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ABSTRACT This study addresses the limitations of traditional active and semi-active suspension control
systems in terms of adaptability and nonlinear handling, by exploring the potential of Deep Reinforcement
Learning (DRL) techniques. Initially, a framework based on the Twin Delayed Deep Deterministic policy
gradient (TD3) specific to active suspension systems was developed. Building on this, an enhanced TD3
algorithm, TD3-PSC (Physically Safe Constraint TD3), incorporating physical safety constraints was
proposed. The TD3-PSC algorithm extends the state space to enhance understanding of suspension dynamics
and improve adaptability. To accommodate the physical constraints and actuator characteristics inherent
in suspension systems, TD3-PSC introduces guided training with real physical constraints and employs
immediate termination and high penalty mechanisms to ensure safety and practicality of the algorithm.
The simulation results demonstrate that TD3-PSC significantly outperforms the linear quadratic regulator
(LQR), deep deterministic policy gradient (DDPG), and standard TD3 baseline, achieving improvements in
control performance of 73.81%, 43.72%, and 32.14% under standard Class C road conditions, respectively.
Additionally, it exhibits excellent generalization capabilities.

INDEX TERMS Deep reinforcement learning, TD3, active suspension system, physical constraint.

I. INTRODUCTION
In recent years, the rapid development of Artificial Intel-
ligence (AI) technologies has catalyzed significant trans-
formations across numerous industries. Particularly in the
automotive industry, AI-driven control technologies have
enabled remarkable advancements in smart driving and
vehicle management. AI offers a broader array of solu-
tions to vehicular control challenges than traditional meth-
ods [1], [2]. The suspension system, a critical component for
enhancing ride smoothness and handling stability, embod-
ies these advancements. Suspension systems are classified
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into passive, semi-active, and active types. Passive suspen-
sions, with fixed stiffness and damping coefficients set during
design, cannot adapt to changing road conditions. This limi-
tation has spurred the rapid development of semi-active and
active suspensions, which offer extensive tuning capabilities
and enhanced control potential. Due to their adaptive features,
these systems have attracted significant attention from man-
ufacturers and academics alike [3].

Since its introduction in 1973, the Sky-hook strategy has
gained widespread adoption in engineering for its conceptual
simplicity and minimal computational demands [4]. While
enhancing ride comfort, the Sky-hook strategy may neglect
variations in tire dynamic loads, potentially reducing vehicle
safety. To address this limitation, the Ground-hook control
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strategy was developed, which specifically aims to enhance
vehicular handling stability by focusing on tire-ground inter-
actions [5]. Building on these concepts, developed a hybrid
Sky-hook/Ground-hook damping control algorithm [6]. This
hybrid approach tunes control coefficients to balance ride
smoothness and maneuverability, yet struggles with optimiz-
ing multiple performance metrics simultaneously. Despite
performance gains from enhancements to these strategies,
challenges in complexity, reliability, and balancing driving
demands continue. Optimal control uses state-space repre-
sentations and weighted quadratic indices, a theoretically
mature approach. By employing control theory, optimal con-
trol achieves higher rates of control and effectiveness by
considering a wider array of system variables compared to
the Sky-hook or Ground-hook strategies alone. Since 1976,
Linear Quadratic Regulator (LQR) control has been exten-
sively applied in active suspension systems [7], [8], [9].
Linear Quadratic Gaussian (LQG) control, an extension of
LQR, includes Kalman filters to manage system noise and
uncertainty, crucial for suspension control despite needing
full state observability [10], [11], [12], [13]. Model Predictive
Control (MPC) excels in managing complex dynamic sys-
tems and constrained problems, widely used across industrial
and engineering fields. In active suspension control, MPC
leverages model knowledge and optimization algorithms to
identify optimal control strategies within set constraints [14],
[15], [16]. However, the use of MPC is constrained to suspen-
sion scenarios with slow dynamics, as it requires substantial
computational resources and real-time processing capabili-
ties, limiting its wider application. With growing complexity
and nonlinearity in automotive suspension systems, tradi-
tional control methods face challenges [17], [18]. Genetic
Algorithms (GA) provide an innovative solution to complex
control problems by mimicking natural selection and opti-
mizing control systems through the adjustment of weighted
matrices to derive optimal strategies [19], [20]. Neural net-
works, efficient at processing and adaptable, approximate
nonlinear functions, suitable for suspension vibration con-
trol [21], [22], [23]. Yet, neural networks’ tuning and training
limitations may impact the real-time performance and reli-
ability of control systems. In summary, traditional control
theories rely on precise mathematical models and modern
control theories demand extensive computational resources
and stringent hardware specifications, with both facing chal-
lenges in ensuring stability.

Introduced by Minsky in the early 1960s, Reinforce-
ment Learning (RL) is a major branch of machine learning,
distinct from supervised and unsupervised learning as it
derives data from dynamic environments. It utilizes envi-
ronmental feedback and rewards to guide behavior choices,
aiming to maximize the total rewards obtained. Deep Learn-
ing (DL) focuses on perception and representation, relying
heavily on large datasets and robust computational hardware.
Conversely, RL focuses on developing optimal problem-
solving strategies. The growing complexity of real-world

tasks has made integrating DL and RL crucial for techno-
logical advancements in control domains. Initially, the Deep
Q-Network (DQN) was mainly used in 2D video games like
those on Atari 2600. In May 2017, the deep RL-powered
robot AlphaGo defeated the top-ranked Go champion, mark-
ing a strategic game breakthrough. By early 2018, OpenAI
extended deep RL to the complex game Dota 2, showcas-
ing its broad applicability. Deep Reinforcement Learning
(DRL) has made significant progress not only in gaming
applications but also in the control of complex dynamic
systems. Paper [24] proposed a model-free tracking control
framework based on machine learning, utilizing reservoir
computing techniques. This method uses random inputs to
train the system, achieving precise tracking of complex
dynamic trajectories. Additionally, Paper [25] developed a
model-free reinforcement learning method that employs pol-
icy iteration algorithms to solve the optimal tuning problem
for discrete-time linear systems, ensuring state convergence
speed. Paper [26] employed the deep Q-learning algorithm
to simulate the dynamic game between attackers and defend-
ers, formulating effective defense strategies to protect smart
grids from cyber-attacks. Furthermore, DRL has also made
significant advances in fields such as robotics, computer
vision, healthcare, financial management, and autonomous
driving [27], [28], [29].

Paper [30] introduces an enhanced DDPG algorithm using
empirical samples to improve initial training in semi-active
suspension systems. Paper [31] details a novel DDPG con-
troller that combines DRL with expert advice, using PID
pre-training and adaptive replay to enhance control of uncer-
tain active suspensions. Paper [32] develops a DRL-based
vehicular speed control for rough terrains, utilizing ‘Maxi-
mum Comfort Speed’ from crowdsourced data to optimize
comfort and efficiency. Paper [33] advances a hierarchical
suspension control framework combining dynamic program-
ming with DRL. Employing EK-DDPG, it autonomously
adapts to real-road conditions, enhancing comfort and
efficiency.

Paper [34] employs the Soft Actor-Critic (SAC) model
for semi-active suspension control in real road conditions,
adapting in real-time to optimize performance. It significantly
reduces vertical acceleration and pitch, enhancing comfort
and handling, surpassing traditional systems. Paper [35] out-
lines a semi-active suspension control strategy using the
Proximal Policy Optimization (PPO) algorithm, dynamically
adapting the reward function for varying road conditions.
Simulations show improved suspension performance by inte-
grating dynamic road changes.

Paper [36] applies the Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm to control suspension sys-
tems on varied road types, showing superior optimization,
robustness, and learning efficiency over DDPG and DQN.
This model addresses complex road challenges effectively,
outperforming traditional controls. Subsequently, Paper [37]
tackles actuator delay uncertainties in autonomous vehicles
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using TD3, enhancing suspension performance, ride com-
fort, and stability under varying delays. Following this,
Paper [38] expands TD3 application by integrating soft and
hard constraints (TD3-SH), allowing flexible adjustments to
varying road conditions through detailed vehicle data. Further
deepening the research, Paper [39] introduces Deterministic
Experience Tracking (DET), a strategy that enhances vertical
control decisions by processing and storing state and action
data dynamically, significantly boosting ride comfort and
control.

Current DRL research in active suspension control has
made significant progress but still faces substantial chal-
lenges. Existing studies often optimize specific dynamics of
suspension systems and road conditions but lack comprehen-
sive state observation, potentially leading to non-robust and
non-adaptive control under complex or changing conditions.
Moreover, while current methods manage some dynamic
changes, they struggle to fully understand and adapt to
the comprehensive dynamics of suspension systems. These
issues manifest as insufficient state observations, slow train-
ing speeds, non-converging training, and complex reward
function settings. The performance of vehicle suspensions
is crucial for driving comfort and safety. Furthermore, cur-
rent reinforcement learning algorithms fail to effectively
integrate road information with vehicle states, lacking strate-
gies tailored to different driving scenarios. To address these
issues, this study proposes an improved Twin Delayed Deep
Deterministic Policy Gradient (TD3-PSC) algorithm. This
algorithm focuses on integrating physical safety constraints
and dynamically combines road conditions with the reward
mechanism, thereby designing a more precise and reliable
suspension control strategy.

Main contributions of this paper:
(1) Optimized State Observation for Active Suspension

Control: This paper extends state observations in
DRL for active suspension beyond basic parameters
to include more dimensions critical to suspension
performance. This broadened observation spectrum
enhances model training, improves understanding of
suspension dynamics, and refines control strategy
specificity.

(2) Integration of Physical Safety Constraints in TD3
Algorithm (TD3-PSC): This study introduces an
enhanced TD3 algorithm that incorporates physical
safety constraints and the dynamic characteristics of
suspension system actuators. Focused on real-world
applicability, TD3-PSC ensures that control strategies
are not only optimal but also practical and safe. It fea-
tures mechanisms like immediate termination and high
penalties during training to manage safety risks effec-
tively, reinforcing the robustness and reliability of the
active suspension control strategy.

(3) Innovative Reinforcement Learning Training Strategy:
This paper introduces a dynamic training strategy uti-
lizing a composite road surface environment, where
the agent experiences a spectrum of road conditions

within a single training cycle. This adaptive training
approach, which cycles through varying difficulties,
boosts the agent’s adaptability and robustness, fos-
tering the development of more generalized control
strategies and reducing overfitting risks.

The structure of the remainder of this paper is as follows:
Section two provides a concise introduction to the deep
reinforcement learning environment, detailing the dynamic
models of active suspension systems and the stochastic
road models used to simulate varying road conditions.
Section three elaborates on the architecture of the TD3-PSC
algorithm and integrates physical safety constraints within
the learning process to ensure the safety and feasibility of
the control strategies in practical applications. Section four
presents the setup and results of simulation experiments,
demonstrating the performance advantages of the TD3-PSC
algorithm under various road conditions compared to other
control strategies. Finally, section five summarizes the find-
ings and discusses future research directions, including
algorithm optimization, application expansion, and plans for
real-vehicle testing.

II. ROAD AND SUSPENSION SYSTEM MODELS
This section introduces the environmental models con-
structed to simulate natural driving conditions more accu-
rately, including the road model established in accordance
with ISO 8608 and the quarter-car active suspension system
model.

A. COMPOSITE RANDOM ROAD MODEL
The comfort and stability of a vehicle’s handling are signif-
icantly influenced by the road surface roughness. To accu-
rately simulate this effect within the vehicle dynamics model,
road inputs are categorized into deterministic and random
types. Deterministic road surfaces are predefined and fixed,
providing an accurate reflection of specific road condi-
tions on vehicle behavior, typically used to analyze vehicle
dynamics under certain conditions. Conversely, random road
surfaces, whose characteristics are generated stochastically,
more closely mirror the complexity and variability of actual
driving environments that deterministic models cannot fully
represent.

The random road model typically employs Power Spectral
Density (PSD) to characterize variations in road roughness.
PSD quantifies the distribution of road height variations
across different frequencies. According to the International
Organization for Standardization’s ISO 8608 standard, ran-
dom road roughness is classified into categories ranging from
Class A to Class H based on PSD values. This classifica-
tion facilitates precise application and comparison in vehicle
dynamics research and road design, as detailed in Table 1.
According to the International Organization for Standard-

ization, the PSD of road displacements can be characterized
as follows:

Gq(n) = Gq(n0)(
n
n0

)−w (1)
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TABLE 1. Road roughness categories according to ISO standards.

where n is the spatial frequency; n0 is the reference spatial fre-
quency, typically set at n0 = 0.1m−1; and w is the frequency
exponent, generally taken as w = 2.
The road excitation time-domain model, based on the fil-

tered white noise method, is represented by the following
equation:

q̇(t) = −2π f0q(t)+ 2πn0
√
Gq(n0)vw(t) (2)

where f0 is the lower cutoff frequency, f0 = n00v, n00 denotes
the lower cutoff spatial frequency, typically set at 0.011m−1,
q(t) represents the road displacement, v is the vehicle speed,
and w(t) signifies white noise with a mean of zero.
To enhance the adaptability and learning outcomes of

agents in diverse road environments, this study employs
a composite random road scenario training method,
which diverges from traditional single-environment training
approaches. The core training strategy utilizes a sequence of
alternating difficulty levels, arranged in an ‘easy-hard-easy-
hard’ pattern, creating a dynamic, time-series-based training
environment. This method allows the agent to experience a
spectrum of road conditions from basic to complex within
each training cycle, thereby improving its generalization
capabilities. The temporal road roughness curves used in
agent training are detailed in Figure 1. Subsequently, the
spatial power spectral densities (PSDs) of four different
grades of random road roughness models were calculated.
By comparing these PSDs with the standard road roughness
PSDs corresponding to each grade, the study ensures that
the generated temporal models accurately reflect the pre-
determined standard road characteristics. A comparison of
composite road power spectral densities is shown in Figure 2.

FIGURE 1. Temporal road roughness curves.

FIGURE 2. Validation of simulated road roughness power spectral
density.

B. QUARTER-CAR ACTIVE SUSPENSION MODEL
Research on controlling suspension systems with deep rein-
forcement learning confronts increasing complexity and
rising costs. The use of a two-degree-of-freedom quarter-car
model as the experimental basis offers significant advan-
tages. It simplifies the complexity of vehicle dynamics,
reduces computational costs, and enhances the applicability
and reliability of experiments. The quarter-car model focuses
on the vehicle’s vertical movements and suspension sys-
tem responses, efficiently simulating dynamic performances
under real-road conditions. It serves as a bridge between
theoretical research and practical application, providing a
clearly simplified testing environment for developing and
optimizing reinforcement learning algorithms.

When employing the quarter-car model equipped with
active actuators, the suspension’s springs absorb and store
energy from road irregularities. Subsequently, dampers
release this energy through thermal dissipation. Actuators
further refine the energy transformation process by adjusting
control forces, aiming to reduce the vehicle’s accelera-
tion and suspension displacement. This enhances driving
stability and ride comfort. Figure 3 illustrates the sus-
pension system model.The relevant parameters are defined
in Table 2.

FIGURE 3. Active suspension system model.
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TABLE 2. System model parameters definition.

The dynamic differential equations of the suspension sys-
tem can be expressed as follows:

msz̈s = Fu − ks(zs − zw)− cs(żs − żw)
mwz̈w = ks(zs − zw)+ cs(żs − żw)− kw(zw − q)

−cw(żw − q̇)− Fu

(3)

For continuous linear time-invariant systems, the state-
space representation can be formulated as follows:{

Ẋ = AX + BU
Y = CX + DU

(4)

Define the state matrix as follows:

X =
[
x1 x2 x3 x4

]T
=

[
zs żs zw żw

]T (5)

Define the input matrix as follows:

U =
[
Fu q q̇

]T (6)

Define the output matrix as follows:

Y =
[
z̈s żs zs − zw q− zw żs − żw

]T (7)

A =


0 1 0 0
−ks
ms

−cs
ms

ks
ms

cs
ms

0 0 0 1
ks
mw

cs
mw

−
ks + kw
mw

−
cs + cw
mw



B =


0 0 0
1
ms

0 0

0 0 0

−
1
mw

kw
mw

cs
mw



C =


−
ks
ms

−
cs
ms

ks
ms

cs
ms

0 1 0 0
1 0 −1 0
0 0 −1 0
0 1 0 −1



D =


1
ms

0 0

0 0 0
0 0 0
0 1 0
0 0 0

 (8)

III. ENHANCED TD3 ALGORITHM CONSIDERING
PHYSICAL SAFETY CONSTRAINTS
This section of the research paper presents an in-depth dis-
cussion of the enhanced Twin Delayed Deep Deterministic
Policy Gradient (TD3-PSC) model, developed for active sus-
pension control. The model is designed to support complex
control tasks, with significant enhancements including an
expanded range of state observations for more precise system
state information and an integrated training mechanism that
incorporates physical safety constraints to manage potential
risks during the training phase.

A. TD3-PSC MODEL
In recent years, DRL has increasingly become a focal point
in the field of active suspension control, particularly for its
superior handling of complex decision-making tasks. Ini-
tially, DQN algorithm was employed for active suspension
systems due to its capability to manage high-dimensional
state spaces. However, the DQN is inherently designed for
discrete action spaces. When applied to active suspension
control tasks, which require continuous control actions, DQN
must discretize these actions, potentially limiting the choice
of executory forces and leading to dimensionality issues
that affect control outcomes and learning efficiency. As a
result, the DDPG algorithm, which utilizes an Actor-Critic
architecture, is better suited for continuous control prob-
lems in active suspension systems. DDPG extends traditional
DQN by introducing continuous policy outputs and an actor
network, enabling effective learning for continuous control
tasks. Despite its advantages, DDPG faces several challenges
in practical applications, including overestimation issues,
insufficient exploration efficiency, and convergence prob-
lems in training. DDPG may suffer from overestimation
as it tends to overvalue future states during value func-
tion updates, a phenomenon stemming from its Actor-Critic
architecture where the Critic network might overestimate
action values (Q-values), leading to a preference for subopti-
mal actions. Additionally, DDPG’s exploration mechanisms,
which typically involve adding noise to policy outputs, may
not suffice in complex or rapidly changing environments,
hindering sufficient exploration of the state space. Moreover,
the complexity of continuous action spaces and environmen-
tal uncertainties can destabilize value estimates and policy
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updates during training, slowing or even preventing conver-
gence.

Based on the aforementioned practical needs, this study
uses the TD3 algorithm as the fundamental framework.
Building upon the DDPG algorithm, the TD3 algorithm
integrates several key techniques, including clipped dou-
ble Q-learning, delayed policy updates, and target policy
smoothing. These techniques effectively reduce estima-
tion bias and enhance policy stability. The improved TD3
algorithm framework comprises six networks in total: two
critic networks Q1(s, a |θ1 ),Q2(s, a |θ2 ) and one actor net-
work π (s |φ ), along with their corresponding target networks
Q′1(s, a

∣∣θ ′1 ),Q′2(s, a ∣∣θ ′2 ), π ′(s ∣∣φ′ ). Throughout the training
process, the parameters of the critic and actor networks
θ1, θ2, φ are first randomly initialized. Additionally, the
parameters of the corresponding target networks are also
initialized:

θ ′1← θ1, θ ′2← θ2, φ′← φ (9)

At each time step t , the current actor network πφ is used
to generate an action a, with exploration noise ε added to
promote agent exploration:

a = πφ(s)+ ε, ε ∼ N (0, σ ) (10)

where ε is noise sampled from a normal distribution with a
mean of 0 and a standard deviation of σ .
The chosen action a is applied to the environment, which

returns a reward rs and the next state s′.The sampled transition
tuple ( s a rs s′ ) is stored in the replay buffer β, which is later
used to update the critic and actor networks.Subsequently, the
target policy networkπ ′φ is used to generate the target action ã
for the next state s′, with added noise for smoothing:

ã = π ′φ(s
′)+ ε, ε ∼ clip(N (0, σ ),−c, c) (11)

Next, the target action ã and target network are used to
calculate the target Q-value:

y = rs + γ mini=1,2Qθ ′i
(s′, ã) (12)

where rs is the current reward and λ is the discount factor.
The parameters of the Q-network are updated by minimizing
the loss function, which is defined as:

L(θi) = E
[
(Qθi (si, ti)− y)

2
]

(13)

Update parameters by gradient descent method:

θi← θi − λQ∇θiL(θi) (14)

where λQ is the learning rate, and ∇θiL(θi) represents the
gradient of the loss function with respect to the parameters θi.
In the TD3 algorithm, the actor network’s parameters are

updated less frequently than those of the critic network.
Specifically, for every d updates of the critic network, the
actor network is updated once. The loss function for the
policy network is:

L(φ) = −
1
N

N∑
i=1

Qθ1 (si, πφ(si)) (15)

Calculate the gradient of the loss function:

∇φJ (φ) = N−1
∑
∇aQθ1 (s, a)

∣∣a=πφ (s)∇φπφ(s) (16)

Update actor network parameters:

φ← φ − λπ∇φL(φ) (17)

Finally, the soft update of the target network gradually
aligns the parameters of the target network with those of
the main network, resulting in more stable target values.
Compared to hard updates, soft updates introduce a small
update rate, causing only minor changes to the target network
parameters at each update. This avoids drastic fluctuations
and provides a more stable learning signal. For the target
Q-network Q′θi , the parameters are updated as follows:

θ ′i ← τθi + (1− τ )θ ′ (18)

For the target actor network π ′φ , its parameters are soft
updated to:

φ′← τφ + (1− τ )φ (19)

Further, to accommodate the physical constraints and
dynamic characteristics of actuators within the active suspen-
sion system, the TD3-PSC (Physically Safe Constraint TD3)
variant was developed. This variant builds on the TD3
framework by adding dynamic constraints for actuators
and implementing immediate termination and high-penalty
mechanisms for potential safety risks, ensuring the safety and
practicality of the algorithm in real-world applications. The
specifics of the TD3-PSC framework are detailed in Table 3
and illustrated in Figure 4 and Figure 5.

B. SELECTION OF STATE OBSERVATIONS
In the application of DRL to active suspension control, the
careful selection and configuration of state observations are
crucial for optimizing model training efficiency and enhanc-
ing final control performance. State observations provide
essential environmental information required by the agent,
forming the foundation for learning quality and control effec-
tiveness. Traditional methods often limit state observation
choices to basic parameters, which can restrict the model’s
comprehensive understanding of the dynamic performance of
the suspension system.

To address this limitation, a strategy to expand and opti-
mize the range of state observations has been proposed,
incorporating multiple dimensions closely related to suspen-
sion performance. Early research in DRL applied to active
suspension control typically selected state observations like
body acceleration, suspension deflection, and tire dynamic
load. While these parameters somewhat reflect the dynamics
of the vehicle suspension, they may not capture the system’s
response comprehensively under complex road conditions,
especially in rapidly changing or extreme driving scenarios.
Relying solely on these basic parameters may lead to sub-
optimal control strategies, adversely affecting the suspension
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FIGURE 4. TD3-PSC control algorithm architecture.

TABLE 3. TD3-PSC algorithm pseudo-code.

system’s adaptability and performance under dynamic road
conditions.

The proposed enhancement and optimization strategy for
selecting state observations includes vehicle body veloc-
ity, the derivative of body acceleration, and the velocity of
suspension deflection. These additional observations pro-
vide a richer set of environmental data for the DRL model.
Body velocity not only reflects the state of vehicle motion
but also aids in predicting future movement trends, crucial
for adjusting suspension settings to accommodate varying
speed conditions. The rate of change in body acceleration
offers direct information on the speed of vehicle motion
changes, allowing the control system to respond more agilely
to changes in road surfaces and driving maneuvers. Lastly,
the relative velocity of the suspension describes the rate of
relative motion between two masses within the suspension
system, reflecting the rate of relative displacement between
internal components. These enhanced state observations sig-
nificantly improve the agent’s understanding of suspension
dynamics, boost adaptability to complex road conditions, and
increase the efficacy of control strategies. These advance-
ments are vital supplements and improvements to traditional
methods, selecting the following state observations to repre-
sent the actual state.

s =
[
z̈s żs

...
z s zs − zw q− zw żs − żw

]T (20)

where z̈s is a critical parameter for evaluating ride comfort,
directly influencing the intensity of vibrations felt by passen-
gers. żs represents the vertical velocity of the vehicle, used to
assess the smoothness and comfort of the ride.

...
z s provides

the rate of change of body acceleration, reflecting the sus-
pension system’s responsiveness and sensitivity to external
disturbances. zs − zw illustrates the suspension’s capacity to
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FIGURE 5. Actor-critic network structure.

absorb road impacts and adjust the vehicle’s posture, affecting
both driver and passenger comfort and safety. q−zw indicates
the load borne by the suspension while traversing different
road surfaces, a crucial metric for evaluating shock absorption
and maintaining vehicle stability. żs − żw measures the rate
of relative displacement between internal components of the
suspension system, serving as a reference for physical safety
constraints discussed later.

C. REWARD MECHANISM MODEL BASED ON
MULTIDIMENSIONAL STATE OBSERVATIONS
The reward function plays a crucial role within the DRL
framework, defining the learning objectives and the direction
for behavior optimization of the agent. By carefully designing
the reward function, the agent is ensured to recognize and
execute actions that maximize long-term rewards, thus opti-
mizing its behavioral strategy. For active suspension control
systems, it is essential to select physical quantities that accu-
rately reflect the suspension’s motion states and performance
to construct the reward function. Key elements such as body
acceleration, suspension deflection, tire dynamic load, and
actuator output are chosen for the reward function formu-
lation. These variables are directly linked to the suspension
system’s ride comfort and driving stability and consider the
energy consumption and efficiency of the actuator. By min-
imizing energy usage while ensuring effective control, the
system aims for sustainable development and environmental
friendliness. Reward function r1 is established to evaluate the
vibrational characteristics of the suspension system.

r1 =
[
z̈s zs − zw q− zw Fu

]T (21)

In the formulation, the elements sequentially represent
the vertical acceleration of the body, the dynamic travel
of the suspension, the dynamic load on the wheels, and
the control force of the active suspension system. However,
due to the different magnitudes and units of the physical
quantities involved in the reward function, directly using
these quantities may lead to instability or biases in the
learning process. It is essential to normalize these quantities

to ensure the reward function effectively guides the agent.
By adjusting the weights of these physical quantities in the
reward function, the dynamic response characteristics of the
suspension system can be flexibly altered to meet diverse
control requirements and personalized settings. This reward
mechanismmodel, based onmultidimensional physical quan-
tities, not only enhances the adaptability of the suspension
system to complex road conditions but also accommodates
specific driving styles and comfort needs. The reward func-
tion, after normalization and weight adjustment, is defined
as follows:

rs = −
(
K1 |z̈s|2 + K2 |zs − zw|2 + K3 |q− zw|2 + K4 |Fu|2

)
(22)

where K =
[
K1 K2 K3 K4

]
, the parameters within the

coefficient matrix K represent the coefficients used for each
variable in the computation of the reward function. If empha-
sis is placed on comfort, the weighting coefficient for body
acceleration in the reward function can be adjusted to priori-
tize the reduction of body acceleration.

D. REWARD MECHANISM GUIDED BY PHYSICAL SAFETY
CONSTRAINTS
In the application of DRL for active suspension system con-
trol, ensuring the physical safety of system operations is
paramount. Specifically, this study imposes physical safety
constraints on four key state variables: body acceleration,
suspension deflection, tire dynamic load, and actuator out-
put force. Constraints on body acceleration and suspension
deflection ensure that the vehicle maintains passenger com-
fort and prevents safety incidents caused by excessive
vibration or tilt during sudden road changes. Addition-
ally, constraints on tire dynamic load prevent tire damage
or blowouts due to overload, ensuring stability and safety
during driving. Constraints on actuator output ensure that
the system does not compromise equipment integrity or
vehicle stability while optimizing energy efficiency and
response times. However, strict physical safety constraints
can limit the exploration space of the agent, making it overly
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conservative when attempting new behaviors. This can hin-
der the learning process, potentially leading to poor training
outcomes or slower convergence rates. If the agent frequently
terminates training episodes due to triggering safety thresh-
olds, it may lead to a scarcity of positive rewards, affecting
the agent’s ability to learn effective strategies. In response to
these considerations, the reward function is refined through
guidance from physical safety constraints, minimizing the
impact of training termination due to any state variable
exceeding its safety limits.

During training, vertical body acceleration is subject to
tiered constraints divided into four reward settings: within
the safety and comfort threshold; exceeding the comfort
but not reaching the maximum tolerance threshold; exceed-
ing the maximum tolerance threshold but not reaching
the safety threshold; and exceeding the safety threshold,
which terminates the training episode and imposes a high
penalty to guide the agent away from actions that pose
safety risks. The expressions for these settings are as
follows:

ra =


−k1 |z̈2| , if |z̈s| ≤ |a1|

−k2 |z̈2| , if |a1| < |z̈s| ≤ |a2|

−k3 |z̈2| , if |a2| < |z̈s| ≤ |a3|

−k4 |z̈2| , otherwise

(23)

where K1 = ki(i = 1, 2, 3, 4), different body accelera-
tion levels correspond to varying penalty coefficients, which
increase incrementally; coefficients a1, a2, a3 correspond to
different gradients of body acceleration.

Considering vehicle design and safety margins, the safe
range for suspension dynamic travel should be set to not
exceed 80% of the vehicle’s maximum designed suspension
travel, to prevent damage to the suspension system under
extreme conditions. The corresponding constraints are as
follows:{

rf 1 = −K2 |zs − zw|2 , |zs − zw| ≤
∣∣kf zf max

∣∣
rf 2 = −100K2 |zs − zw|2 , |zs − zw| >

∣∣kf zf max
∣∣
(24)

where kf represents the suspension safety travel coefficient,
set at 0.8, while zf max denotes the maximum travel designed
into the suspension system.

The vehicle’s design load refers to the maximum weight
that a manufacturer specifies can be safely supported by the
vehicle, including the weight of the vehicle itself, passen-
gers, and cargo. In designing the load-bearing capacity of
wheels and tires, both static and dynamic loads are consid-
ered. Dynamic load refers to additional forces exerted on
the tires under vehicular motion, arising from conditions
such as acceleration, emergency braking, or driving over
uneven surfaces. To prevent wheel slippage or tire damage
under these conditions, the total load-bearing capacity of the
wheels should neither fall below 60% nor exceed 150% of
the vehicle’s design load under normal driving conditions.

The constraints related to tire dynamic load are as follows:
rd1 = −K3 |q− zw|2 , kd minDL ≤ Dt + Ds ≤ kd maxDL
rd2 = −2K3 |q− zw|2 , Dt + Ds < kd minDL or Dt

+Ds > kd maxDL
(25)

where Dt = kw(q− zw)+ cw(q̇− żw) is the dynamic load of
the tire;Ds = (ms+mw)g is the static load of the wheel;DL is
the standard design load of the single wheel, which is slightly
higher than the static load of the tire, kd min, kd max are the
minimum andmaximum load coefficients respectively, which
are set here as 0.6 and 1.5.
The design capabilities of actuators in active suspension

systems represent a fundamental constraint. The magnitude
and direction of control forces must be strictly limited to the
maximum andminimum force values achievable by the actua-
tors. Due to physical limitations of the actuators, the actuation
force of the suspension should not exceed its limit values, and
should minimize energy consumption while ensuring effec-
tive control. The constraints are defined within a two-tiered
penalty function as follows:

ru =

{
−ku1 |Fu|2 , if |Fu| ≤ |FuEco|

−ku2 |Fu|2 , otherwise
(26)

where K4 = kui(i = 1, 2), penalty coefficient of different
actuator output force.

IV. SIMULATION AND RESULTS ANALYSIS
This section details the simulation setup and testing environ-
ment created using Matlab/Simulink, designed to model the
response of an active suspension system under various road
conditions. The environment includes both road and active
suspension models. The agent was trained using a composite
road model, resulting in an improved TD3-PSC agent model
that incorporates physical safety constraints. To evaluate the
performance of the agent, the TD3-PSC model was com-
pared with traditional passive suspension systems and several
typical control strategies, including LQR, DDPG, and the
standard TD3 algorithm without physical safety constraints.
Simulations were conducted under identical conditions to
analyze the control effectiveness and performance of the
TD3-PSC agent in simulated road conditions.

A. IMPLEMENTATION DETAILS
The simulations employed a two-degree-of-freedom vehicle
active suspension model, with physical parameter details pro-
vided in Table 4. The core of the TD3-PSC consists of a dual
critic network and an actor network structure. An observation
space formed by six key state variables provides environ-
mental information to the agent. The dual critic architecture
reduces estimation bias by evaluating both state and action,
while the actor network generates optimal actions, ensuring
continuous action generation and adaptability to complex
environments. Table 5 lists critical hyperparameter settings.
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TABLE 4. Suspension model parameters.

TABLE 5. Agent hyperparameter.

B. COMPARISON AND ANALYSIS OF CONTROL
PERFORMANCE
To comprehensively evaluate the performance of the
TD3-PSC algorithm in active suspension control, compar-
isons were made with traditional passive suspension systems
and active systems utilizing LQR, DDPG, and the base
TD3 algorithm. Before fully evaluating the agent, in order
to verify the effect of extended state observations on the
agent’s performance, an ablation study was conducted in this
paper. First, the training reward and performance of the agent
under the TD3-PSC algorithm with and without extended
state observations were compared. Figure 6 shows the reward
curve during agent training in both cases.

In Figure 6, the green curve represents the instantaneous
reward with extended state observations, while the red curve
represents the instantaneous reward without extended state
observations. The bold lines indicate the rolling averages for
the corresponding conditions. The agent with extended state
observations exhibits a rapid increase in reward values during

FIGURE 6. Training reward curves for agents with and without extended
observations.

the initial training phase, with the rolling average demon-
strating better stability. This indicates that the extended
state observations significantly enhance the agent’s learning
efficiency and convergence speed, resulting in higher final
reward values. In contrast, the agent without extended state
observations shows a slower increase in reward values during
the initial training phase, with larger fluctuations in the rolling
average, indicating an unstable training process and poorer
final performance. Figure 7 illustrates the control effect on
vehicle body acceleration with and without extended state
observations.

FIGURE 7. Comparison of body acceleration with and without extended
observations in Class C pavement.

Figure 7 indicates that the agent trained with extended state
observations achieved a lower root mean square (RMS) value
for vehicle body acceleration compared to the agent trained
with basic observations. This demonstrates that extended
state observations enhance the agent’s ability to more effec-
tively control vehicle body acceleration, thereby improving
ride comfort. Additionally, the smaller fluctuations in the
green curve suggest that the agent with extended state obser-
vations exhibits greater stability in controlling vehicle body
acceleration, further enhancing passenger experience.

Figure 8 illustrates the reward curve variations during the
training process for different DRL algorithms. The curves
in the figure represent the instantaneous rewards and rolling
averages for each algorithm across different training itera-
tions. The DDPG algorithm shows a slow initial increase
in instantaneous rewards with significant fluctuations; the
rolling average indicates considerable instability and slow
convergence, resulting in relatively low final reward val-
ues. The TD3 algorithm exhibits a faster initial increase in
instantaneous rewards with moderate fluctuations; the rolling
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FIGURE 8. Comparison of training reward curves of different algorithms.

average demonstrates better stability and faster convergence,
leading to higher final reward values than DDPG. The
TD3-PSC algorithm shows the fastest initial increase in
instantaneous rewards with the smallest fluctuations; the
rolling average indicates the best stability and convergence
speed, resulting in the highest final reward values. The
TD3-PSC algorithm significantly outperforms the other two
algorithms in terms of learning efficiency, stability, and over-
all performance.

All systems were assessed under uniform experimental
conditions, specifically on standard Class B and C road sur-
faces, with a constant vehicle speed of 72 km/h. Performance
was analyzed by comparing graphs of vehicle body vertical
acceleration, suspension deflection, and tire dynamic load
to assess each control strategy’s effectiveness in reducing
vehicle vibration and improving ride comfort, as well as
their precision in responding to road irregularities. Notably,
in the graphical analysis of tire dynamic load, differences
between control algorithms might not be very pronounced,
potentially causing overlaps in the plotted curves. To address
this, a vertical translation plotting technique was employed
to ensure clear differentiation of each algorithm’s curve and
avoid excessive overlap, thereby enabling a more accurate
representation of the performance variations across control
strategies.

In the above simulation diagram for Class B pavement,
Figure 6 illustrates a notable performance of the TD3-PSC
algorithm in controlling vehicle body acceleration, achieving
an RMS acceleration of 0.0909 m/s2. This represents an
optimization of ride comfort by 87.06%, which outperforms
the LQR, DDPG, and TD3 algorithms by 76.96%, 61.89%,
and 41.28% respectively. Additionally, Figure 7 reveals a
slight increase in suspension deflection as a trade-off for
enhanced acceleration control. While this indicates a minor
negative impact on the suspension’s responsive flexibility,
it remains well within the safe design limits. As for the tire
dynamic load depicted in Figure 8, although TD3-PSC does
not significantly differ from other strategies, the analysis
confirms that the dynamic loads remain within a reasonable
operational range.

As depicted in Figure 9, the simulation results on Class
C road surfaces highlight the effectiveness of the TD3-PSC
algorithm in controlling vehicle body acceleration, with an

FIGURE 9. Body acceleration of different control methods on Class B
pavement.

FIGURE 10. Suspension dynamic deflection of different control methods
on Class B pavement.

FIGURE 11. Tire dynamic load of different control methods on Class B
pavement.

RMS value maintained at 0.2067. This optimization resulted
in an 85.29% enhancement in ride comfort, surpassing the
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FIGURE 12. Body acceleration of different control methods on Class C
pavement.

FIGURE 13. Suspension dynamic deflection of different control methods
on Class C pavement.

FIGURE 14. Tire dynamic load of different control methods on Class C
pavement.

LQR, DDPG, and TD3 algorithms by 73.81%, 43.72%,
and 32.14% respectively. Despite prioritizing ride com-
fort, which increased the suspension’s deflection, the peak

TABLE 6. Root-mean-square value of body acceleration under different
control conditions.

deflection at 6.8 seconds reached 0.094m without compro-
mising vehicle safety. In Figure10, this trend was consistent
with results from Class B surface tests, indicating that the
control strategy causes fluctuations in suspension deflec-
tion but remains within safe limits due to training guided
by physical safety constraints. Importantly, Figure 11 also
shows that the active control strategy does not have exces-
sive adverse effects on tire dynamic load. Combined with
the data in Table 6, these results validate the effectiveness
of the TD3-PSC algorithm in maintaining suspension sys-
tem stability and its generalizability across different road
surfaces.

V. CONCLUSION
This study has significantly enhanced the adaptability and
robustness of deep reinforcement learning algorithms in con-
trolling active suspension systems by integrating complex
stochastic road scenarios and physical safety constraints.
The TD3-PSC algorithm demonstrated superior control per-
formance on standard Class B and Class C road surfaces,
confirming its effectiveness in improving ride comfort and
driving safety through critical metrics such as body acceler-
ation, suspension deflection, and tire dynamic load. Notably,
the algorithm successfully reduced the RMS of body acceler-
ation while maintaining suspension deflection and tire loads
within safe and reasonable limits, ensuring vehicle stabil-
ity under complex road conditions. Future research will
focus on refining and optimizing physical safety constraints.
An adaptive physical safety constraint control strategy is
planned, which will progressively intensify restrictions on
physical safety constraints based on extensive interaction
between the agent and its environment over training episodes,
to regulate the agent’s behavior. Additionally, conducting
real-vehicle tests will be a crucial step to validate the
performance and reliability of the TD3-PSC algorithm in
real-world scenarios. These experiments are expected to
deepen the understanding of the algorithm’s practical value
and potential for commercial applications in real driving
environments.
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