict the array response vectors subsequently. The pro-
posed methodology aims to optimize channel estimation by
integrating computationally efficient sparse estimation meth-
ods and accurate predictive modelling.

The first stage of the proposed channel estimation method-
ology involves three steps. The dedicated channel between
the IRS and the corresponding IRS controller (IRSC)

is estimated in the first step. The IRS controller (IRSC)
transmits pilot symbols to the IRS with 180o reflection,
which helps to assess the channel vector HCI . Subsequently,
in the second step, the IRSC transmits pilots to the Base
Station (BS) via the IRS. The BS then computes the
IRSC-IRS-BS static cascaded channel HCI − HBI based
on the received signal and provides feedback to the IRSC
through a backhaul link. Since HCI is known at the IRSC,
HBI can be computed at the IRSC based on this feedback
information via the backhaul link. The third step utilizes an
efficient sparse estimation technique, Compressive Sampling
Matching Pursuit (CoSaMP), to estimate the initial channel
hiu between the fast-moving user and the IRS. Pilot-based
estimation is done in the initial time block, and the informa-
tion is then used for subsequent predictions.

In the second stage, the algorithm focuses on real-time
tracking and channel characteristic prediction, which is crit-
ical for dynamic environments. The system initially pre-
dicts azimuth angle ϑk+1 and elevation angle ϕk+1 at both
the IRS and the user, commencing with an initial value
of k = 1 and then incrementing iteratively. The Extended
Kalman Filter (EKF) is utilized for this iterative prediction
process. The array response vectors are subsequently com-
puted based on the predicted values, thereby calculating the
channel matrix HIU (k+ 1) between the fast-moving user
and the IRS at the BS. These computed channel coefficients
are then fed back to the IRSC. The next step involves updating
the prediction variables after K-blocks of transmission by
communicating pilot symbols from the user to the IRS. This
ensures continued adaptation and improvement of the predic-
tion model. The iterative process continues effectively and
integrates the two stages to obtain a computationally efficient
and accurate channel estimation strategy.

To estimate the Doppler shift in the proposed IRS-aided
mmWave system simulation, key system parameters such as
the carrier frequency, vehicle velocity, and angle of motion
relative to the line of sight (LOS) are initially defined.
The Doppler shift (f d ) is calculated using the formula:
(v×f c × cos θ)/c. The baseband signal is generated using
QPSK modulation and known pilot symbols are inserted
at regular intervals. The communication channel is mod-
eled to include the Doppler effect. At the receiver end, the
pilot symbols are extracted from the received signal and
used correlation method to estimate the frequency offset.
This involved comparing the received pilot symbols with the
known transmitted ones to determine the frequency shift,
thereby estimating the Doppler shift. This process allows us
to accurately assess the impact of the Doppler effect on the
performance of mmWave communication system.

A. SPARSE CHANNEL ESTIMATION USING CoSaMP
In this sub-section, we will discuss the estimation of
sparse channels using the Compressive Sampling Matching
Pursuit (CoSaMP) algorithm. CoSaMP is a sparse recovery
method that integrates the benefits of both greedy algo-
rithms and convex programs. It is beneficial for sparse
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channel estimation with multiple paths. Conventional estima-
tion approaches consider closely distributed channel impulse
responses. This may lead to elongated training sequences,
resulting in inefficient throughput and bandwidth. If the
channel impulse response is sparse, compressed sensing can
be used to trim the length of training sequences. Cascaded
IRS mmWave channel impulse response has very few preva-
lent taps and considerable near-zero or zero taps. CoSaMP
incorporates both greedy algorithm and convex program
approaches. Even though greedy algorithms are easy to exe-
cute, they lack stability. On the other hand, convex programs
are stable but complex for practical implementation. CoSaMP
forms a balance between these two methods.

From the received samples, CoSaMP iteratively estimates
the sparse channel. It initializes the estimates by assigning
all channel coefficients to zero. It then identifies the sup-
port set using a greedy method. The support set indicates
the indices of non-zero channel coefficients. A convex opti-
mization problem is then solved to fine-tune the estimates
within the determined support set. After solving the convex
optimization problem, the estimates are updated by merging
the results obtained from the greedy method and the convex
optimization step. This is continued until convergence. One of
the major advantages of CoSaMP is its simplicity, inherited
from greedy algorithms which results in reduced computa-
tional complexity. The algorithm also exhibits stability in
practical scenarios. CoSaMP is suitable for practical imple-
mentations, especially in scenarios where computational
resources are limited. If the training matrix X satisfies the
condition:

(1−ϵS) ∥h∥2
2 ≤ ∥Xh∥2

2 ≤ (1 + ϵS) ∥h∥2
2 (21)

for the channel matrix h, then the training matrix is said to
satisfy the Restricted Isometry Property (RIP) of order S.
In addition to this if the 2S-sparse channel matrix h satisfies
ϵs ≤

√
2−1, then the CoSaMP algorithm can be used to

design a channel estimator that satisfies the condition∥∥∥h− ĥ
∥∥∥
2

≤ Cmax
{
δ,1

/√
S

∥∥∥h−ĥ2S
∥∥∥
1

+ ∥n∥2

}
(22)

Here ĥ2S is the 2S-sparse approximation of channel
matrix h.
The CoSaMP algorithm in the proposed methodology

picks whole dominant taps in each iteration and diminishes
the assessment error after each iteration. The channel esti-
mation algorithm using CoSaMP is as shown in Algorithm 1.
The Compressive Sampling Matching Pursuit (CoSaMP)
algorithm starts with an initialization phase in which the
estimate h(0) is set to zero. The received signal y is set as the
initial residual r(0). It then identifies the 2S dominant infor-
mation from the last residual r(t−1). A sparse support set,
�t is formed, which consists of the indices of 2S components.
The algorithm thenmoves on to solve a least squares problem.
It tries to find the best fit for the signal support. The estimator
then focuses only on the most relevant information. It keeps
only the 2S most essential pieces of the signal estimate

Algorithm 1 CoSaMP
Input: Observation vector y, Measurement matrix 8, noise vector n
Initialization: Set the current estimate h(0) to zero. Initialize the

residual r(0) = y and set the iteration counter t = 1.
Repeat:

1. Sparse Support set Estimation:
i. Identify the 2S largest components (in magnitude) of

the current residual r(t−1).
ii. Form a support set �t containing the indices of these

2S components.
2. Least Squares Approximation:

i. Solve the least squares problem to obtain an estimate
of the signal support: ĥ�t = argminx

∥∥y− 8�th
∥∥2
2.

Here,8�t is the submatrix of8 formed by the columns
corresponding to �t .

3. Thresholding:
i. Keep only the S largest components (in magnitude) of

ĥ�t and set the rest to zero. This enforces sparsity in the
estimated signal.

4. Support Union:
i. Form the updated support set �t by combining the

non-zero indices from the current estimate with the
support indices obtained from the least squares step.

5. Update the Estimate:
i. Solve the least squares problem using the updated sup-

port set to obtain the new estimate x(t):
ii. ĥ

(t)
�t = argminx

∥∥y− 8�th
∥∥2
2

iii. Set the components outside of the support set�t to zero.
6. Update Residual:

i. Update the residual: r(t) = y− 8h(t).
7. Check Convergence:

i. Check for convergence conditions. This could involve
checking the change in the estimate or the residual.

Output: The final output is the estimate h(t).

ĥ�t and discards the less relevant rest. In the support union
step, the algorithm updates and expands its list of crucial
indications �t , by integrating new results. It then refines
the estimate by solving another least square problem, which
gives an improved signal estimate h(t). The next step involves
updating the residual and checking for convergence. CoSaMP
is thus a reliable algorithm with simplicity, accuracy, and
efficiency.

The algorithm gathers this notion repetitively to match the
target. A residual is induced after each iteration. Samples
are updated as the algorithm proceeds, and this is reflected
in the present residual components. This step delivers an
indicative consent for the next approximation. We employ
the samples to assess the support set using the least squares.
This process is repeated iteratively until convergence. The
algorithm delivers an S-sparse evaluation whose ℓ2 error
matches the scaled ℓ1 error of the (S/2)-sparse approxi-
mation to the channel coefficients. Yet, uncertainty may
emerge in the presence of noise. However, the error bound
is fundamentally optimal. Without noise, the algorithm is
capable of retrieving an s-sparse channel with increased
accuracy, but the performance adulterates as noise increases.
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TABLE 1. Comparative analysis of various compressive sensing
algorithms.

The Reconstruction Signal to Noise Ratio (R− SNR) is
given by

R − SNR = 10log10
∥h∥2∥∥∥h−ĥ

∥∥∥
2

(23)

Interestingly, the number of iterations is almost fixed if we
need a high reconstruction SNR. This occurs even if the esti-
mate has a very broad dynamic range. The Compressive Sam-
pling Matching Pursuit (CoSaMP) algorithm is selected for
the proposed work based on the comparative analysis of var-
ious compressive sensing algorithms and is given in Table 1.
After carefully considering the same, it is observed that Com-
pressive Sampling Matching Pursuit (CoSaMP) has reduced
computational complexity compared to other methods in the
case of IRS-aided communication systems.

B. REALTIME PREDICTION OF AoA AND AoD USING
EXTENDED KALMAN FILTER
In this sub-section, we will discuss the real-time tracking &
prediction of AoA (ϕ) & AoD (ϑ) in the IRS-user link using
Extended Kalman Filter (EKF). In an Intelligent Reflecting
Surface (IRS)-assisted mmWave system with a fast-moving
user, it is very crucial to track and predict the angle of

FIGURE 2. Physical model of IRS-aided communication with high-speed
vehicles.

arrival (AoA) and angle of departure (AoD) at the IRS or the
user or both in real-time. The channel between the user and
the IRS is dynamic due to the user’s movement. Real-time
tracking and prediction enable accurate time-varying chan-
nel estimation, which is essential for selecting parameters
such as beamforming vectors, precoding matrices and opti-
mal power allocation. Most of the current research on beam
positioning in IRS-aided systems concentrated on the static
context. In such stationary cases, it is likely to attain the
channel state information (CSI) via various existing channel
estimation algorithms. When the user starts moving at a very
high velocity, the complexity and estimation time of such
algorithms increases. This eventually leads to communication
outage. The traditional filter-based algorithms are to track and
predict the AoA and the AoD based on their initial estimation.
However, in the RIS-aided communication system, it is diffi-
cult to acquire the AoD andAoA at the IRS due to the absence
of active RF chains.

A two-timescale estimation is possible without obtain-
ing the real angle knowledge at the IRS. A more practical
approach in static channels is the estimation of the cascaded
angles at the IRS instead of azimuth and elevation angles.
By estimating cascaded angles, the system can infer the over-
all directionality of the signal propagation, which is crucial
for optimizing signal reflection and transmission at the IRS.
However, this approach is challenging, especially in dynamic
scenarios. Our proposed work uses the Extended Kalman

Filter (EKF) algorithm for tracking and predicting the
arrived and (or) departed beams. The state model is hinged
on the AoA and AoD. The system for beam tracking and
prediction in vehicular communication scenarios using EKF
is modelled based on the state evaluation model and obser-
vation expression. In the existing approach, the state model
is assumed to be linear, which is not the case in a vehic-
ular communication environment. We also consider factors
such as the initial position and speed of the vehicle as
well as the span of transmission blocks. The proposed algo-
rithm introduces EKF for tracking and predicting angles in
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Algorithm 2 Extended Kalman Filter

State Vector: State Vector: ak =

[
ϕk
ϑk

]
where ak is the state vector

at time k, which includes the parameters we are estimating (ϕ- AoA,
& ϑ - AoD).
Dynamic Model (State Transition): ak = f

(
ak−1 + vk−1

)
+

wk−1, where f is the state transition function to predict how the state
will evolve from time k-1 to k , wk−1 is the process noise, vk−1 is the
control input or system input at time k − 1 (velocity of the user).
Measurement Model: it relates the state to the measurements
received from the system. zk = m (ak ) + uk , where m is the
measurement function and uk is the measurement noise.
Initialization: Set state estimate â0 and the error covariance
matrix P0.
Repeat:

1. State Transition:
i. State prediction: â−

0 = f
(
ak−1 + vk−1

)
+ wk−1.

ii. Error Covariance Prediction: P−
k = FkPk−1FTk + Qk−1.

Here Fk =
∂f
∂a at (ak−1, vk−1) is the Jacobian matrix of f

w.r.t a and Qk−1 is the process noise covariance matrix.
2. Measurement model: zk = m (ak ) + uk

i. Measurement Residual: yk = zk − m(â−

k ).
ii. Measurement Jacobian:Mk =

∂m
∂a at âk

iii. Kalman Gain: Kk = P−
k M

T
k

(
MkP

−
k M

T
k + Rk

)−1
,

where Rk is the measurement noise covariance matrix.
iv State Update: âk = â−

k + Kkyk
v Error Covariance Update: Pk = (I−KkMk)P

−
k

3. Iterative Process:
i. Repeat steps 1 and 2 for each new measurement as the

user’s AoA & AoD change with time.
Output: The final output is the estimate âk .

a vehicle-to-infrastructure (V2I) scenario. We also consider
position and velocity as the state variables and the algorithm
exhibits reduced computational complexity. The tracking and
prediction algorithm using EKF is as shown in Algorithm 2.

In the initialization step, an introductory state vector esti-
mate and an error covariance matrix are fixed. Following
this, it predicts the evolution of the state through an iterative
process. The dynamic model integrates both a state transition
function and process noise. Fine-tuning of the estimates is
done using the measurements received from the system. The
measurement model relates the state to the measurements.
A critical step here is the linearization of the nonlinear func-
tions using Jacobian matrices. The extent to which the predic-
tion and measurement influence the updated state estimate is
determined by the Kalman Gain. It is calculated based on the
prediction error and uncertainty in the measurement.

This iterative method persists with each new measure-
ment and refines the state estimate and error covariance.
The extended Kalman filter handles the uncertainties in both
system dynamics and measurements. Overall, it is versatile
and practical in handling non-linear systems. The vehicular
communication system using mmWave technology in the
presence of IRS exhibits moderate non-linearity in the state
evolutionmodel.We assumed additive Gaussian noisemainly
because of the absence of a direct path between the BS and

TABLE 2. Comparative analysis of various tracking algorithms.

the moving user. The system also showcases the kinematic
characteristics of vehicular communications. These issues
can be particularized by investigating the evolution of angles
of the moving user.

We considered a uniform linear array (ULA) at both
destinies of the communication. The dissimilarity between
the array response vectors and beamforming angles at both
sides of the communication constitutes the tracking error.
We keep this error to a minimum so that we can track
the beam for a longer time. A comparative analysis of
various tracking algorithms is shown in Table 2. Since
the IRS-aided mmWave channel is modelled as non-linear,
Extended Kalman Filter-based prediction shall outperform
since the same is appropriate for moderately non-linear sys-
tems, and it assumes Gaussian noise attributes and also main-
tains moderate computational complexity. The limitation of
EKF based prediction is its inability to handle systems with
non-Gaussian noise characteristics.

The proposed method has several advantages. Firstly,
it remarkably lowers pilot overhead. It also streamlines oper-
ations and offers an efficient methodology. This reduction
in pilot overhead is essential for improving the overall per-
formance of the system. Moreover, the use of the Extended
Kalman Filter (EKF) brings a notable increase in efficiency.
The EKF can effectively address non-linear systems. This
flexibility guarantees improved performance, especially in
dynamic environments. The use of the EKF brings a sig-
nificant increase in efficiency by effectively addressing the
non-linear dynamics. This guarantees improved performance
and ensures reliable communication in time varying channels.
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In the context of research involving time-varying channels
with fast-moving vehicles, the ExtendedKalman Filter (EKF)
outperforms the standard Kalman Filter (KF). Specifically,
when dealing with non-linear channel models in the presence
of an Intelligent Reflecting Surface (IRS), the EKF excels.
It achieves this by linearizing around an estimate of the
current mean and covariance. While the KF is optimal for
linear systems with Gaussian noise, the EKF provides more
accurate estimates for non-linear systems. Consequently, for
the given application, the EKF strikes a balance between
accuracy and reduced complexity compared to alternatives
like the Unscented Kalman Filter or Particle Filter.

Integrating the proposed sparse channel estimation strategy
of IRS based systems in existing 5G infrastructure needs
careful planning and coordination. Since accurate channel
models are crucial, it is important to consider both line-
of-sight (LOS) and non-line-of-sight (NLOS) paths and
model the channel between the base station (BS), IRS, and
static/dynamic user equipment (UE). Proper installation of
IRSs at strategic locations (e.g., walls, ceilings) within the
coverage area and ensure proper alignment and orientation
for optimal reflection are to be done. Along with this, imple-
mentation of control algorithms to adjust IRS phase shifts
dynamically and coordinate IRS actions with BS and UE
for coherent beamforming is crucial. Pilot signals shall be
used initially as proposed in the algorithm for channel estima-
tion. In addition to normal communication, allocate resources
(frequency, time, power) for IRS reflection and optimize the
resource allocation jointly with BS and UE. IRSs are to be
connected to the network via wired or wireless backhaul.
Proper steps are to be done to avoid interference between
IRSs and neighboring cells. Collaboration with standard-
ization bodies (e.g., 3GPP) is needed to define IRS-related
protocols for practical deployment.

IV. SIMULATION RESULTS
In this section, we discuss the performance of the pro-
posed channel estimation technique for IRS-assisted MIMO
systems in time-varying channels. We consider ULA at
both BS and fast-moving UE sides and operating over the
mmWave frequency band. The proposed scheme’s perfor-
mance is experimentally compared with several existing
channel estimation algorithms that rely on pilot-based estima-
tion. To assess the effectiveness of the cascaded channel esti-
mation schemes, we considered the NormalizedMean Square
Error (NMSE) and the achievable spectral efficiency (SE).
The NMSE will assess the accuracy of channel estimation.
The below expression represents it:

NMSE ≜

∥∥∥h−ĥ
∥∥∥2
2

∥h∥22
(24)

where ĥ is the estimate and h is the actual channel. It is
evident that if the value of NMSE is less, the estimated
channel ĥ is closer to the actual channel h. Assumptionsmade
for executing the simulation are listed in Table 3.

TABLE 3. Simulation parameters.

The simulation results of Normalized Mean Square
Error (NMSE) versus Signal to Noise Ratio (SNR) for various
algorithms for the estimation and tracking of time varying
IRS channel with number of transmitting antennas at the BS
Nt = 32, number of receiving antennas at the user equipment
Nr = 2 and number of IRS elements N = 64, is shown in
figure 3. It is observed that for time varying channel, the accu-
racy of the proposed two stage method reduces significantly
at all SNR ranges. Considerable decrease is observed espe-
cially at low-SNR regions, thereby assuring the reliability of
the communication system even at worse channel conditions.

The improvement in the system performancemay be due to
the fact that the conventional schemes adopt suboptimal paths
and may easily get stuck in suboptimal solutions. CoSaMP
performs well in accurately estimating sparse IRS channels
with reduced computational complexity. This method will be
beneficial, especially when the number of reflecting elements
is very large. By exploiting the channel sparsity, CoSaMP
efficiently estimates the channel state information even in
the presence of noise and interference. Furthermore, the use
of the Extended Kalman Filter (EKF) for channel tracking
and prediction ensures improved accuracy even though the
system is non-linear. The baseline schemes considered here
are OrthogonalMatching Pursuit (OMP) and Improved OMP.
Unlike OMP, which selects only one atom (basis function) per
iteration, the proposed method selects multiple atoms simul-
taneously and this improves channel estimation accuracy,
especially when the channel is sparse and high dimensional.
The proposed scheme efficiently handles noise and inter-
ference due to its robustness. In the case of time varying
channels with fast moving users, OMP and Improved OMP
may struggle with noise and non-ideal conditions.
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FIGURE 3. Simulation results of NMSE vs SNR (in dB) with Nt = 32, Nr = 2
and N = 64.

FIGURE 4. Simulation results of NMSE vs pilot sequence length Lp.

Next, we analyze the effect of the pilot sequence length Lp
on the effectiveness of the algorithms. Figure 4 shows the per-
formance of the system for various pilot sequence lengths at
SNR= 40dB. It is evident that the proposed method achieves
better performance compared to conventional schemes. This
means that the proposed method requires minimal training
length, and that too during the initial transmission block only.
Prediction by EKFwill be done during the subsequent blocks.

This significantly reduces the overhead complexity and
improves the data rate of the system. We also observed that
the improvement in NMSE is negligible for Lp values greater
than around 35. The proposed method’s synergy between
CoSaMP and EKF, alongwithminimal training requirements,
places it as a better choice for sparse IRS channel estimation
compared to traditional OMP-based approaches. We also
analyzed the relationship between the achievable rate and
the number of reflecting elements N, with transmit power
Pt = 15 dBm. We have observed that the attainable rate
increases as the number of reflecting elements increases.
For the proposed method, the achievable rate is much higher
for a dynamic environment than for conventional methods.

FIGURE 5. Simulation results of achievable rate vs pilot sequence
length Lp.

FIGURE 6. Simulation results of achievable rate vs velocity of the user
equipment, v .

The EKF-based predictor accurately predicts the ϕ & ϑ ,
which results in the system’s improved efficiency. This hap-
pens without compromising the pilot overhead requirement,
and the beamforming gain increases as the number of reflect-
ing elements increases. We also analyzed the achievable rate
versus the speed of the user equipment with the number of
reflecting elements fixed at N = 250 for the same transmit
power Pt = 20 dBm. For a fixed pilot overhead, due to the
decreasing value of coherence time, as velocity increases,
the time duration left for the transmission of data reduces.
This results in a significant reduction in the achievable rate
at higher velocities as shown in figure 6. Compared to the
existing conventional schemes, the proposedmethod achieves
a higher data rate due to its ability to overcome pilot overhead
problem.

It is interesting to note that the achievable rate reduces
drastically for the conventional techniques like OMP, if the
user equipment is moving at a very high velocity of approxi-
mately 80km/hr for a given transmit power of Pt = 20 dBm.
It is also worth noting that as velocity increases, the rate
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FIGURE 7. BER vs SNR curve of IRS channel with user travelling at a
speed of 40km/hr.

at which the achievable rate declines also increases. This is
due to the reduction in coherence time at higher Doppler
frequencies. The bit error rate obtained for an IRS aided
system with a fast-moving user with velocity v = 40 km/hr
for different values of signal to noise ratio (SNR) in dB scale
is shown in figure 7. It is evident from the obtained figure
that the proposed system gives significant improvement in
the system reliability compared to conventional techniques.
Additionally, the increased system performance is attained
with a reduced computational complexity which is achieved
due to the reduced pilot overhead of the proposed system.

It is observed from figure 7 that, for a given probability of
error of 0.4 × 10−2, the proposed system attains almost 7dB
SNR improvement. This clearly indicates the efficiency of
the proposed system compared to the conventional methods.
Additionally, it is worth to note that the complexity of the
proposed system is approximatelyO (Nt · Nr ), which is much
less compared to traditional OMP with pilot-based transmis-
sion. In the latter scheme, O (K · P · N t · Nr ), where K is the
number of blocks per symbol duration and P is the number
of pilot symbols. The proposed method can also be used
for the estimation of separate channels with much reduced
computational complexity since separate channels possess
lower dimensions than cascaded ones.

V. CONCLUSION
In this paper, we studied a roadside IRS-assisted dynamic
vehicular communication system. An efficient, two-stage
channel estimation technique was proposed, making
fast-moving vehicular communication more efficient, which
in turn leads to improved communication throughput and
reliability. Our proposed two-stage method ascertained its
remarkably enhanced performance over conventional meth-
ods under a more general environment. Simulation results
indicated that the NMSE performance of the proposed
methodology outshines the existing conventional OMP-based
algorithms. Additionally, the pilot overhead of the proposed

method is much less than that of the existing methods.
The proposed method excels in accuracy and computa-
tional efficiency, making it ideal for applications where
real-time response is less critical. This allows for high-quality
results without sacrificing processing speed. More refined or
improved algorithms for IRS channel estimation and predic-
tion are worthy of further research.
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