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ABSTRACT Polyp segmentation is vital for early detection and treatment of colorectal cancer, significantly
improving patient prognosis. This paper proposes an efficient and precise polyp segmentation model called
the Partial Decoder Localization and Foreground-Background Refinement Network (PDLFBR-Net), which
simulates the human object recognition process. Specifically, PDLFBR-Net comprises three key modules:
the Cross-level Attention-enhanced Fusion Module (CAFM), the Position Recognition Module (PRM), and
the Foreground-Background Refinement Module (FBRM). The CAFM enhances feature representation by
fusing information from adjacent levels, providing more discriminative features. The PRMmodule simulates
the human recognition process by using a partial decoder to locate potential polyp tissues from a global
perspective. Subsequently, the FBRM is used to perform specific recognition, gradually refining the initial
prediction results through foreground and background focusing to achieve precise recognition. Extensive
experiments demonstrate that the proposed PDLFBR-Net model significantly outperforms existing state-
of-the-art models on five challenging datasets. On the Kvasir-SEG benchmark dataset, the mean Dice and
mean IoU values reached 93.7% and 89.5%, respectively, which represents an improvement of 0.4% and
0.6% compared to the best-performing state-of-the-art (SOTA) method.

INDEX TERMS Attention, convolutional neural network, polyp segmentation, partial decoder.

I. INTRODUCTION
Colorectal cancer is one of the malignant tumors with high
incidence and mortality rates worldwide. Early detection and
treatment are crucial for improving patient survival rates.
As an important precursor to colorectal cancer, the detection
and segmentation of polyps are critical steps in clinical prac-
tice [1]. Automated polyp segmentation technology assists
doctors in quickly and accurately identifying polyps during
endoscopic examinations, significantly enhancing the effi-
ciency of diagnosis and treatment. However, as shown in
Figure 1, there are a series of complex challenges in the polyp
segmentation task, which impose higher requirements on the
design of segmentation algorithms.
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Firstly, polyps exhibit significant diversity in terms of size,
shape, and color. Some polyps may appear spherical, flat,
or irregularly shaped, and their surface textures may vary
depending on the type. For example, adenomatous polyps
usually have a smooth surface, while serrated polyps have a
more complex surface structure. This diversity demands that
segmentation algorithms have strong generalization capa-
bilities to adapt to various polyp morphologies. Secondly,
the boundaries between polyps and surrounding tissues are
often unclear, making them visually difficult to distinguish.
In endoscopic images, polyp edges may appear blurry or
discontinuous due to lighting, viewing angles, or tissue
penetration, complicating accurate boundary detection. This
blurriness makes traditional edge detection methods inad-
equate for precisely locating polyp boundaries in complex
endoscopic environments. Additionally, endoscopic images
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have complex backgrounds, including structures like intesti-
nal folds, blood vessels, and luminal contents, which can
closely resemble polyps in color and texture. Variations in
lighting conditions and noise interference, such as liquid or
reflections on the lens, further complicate the background,
making it harder to differentiate polyps from the background.
Motion blur during endoscope operation and the dynamic
intestinal environment also leads to continuously changing
background structures, increasing the complexity of the seg-
mentation task. Therefore, developing algorithms that can
effectively handle these complexities is crucial for improving
the accuracy of polyp detection [2], [3].

FIGURE 1. Examples of polyp images: (a) and (b) small polyps. (c) and
(d) complex background (folds). (e) polyps with unclear boundaries with
surrounding tissue. The first row is the image, and the second row is the
Ground Truth.

Traditional polyp segmentation methods often rely on
manually designed features, making it challenging to handle
various complex scenarios and diverse polyp morphologies.
For example, early methods based on texture and shape
features [4], [5], while capable of segmenting polyps to
some extent, struggle with the diverse nature of polyps and
complex backgrounds due to the limitations of hand-crafted
features. In recent years, convolutional neural networks
(CNNs) have achieved great success in many fields [6],
[7], [8], [9], [10], [11], significantly enhancing the per-
formance of various tasks. Specifically, in the field of
image segmentation, the application of CNNs has markedly
improved the performance of polyp segmentation. Classic
architectures such as U-Net [12] and DeepLabV3+ [13]
effectively extract multi-scale features through fully con-
volutional network structures, achieving good segmentation
results. However, these methods primarily focus on global
feature representation, neglecting the capture of local details,
particularly in handling polyp boundary details and complex
backgrounds, resulting in noticeable shortcomings. Atten-
tion mechanism-based methods provide new insights for
polyp segmentation. For instance, Jha et al. [14] proposed
ResUNet++, which enhances feature representation by
incorporating residual units and attention mechanisms, but its
segmentation performance in complex backgrounds remains
limited. Zhai et al. [15] introduced attention fusion modules,
attention enhancement modules, and multi-view attention
modules, effectively enriching and optimizing feature repre-
sentation, but boundary details and handling blurry regions
still require improvement. Additionally, Mahmud et al.

[16] designed PolypSegNet, which enhances detail capture
through multi-scale feature fusion but still has room for
improvement in handling complex backgrounds and detail
preservation.

In this paper, we propose an innovative Partial Decoder
Localization and Foreground-Background Refinement Net-
work (PDLFBR-Net), aiming to enhance polyp segmentation
accuracy by simulating the global localization and local
refinement capabilities in human object recognition pro-
cesses. PDLFBR-Net consists of three key modules: Cross-
level Attention-enhanced Fusion Module (CAFM), Position
Recognition Module (PRM), and Foreground-Background
Refinement Module (FBRM). The CAFM module enhances
feature expression by integrating features from different
levels, enabling the model to capture more discrimina-
tive cross-level information. The PRM module uses partial
decoders to globally locate potential polyp regions, gener-
ating initial prediction maps. The FBRM module further
focuses on foreground and background, refining initial pre-
dictions through contextual reasoning to achieve precise
segmentation of polyp boundaries and details. In summary,
the main contributions of this paper are as follows:

1) This paper introduces the concept of contextual rea-
soning into the polyp segmentation task and develops a
new foreground and background refinement strategy, which
refines and distinguishes uncertain areas, thereby improving
the segmentation effect of polyp tissues.

2) This paper proposes a novel polyp segmentation method
named PDLFBR-Net. This method first performs cross-level
feature fusion, then uses partial decoders to locate polyp
tissues from a global perspective, and finally progressively
refines uncertain areas to obtain optimized polyp segmenta-
tion results.

3) The PDLFBR-Net method outperforms existing state-
of-the-art models on five benchmark datasets. Experimental
results demonstrate the superiority and robustness of our
method in complex scenarios.

II. RELATED WORKS
In the field of medical image analysis, polyp segmenta-
tion has always been an important and challenging research
topic [17], [18], [19]. Early detection and accurate segmen-
tation of colorectal polyps are crucial for the prevention of
colorectal cancer. In recent years, with the rapid development
of deep learning, many deep learning-based methods have
been introduced into the task of polyp segmentation and have
achieved significant results.

A. TRADITIONAL POLYP SEGMENTATION METHODS
Early methods for polyp segmentation were primarily based
on image processing and machine learning techniques. These
methods often relied on manually designed features and
rules, including edge detection, threshold segmentation, and
morphological operations. For example, Xia et al. [20] first
detected the preliminary region of interest (pROI) using a
technique similar to the Hough transform for preprocessing
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to eliminate the background. The image was then segmented
through two steps: a relaxation process to identify homoge-
neous regions and a tightening process to merge unnecessary
regions based on color differences in the CIE color space.
Wang [21] et al. proposed a new computer-aided detec-
tion (CAD) technique for detecting colorectal polyps. This
method utilized morphological and texture information of the
colon wall, quickly identifying suspicious regions through
local and global geometric information. Edge detection tech-
niques and a hypothetical elliptical polyp model were used
to quantitatively analyze the growth regions of suspicious
polyps, and false positives were eliminated by combining
extracted morphological and texture features. Jerebko et al.
[22] proposed a new method for colorectal polyp detection
based on symmetric curvature patterns. This method distin-
guished polyps from other structures by extracting symmetric
curvature features from candidate regions and combined
other features to improve the overall sensitivity of the detec-
tion system. However, due to the complex and variable shapes
and textures of polyps, these methods showed limited perfor-
mance in practical applications.

B. POLYP SEGMENTATION METHODS BASED ON
CONVOLUTIONAL NEURAL NETWORKS
The introduction of convolutional neural networks (CNNs)
has significantly propelled advancements in various
fields [23], [24]. In the field of medical image analysis, the
application of CNNs has also led to substantial progress in
polyp segmentation techniques [25]. U-Net [12] is one of
the earliest and most classic fully convolutional networks.
Its encoder-decoder structure effectively combines local and
global information, making it widely used in medical image
segmentation tasks. The basic architecture of U-Net includes
a symmetrical encoder and decoder structure, connecting
feature maps of corresponding layers in the encoder and
decoder through skip connections. This design allows U-Net
to retainmore detailed information during decoding, enabling
it to capture high-resolution local details while understanding
global context information, thus performing excellently in
various segmentation tasks.

Building on the successful application of U-Net, many
improved models have been proposed to further enhance
segmentation performance. For example, UNet++ [26]
redesigned the skip connections of the original U-Net by
introducing nested skip connection paths, further reduc-
ing the semantic gap between the encoder and decoder,
thereby improving the model’s expressive capabilities. The
multi-resolution feature fusion strategy of UNet++ allows
it to better capture fine-grained features when dealing with
complex medical images, significantly improving segmenta-
tion accuracy and robustness.

Additionally, ResUNet [27] is another improved model
based on U-Net. It combines the advantages of residual net-
works (ResNet) by introducing residual blocks in the encoder
and decoder, addressing the issue of gradient vanishing

during the training of deep networks. This design of ResUNet
not only improves the training efficiency of the network but
also enhances its ability to extract complex features, making
it particularly effective in handling medical images with com-
plex backgrounds and subtle structural differences.

These improved models based on U-Net, by introduc-
ing techniques such as skip connections, multi-scale feature
fusion, and residual blocks, have greatly enhanced the abil-
ity to capture fine-grained features, significantly improving
the performance of polyp segmentation. However, despite
these improvements performing well in specific scenar-
ios, researchers are still exploring other methods to further
enhance the accuracy and robustness of polyp segmenta-
tion. These methods include the design of new network
architectures, multi-modal fusion, the application of Gener-
ative Adversarial Networks (GAN), and the introduction of
attention mechanisms. For example, Poorneshwaran et al.
[28] innovatively applied conditional Generative Adver-
sarial Networks (cGAN) to the polyp segmentation task,
leveraging the powerful capabilities of GANs to gener-
ate more accurate segmentation results. Banik et al. [29]
proposed a multi-modal fusion network called Polyp-Net
for the automatic segmentation of polyps in colonoscopy
images. Polyp-Net combines Dual-Tree Wavelet Pooling
Convolutional Neural Network (DT-WpCNN) and Local
Gradient Weighted Embedding Level Set Method (LGWe-
LSM), improving segmentation accuracy while reducing
false positives. This method achieved excellent performance
on the CVC-Clinic dataset. Yue et al. [30] proposed an
Adaptive Context Exploration Network (ACENet) for polyp
segmentation in colonoscopy images. This network adopts
an encoder-decoder architecture, combining the Attentional
Atrous Spatial Pyramid Pooling Module (AASPP) module
andAdaptive Context Extraction (ACE)module to effectively
capture and fuse multi-scale features, improving the localiza-
tion and detection of polyp regions. Wei et al. [31] proposed
a new model called Shallow Attention Network (SANet) for
polyp segmentation in colonoscopy images. SANet reduces
the impact of image color on model training through color
exchange operations, enhances the segmentation quality of
small polyps using shallow attention modules, and introduces
a probability correction strategy during inference to balance
the imbalance of foreground and background pixels. Yin et al.
[32] proposed a Duplex Contextual Relation Network (DCR-
Net) for polyp segmentation in colonoscopy images. DCRNet
captures contextual relationships within and across images,
enhancing feature representation and thereby improving seg-
mentation accuracy. Zhou et al. [33] proposed a Cross-level
Feature Aggregation Network (CFA-Net) for polyp segmen-
tation. This network includes a boundary prediction network
to generate boundary-aware features and incorporates these
features into the segmentation network through a layer-wise
strategy. CFA-Net designs a two-stream segmentation net-
work that effectively handles scale variations and boundary
blurriness issues through Cross-level Feature Fusion (CFF)
and Boundary Aggregated Module (BAM).
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Overall, these diverse polyp segmentation methods,
through various technical means, further advance the field
and demonstrate the great potential and broad application
prospects of deep learning in medical image processing.

C. TRANSFORMER-BASED METHODS FOR POLYP
SEGMENTATION
Recent studies have introduced Transformer architectures,
combining them with CNNs to leverage their powerful global
feature extraction capabilities, further improving segmenta-
tion performance. Dong et al. [34] proposed a novel polyp
segmentation framework based on the Pyramid Vision Trans-
former (PVT), called Polyp-PVT. Unlike traditional CNN-
based methods, Polyp-PVT employs a Transformer encoder
to extract stronger and more robust features. Additionally, the
framework introduces three standard modules: the Cascade
Fusion Module (CFM), the Camouflage Identification Mod-
ule (CIM), and the Similarity Aggregation Module (SAM),
which capture high-level and low-level features of polyps
and effectively fuse them. Zhang et al. [35] proposed a
Hybrid Semantic Network (HSNet) for automatic polyp seg-
mentation. HSNet combines the advantages of Transformers
and Convolutional Neural Networks (CNNs) and captures
long-range dependencies and local details through the Cross
Semantic Attention Module (CSA), Hybrid Semantic Com-
plement Module (HSC), and Multi-Scale Prediction Module
(MSP). Liu et al. [36] proposed a novel Cross Attention and
Feature Exploration Network (CAFE-Net) for polyp segmen-
tation. CAFE-Net addresses issues such as small polyp target
loss, fine-grained detail recovery, and limited multi-scale
feature aggregation capability through the Feature Supple-
ment and Exploration Module (FSEM), Cross Attention
Decoding Module (CADM), and Multi-Scale Feature Aggre-
gation Module (MFA). Yue et al. [37] proposed a Boundary
Uncertainty Aware Network (BUNet) for automated polyp
segmentation. BUNet employs the Pyramid Vision Trans-
former (PVTv2) as the encoder, combined with the Boundary
Exploration Module (BEM) and the Boundary Uncertainty
Aware Module (BUM) to handle the diversity in polyp size
and shape, as well as boundary ambiguity.

Although these methods have achieved good results in
polyp segmentation, there is still room for improvement.
In this study, we developed a polyp segmentationmodel based
on the Transformer architecture, utilizing partial decoders
and attention mechanisms, surpassing existing methods on
multiple public datasets.

III. THE PROPOSED METHOD
This paper designs a Partial Decoder Localization and
Foreground-Background Refinement Network (PDLFBR-
Net), which includes three key modules: the Cross-level
Attention-enhanced Fusion Module (CAFM), the Position
RecognitionModule (PRM), and the Foreground-Background
Refinement Module (FBRM). The CAFM enhances fea-
ture discrimination by fusing information from adjacent
levels. The PRM uses a partial decoder to locate potential

polyp tissues from a global perspective. The FBRM gradu-
ally refines the initial prediction results through foreground
and background focusing, thereby achieving precise polyp
segmentation.

A. OVERVIEW
The proposed structure of the PDLFBR-Net network is shown
in Figure 2. Given an RGB image with a resolution of [h,
w], it is first input into the PVTv2 [38] backbone network
to extract multi-level features, denoted as Fi, where i ∈

{1, 2, 3, 4}. The resolution of the feature maps is [h/2i+1,
w/2i+1], and the number of channels of the feature maps is
{64, 128, 320, 512}, respectively. These features are then
input into the CAFMmodule for feature enhancement. Subse-
quently, a partial decoder is applied to the high-level features
{F4, F3, F2} to locate potential polyp tissues. Finally, the
Foreground-Background Refinement Module is used to grad-
ually refine the boundaries and details of the polyp tissues,
achieving accurate polyp segmentation.

B. CROSS-LEVEL ATTENTION-ENHANCED
FUSION MODULE
We propose a module named Cross-level Attention-enhanced
Fusion Module. CAFM enhances the model’s ability to
capture cross-level contextual semantic information by fus-
ing feature maps from adjacent levels. Through this fusion
method, CAFM not only improves the diversity and accuracy
of feature representation but also enhances the model’s ability
to handle various complex polyp shapes. Specifically, the
CAFM module uses upper-level features to generate atten-
tion maps, which are then expanded and used to enhance
the current level’s features. As shown in Figure 3, we con-
sider both channel attention mechanism and spatial attention
mechanism [8]. In the channel attention mechanism, channel
attention is applied to the upper-level features to calculate
the weight of each channel. Through this step, the model can
identify which channels contain more useful information and
enhance the features of these channels. In the spatial attention
mechanism, spatial attention is applied to the upper-level fea-
tures to calculate the weight of each pixel’s position. Through
this step, the model can focus more on key positions in the
image and ignore irrelevant background areas. In the channel
attention mechanism, we use global max pooling and global
average pooling. In the spatial attention mechanism, we use
global max pooling along the channel and global average
pooling along the channel.

TakingFa andFb as examples, whereFa represents the cur-
rent level features and Fb represents the upper-level features,
the channel attention map AMc is expressed as:

AMC = Softmax(AMCA ⊕ AMCM) (1)

AMCA = Conv1(Conv1(A(Fb))) (2)

AMCM = Conv1(Conv1(M(Fb))) (3)

where A() denotes the global average pooling operation, M()
denotes the global max pooling operation, Softmax() denotes
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FIGURE 2. Overview of the proposed PDLFBR-Net.

the softmax function, and Conv1() denotes the convolution
operation with a kernel size of 1×1. ⊕ denotes element-wise
addition.

The spatial attention map AMs is expressed as:

AMS = Softmax(Conv3(Concat(AMSA,AMSM))) (4)

AMSA = P(UP(Fb)) (5)

AMSM = R(UP(Fb)) (6)

where P() denotes the global average pooling operation along
the channel, R() denotes the global max pooling operation
along the channel, Conat() denotes the concatenation opera-
tion, UP() denotes the 2x upsampling operation, and Conv3()
denotes the convolution operation with a kernel size of 3×3.
Next, expand the channel attention map AMc and the

spatial attention map AMs to the same size as Fa, and then
perform element-wise multiplication with Fa respectively to
obtain the attention-enhanced feature map FAE. Then, per-
form a residual connection with Fb and conduct a convolution
operation to obtain the final output FCAFM. The formal rep-
resentation is as follows:

FCAFM
= Conv3(FAE

⊕ Conv3(UP(Fb))) (7)

FAE
= Fa ⊗ Expand(AMC) ⊗ Expand(AMS) (8)

Here, Expand() represents the expansion operation, which
expands the size of the input feature map to be the same as
Fa. ⊗ represents the element-wise multiplication operation.
As shown in Figure 2, the obtained enhanced features are
denoted as FCAFM

i , where i ∈{1,2,3}.

C. POSITION RECOGNITION MODULE
Given the four levels of features extracted by the backbone
network, the purpose of the Position Recognition Module
(PRM) is to locate the polyp tissue and generate the ini-
tial prediction map. This paper adopts a partial decoder for

FIGURE 3. Cross-level attention-enhanced fusion module.

localization. As described in the literature [39], the low-
level features, due to their high resolution, typically require
more computational resources but contribute less to perfor-
mance improvement. In contrast, high-level features are rich
in semantic information and can accurately determine the
location of the polyps. Therefore, as shown in Figure 4,
the PRM module integrates the high-level features {F4, F3,
F2} to calculate the initial polyp segmentation map. Specif-
ically, to improve computational efficiency, we first use a
CR convolutional block to adjust the channel numbers of
the three feature maps to 32, resulting in the adjusted fea-
ture maps {RF4, RF3, RF2}. Next, we use upsampling and
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FIGURE 4. Position recognition module.

element-wise multiplication operations to reduce the discrep-
ancies among the multi-level features, obtaining the feature
maps {NF4, NF3, NF2}, which are formalized as follows:

NF4 = Conv3(UP(RF4)) (9)

NF3 = Conv3(UP(RF4)) ⊗ RF3 (10)

NF2 = Conv3(UP(UP(RF4))) ⊗ Conv3(UP(RF3)) ⊗ RF2
(11)

Next, through upsampling and concatenation operations,
the initial prediction map P is generated. The formal repre-
sentation is as follows:

KF3 = Conv3(UP(Conv3(Concat(NF4,NF3))))) (12)

P = Conv1(Conv3(Concat(KF3,NF2)))) (13)

D. FOREGROUND-BACKGROUND REFINEMENT MODULE
The primary function of the FBRM module is to refine the
prediction results of cross-level fused features. Given the
different roles of the foreground and background in saliency
prediction, we use foreground focus maps and background
focus maps to refine the cross-level fused features, and then
combine these two refined results for saliency prediction.
As shown in Figure 5, the foreground focus map is the output
obtained by applying a sigmoid function to the upper-level
prediction map, denoted as FMi. The background focus map
is obtained by subtracting the foreground focus map from an
all-ones matrix and is denoted as BMi. The formal represen-
tation is as follows:

FMi = UP(Sigmoid(PMi+1)) (14)

BMi = E − FMi (15)

where E is an all-ones matrix, Sigmoid() is the Sigmoid
function. PMi+1 is the prediction map of the i+ 1 level.

Next, we expand the foreground focus map and back-
ground focus map along the channel dimension to match
the size of the i-th cross-level fused feature FCAFM

i . Then,
we perform element-wise multiplication between these focus
maps and the cross-level fused feature FCAFM

i to obtain the
foreground focus feature FFi and background focus feature
BFi, respectively. The formal representation is as follows:

FFi = FCAFM
i ⊗ Expand(FMi) (16)

BFi = FCAFM
i ⊗ Expand(BMi) (17)

Humans can achieve precise object recognition through
careful observation. This observational process typically
involves comparing the texture and semantic features of the
object region with suspected regions, ultimately making a
judgment. This paper simulates this process by constructing a
context reasoning module, which performs context reasoning
on both foreground focus features and background focus
features. The foreground focus features primarily concentrate
on the foreground region, using foreground cues to focus
more on uncertain areas within the foreground, thus making
more accurate judgments. Correspondingly, the background
focus features mainly concentrate on the background region,
utilizing background cues to identify polyp pixels in the
background.

As shown in Figure 2, in our PDLFBR-Net model,
the decoding process involves progressively predicting and
upsampling from higher to lower levels. During this process,
the resolution of the prediction map increases, but the bound-
aries of polyp become increasingly blurred. The foreground
focus and background focus methods can effectively address
these blurred boundary regions, refining them to obtain a
clear polyp segmentation map.

As shown in Figure 6, the Context Reasoning Module
(CRM) consists of three reasoning branches. Each reasoning
branch includes a 1 × 1 convolution for channel reduction,
an hk×1 convolution and a 1×hk convolution for local feature
perception, and a 3×3 dilated convolution with a dilation rate
of dk for context exploration. Here, hk is set to 3, 5, and 7, and
dk is set to 2, 4, and 8 for k ∈ {1, 2, 3}, respectively. Next, the
input featuremapFinput first undergoes a 1×1 convolution for
channel reduction, producing a residual branch. The residual
branch is then concatenated with the outputs of the three
reasoning branches along the channel dimension, followed by
a 3 × 3 convolution for feature fusion, ultimately generating
the output Foutput of the CRM. This design allows the CRM
module to achieve a larger receptive field, enabling it to per-
ceive rich contextual information. The formal representation
is as follows:

Foutput = Conv3(Concat(Conv1(Finput),b1,b2,b3)) (18)

bk=DConv3dk (Convhk×1(Conv1×hk (Conv1(Finput)))))

k = {1, 2, 3} (19)
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FIGURE 5. Foreground-background refinement module.

where bk represents the inference result of the k-th reasoning
branch, Convhk×1() denotes the convolution operation with a
kernel size of hk × 1, and DConv3dk () represents the dilated
convolution with a kernel size of 3 × 3 and a dilation rate
of dk .

Finally, the foreground focus features and background
focus features are processed separately by the context rea-
soning module. The results of these two inferences are then
concatenated, and the concatenated result is processed by the
prediction layer. The processed result is then combined with
the upper-level prediction map PMi+1 through element-wise
addition, ultimately yielding the current level prediction map
PMi. The initial prediction map corresponds to the fourth
level prediction map PM4.
As shown in Figure 5, the prediction layer consists of four

convolutional layers. The first convolutional layer (Conv1)
reduces the number of channels by half, while the last con-
volutional layer (Conv3) adjusts the number of channels to 1,
resulting in the prediction layer output. It is noteworthy that,
to save computational cost, the prediction layer in the FBRM1
module includes only three convolutional layers; thus, the
third convolutional layer is depicted with a dashed line in the
figure.

E. LOSS FUNCTION
Our loss function is defined as follows:

L = LP + LPM (20)

Here, LP is the initial prediction map loss function, and
LPM is the prediction map loss function. LP is used to calcu-
late the loss between the initial predictionmapP generated by
the PRM module and the ground truth map GT. LPM, on the
other hand, is used to calculate the loss between the three
prediction maps {PM1, PM2, PM3} generated by the FBRM
module and the ground truth map GT. Their definitions are
as follows:

LP = LwIoU(P,GT) + LwBCE(P,GT) (21)

FIGURE 6. Context reasoning module.

LPM =

3∑
i=1

(LwIoU(PMi,GT) + LwBCE(PMi,GT)) (22)

Here, LwIoU represents weighted intersection over
union loss function. LwBCE represents weighted binary
cross-entropy loss function [40].

IV. EXPERIMENTS
In this section, we provide a detailed description of the
datasets, implementation details, and evaluation metrics.
We compare our model with existing state-of-the-art (SOTA)
models in terms of learning ability, generalization capability,
and qualitative results. Additionally, we present the compar-
ison results and validate the effectiveness of each module
through ablation experiments.
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A. DATASETS
In our experiments, we used five polyp datasets, includ-
ing Kvasir-SEG [41], EndoScene [42], CVC-ColonDB [43],
CVC-ClinicDB [44], and ETIS-Larib [45].
Kvasir-SEG is an open-access dataset of gastrointestinal

polyp images and their corresponding segmentation masks.
These data are manually annotated by doctors and verified
by experienced gastroenterology experts. EndoScene is a
cross-domain dataset covering various lesions of the digestive
tract, making it an important resource for lesion detection
and segmentation research. CVC-ColonDB is an endoscopic
image dataset focused on polyps found during colonoscopy.
This dataset includes 380 different images, covering various
types of polyp appearances, and is used to evaluate the per-
formance of polyp detection and segmentation algorithms.
CVC-ClinicDB is an endoscopic image dataset provided
by the Central Vision Center (CVC) in Barcelona, Spain,
containing a large number of polyp images. This dataset is
widely used for training and evaluating polyp segmentation
algorithms, featuring good representativeness and diversity.
ETIS-Larib is a high-resolution endoscopic image dataset
specifically designed for polyp detection and segmentation.
This dataset features high-quality images and precise anno-
tations, making it suitable for complex polyp segmentation
tasks. The detailed information of these datasets is summa-
rized in Table 1.

TABLE 1. The five datasets used in this work.

B. IMPLEMENTATION DETAILS
We adopted PVTv2 [38] as the backbone network for
PDLFBR-Net and implemented our model in PyTorch. All
models were trained and tested on a system with a sin-
gle NVIDIA RTX 4090 GPU with 24 GB of memory. All
images were resized to 352 × 352, and each batch contained
16 images. Random rotation, random scaling, horizontal flip-
ping, and vertical flipping were used as data augmentation
strategies. We optimized the parameters using the Adam
optimizer with an initial learning rate of 1e-4. In the Kvasir-
SEG andCVC-ClinicDB datasets, we randomly selected 80%
of the images for training, 10% for validation, and 10% for
testing. All images from the remaining three datasets were
used exclusively for testing.

C. EVALUATION METRICS
This paper utilizes seven commonly used evaluation metrics,
including the mean Dice coefficient (meanDice) [46], the
mean intersection over union (meanIoU), the mean absolute

error (MAE), the weighted F-measure (wFm) [47], the S-
measure (Sm) [48], the mean E-measure (meanEm), and the
maximum E-measure (maxEm) [49]. Among these, a smaller
MAE value indicates better performance, while larger values
for the other metrics suggest better segmentation quality.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
To fully verify the effectiveness of our proposed PDLFBR-
Net model, we compared it with twelve existing polyp
segmentation methods, including Unet [12], UNet++ [26],
PraNet [50], PolypPVT [34], SANet [31], UACANet [51],
CCLDNet [52], CFANet [33],M2SNet [53], CAFE-Net [36],
MLFF-Net [54] and MEGANet [55].

1) QUANTITATIVE COMPARISON
To validate the performance of the model, we conducted
quantitative comparative experiments on five datasets. The
Kvasir-SEG and CVC-ClinicDB datasets are ones the model
has been exposed to during the training phase (known
datasets). Parts of these datasets have been used to train
the model, so the model’s performance on these datasets
can reflect its learning capability. On the other hand, the
EndoScene, CVC-ColonDB, and ETIS-Larib datasets are
entirely new (unknown datasets) and were not seen by the
model during training. By testing the model’s performance
on these datasets, we can evaluate its generalization ability,
i.e., its capability to handle unseen data. By testing on both
types of datasets, we can comprehensively assess the model’s
performance in both known and unknown environments.

Tables 2 and 3 respectively present the quantitative com-
parison results of the proposed PDLFBR-Net model and
twelve state-of-the-art models on the Kvasir-SEG and CVC-
ClinicDB datasets. For ease of comparison, the best two
results are highlighted in red and blue. As shown in the tables,
our PDLFBR-Net model outperforms other models across
all evaluation metrics. For instance, compared to the classic
U-Net, themeanDice andmeanIoU values on the Kvasir-SEG
dataset are approximately 0.119 and 0.149 higher, respec-
tively; on the CVC-ClinicDB dataset, the meanDice and
meanIoU values are approximately 0.126 and 0.148 higher,
respectively. Similar advantages are observed for other
metrics.

Moreover, compared to the latest state-of-the-art model
CAFE-Net, our PDLFBR-Net model excels across all eval-
uation metrics. For example, on the Kvasir-SEG dataset, the
meanDice and meanIoU values are approximately 0.004 and
0.006 higher, respectively; on the CVC-ClinicDB dataset, the
meanDice and meanIoU values are approximately 0.006 and
0.004 higher, respectively. Similar advantages are observed
for other metrics as well. The new method employs the pow-
erful PVT as the backbone network to extract features and
utilizes well-designed modules to locate polyp positions and
refine polyp boundaries, resulting in superior performance.

To validate the generalization ability of the PDLFBR-Net
model, we conducted quantitative comparison experiments
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TABLE 2. Quantitative comparison results on the Kvasir-SEG dataset. ↑ indicates that higher values are better, while ↓ indicates that lower values are
better. The best two results are highlighted in red and blue, respectively.

TABLE 3. Quantitative comparison results on the CVC-ClinicDB dataset.

with state-of-the-art models on the EndoScene, CVC-
ColonDB, and ETIS-Larib datasets. The results are shown
in Tables 4, 5, and 6, respectively. As can be seen from the
tables, our method achieved the best performance on both
the CVC-ColonDB and ETIS-Larib datasets. On the CVC-
ColonDB dataset, the meanDice and meanIoU values of our
method are 0.007 and 0.006 higher, respectively, than those
of the second-ranked MLFF-Net model. On the EndoScene
dataset, although our method did not achieve the best results
in wFm, meanEm and maxEm, it still ranked second.

2) QUALITATIVE COMPARISON
The visual comparison of segmentation performance between
PDLFBR-Net and other SOTA models is shown in Figure 7.
PDLFBR-Net performs superiorly in various complex

scenarios. For example, in small polyp images (rows 1 and
2), PDLFBR-Net can sensitively capture small polyp targets
while effectively eliminating background noise, resulting in
higher accuracy. This is due to the model’s multi-scale feature
extraction capability, which accurately captures fine-grained
clues for target recognition. In complex background sce-
narios (rows 3 and 4), PDLFBR-Net can more precisely
distinguish between foreground and background information.
This is because our FBAM module infers from both fore-
ground and background within low-level features, refining
uncertain areas, and thereby achieving accurate polyp tissue
segmentation. Additionally, in scenarios where the fore-
ground and background are similar (row 5), uneven lighting
(rows 6 and 7), and multiple polyps (row 8), PDLFBR-
Net consistently performs outstandingly. These performance
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TABLE 4. Quantitative comparison results on the EndoScene dataset.

TABLE 5. Quantitative comparison results on the CVC-ColonDB dataset.

results fully demonstrate the superiority of PDLFBR-Net in
various complex scenarios.

E. ABLATION STUDY
In this section, we tested the various modules of our
model on five datasets to gain a deeper understanding
of our model’s performance. The three candidate mod-
ules are the Cross-level Attention-enhanced Fusion Module
(CAFM), the Position Recognition Module (PRM), and
the Foreground-Background Refinement Module (FBRM).
In Tables 7 and 8, the results for different configurations
are presented as follows: the #1 row shows the experimental
results after removing the CAFM module, the #2 row shows
the results after removing the PRMmodule, the #3 row shows

the results after removing the FBRMmodule, and the #4 row
shows the experimental results of the complete PDLFBR-Net
model.

From the data in the tables, it is evident that the
results in the #4 row are significantly better than those
in the #3 row, with the meanDice and meanIoU metrics
on the CVC-ClinicDB dataset improving by 0.036 and
0.049 respectively, and the structured measure Sm increasing
by 0.033. These improvements indicate that the inclusion of
the Foreground-Background Refinement Module helps the
model to more accurately distinguish polyp tissues, resulting
in clearer segmentation maps. Additionally, the results in the
#4 row are also better than those in the #1 and #2 rows, further
proving the importance of the CAFM and PRM modules.
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TABLE 6. Quantitative comparison results on the ETIS-Larib dataset.

FIGURE 7. Visual comparison between PDLFBR-Net and the latest polyp segmentation models: (a) Images, (b) GT, (c) Ours, (d) CCLDNet, (e) CFANet,
(f) M2SNet, (g) PolypPVT, (h) PraNet, (i) SANet, (j) UACANet, (k) UNet, (l) UNet++. Polyp regions are marked in white, non-polyp regions in black,
and the ground truth polyp contour is annotated with a red line.

In the final row, we can see that the PDLFBR-Net model,
which combines all three modules, achieves the best results.

The Grad-CAM heatmaps in Figure 8 clearly demonstrate
the good performance of the model. Through these heatmaps,
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TABLE 7. Ablation study results of different modules on CVC-ClinicDB and EndoScene Datasets. The best performance in each column is highlighted in
bold.

TABLE 8. Ablation study results of different modules on Kvasir-SEG, CVC-ColonDB, and ETIS-Larib datasets.

TABLE 9. Ablation study results of different supervision methods. The best performance in each column is highlighted in bold.

TABLE 10. Ablation study comparison results of different loss functions. The best performance in each column is highlighted in bold.

FIGURE 8. Grad-CAM heatmaps of CAFM2, PRM, and FBRM1 modules in
the model.

we can see that the model accurately focuses on the critical
areas of the images, indicating its excellent performance in
identifying and capturing important features. This visualiza-
tion not only validates the model’s effectiveness but also
further proves its potential in practical applications.

To assess the impact of different supervision methods
on network performance, we conducted an ablation study.
Table 9 presents the comparative results of this study. In the
table, ‘‘only LP’’ indicates the results when only the initial
prediction map is supervised, ‘‘only LPM’’ refers to the
results when only the three prediction maps (PM1, PM2,

PM3) generated by the FBRM module are supervised, and
‘‘ALL’’ represents the results when all the predictionmaps are
supervised simultaneously. As shown in Table 9, supervising
only the initial prediction map or only the prediction maps
leads to a decline in performance, while supervising both
simultaneously yields the best results.

To validate the effectiveness of the proposed hybrid loss
function, we conducted an ablation study [56]. Table 10
presents the comparative results of this ablation study. In the
table, ‘‘only BCE’’ represents the results using only the
weighted Binary Cross-Entropy (BCE) loss function, ‘‘only
IoU’’ represents the results using only the weighted Inter-
section over Union (IoU) loss function, and ‘‘BCE+IoU’’
represents the results using our proposed hybrid loss function.
As shown in Table 10, the overall performance of the IoU loss
function is slightly better than that of the BCE loss function,
while the hybrid loss function achieved the best results.

To further validate the necessity of the CRM module,
we conducted an ablation study. Table 11 presents the
comparative results of this study. ‘‘CRM1’’ represents the
performance when only a single 3 × 3 convolution is
used within the CRM module, while ‘‘CRM2’’ denotes the
network performance when using dilated convolutions with
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TABLE 11. Ablation study results of different CRM modules. The best performance in each column is highlighted in bold.

the same dilation rate (dilation rate of 2) and different ker-
nel sizes (3 × 3, 5 × 5, and 7 × 7) in three branches.
‘‘CRM’’ represents the CRM module proposed in this paper.
As shown in Table 11, CRM2 achieves comparable results to
CRM. This is because, despite having a fixed dilation rate,
CRM2’s increased kernel sizes allow for a larger receptive
field, enabling the capture of contextual information over a
broader range, thus resulting in good performance. In con-
trast, CRM1, which uses only a single 3 × 3 convolution,
shows a significant performance drop compared to CRM.

V. CONCLUSION
This paper presents a novel and efficient method for polyp
segmentation, named the Partial Decoder Localization and
Foreground-Background Refinement Network (PDLFBR-
Net). By designing the Cross-level Attention-enhanced
Fusion Module (CAFM), the Position Recognition Mod-
ule (PRM), and the Foreground-Background Refinement
Module (FBRM), PDLFBR-Net effectively simulates the
human object recognition process, achieving high-precision
polyp segmentation through global localization and refined
processing. In the CAFM module, we introduce a mecha-
nism that integrates features from adjacent levels, enhancing
the model’s ability to capture cross-level semantic infor-
mation, thereby improving its capacity to identify diverse
polyp characteristics. The PRM module utilizes partial
decoders to extract potential polyp regions from high-level
features, effectively locating the target areas. The FBRM
module further refines the foreground and background,
enhancing segmentation boundary accuracy through con-
textual reasoning, significantly improving the precision of
the final prediction. Extensive experiments on five chal-
lenging datasets demonstrate that our PDLFBR-Net model
significantly outperforms existing state-of-the-art methods in
terms of segmentation accuracy and generalization perfor-
mance. This result validates the superiority and robustness
of our method in handling complex polyp morphologies and
backgrounds.

In future research, we will focus on optimizing the com-
putational efficiency of PDLFBR-Net while maintaining
high segmentation accuracy. Additionally, we will explore
techniques such as self-supervised learning and domain
adaptation to enhance the robustness of this method under dif-
ferent imaging conditions. Specifically, we plan to adopt the
following strategies to optimize the computational efficiency
of PDLFBR-Net:

1) Model Pruning and Quantization: By employing model
pruning and quantization techniques, we aim to remove

redundant parameters and connections in the network, reduc-
ing the model’s complexity and computational load. Through
these techniques, we hope to significantly decrease the
computational resource requirements without significantly
affecting segmentation accuracy.

2) Lightweight Network Design: We will replace certain
modules of PDLFBR-Net with more lightweight network
structures. These lightweight networks can maintain high
accuracy while offering lower computational costs and faster
inference speeds.

3) Multi-Resolution Processing: We will implement a
multi-resolution processing strategy, where images are ini-
tially processed at a low resolution to quickly obtain prelimi-
nary segmentation results. Subsequently, fine processing will
be performed on local high-resolution areas. This approach
can reduce the overall computational burden while ensuring
segmentation accuracy.

Additionally, to enhance the robustness of PDLFBR-Net
under different imaging conditions, we plan to conduct the
following research:

1) Self-Supervised Learning: We will explore self-
supervised learning techniques, leveraging large amounts of
unlabeled medical images for pre-training. This can help us
learn more feature representations and improve the model’s
performance when labeled data is limited.

2) Domain Adaptation: We will investigate domain adap-
tation techniques by introducing domain-adversarial training
or domain transfer learning. These techniques will enable
the model to adapt to data distribution changes under differ-
ent imaging devices and conditions, thereby enhancing the
model’s robustness.

3) DataAugmentation Techniques:Wewill employ various
data augmentation techniques, such as rotation, translation,
scaling, and contrast adjustment, to generate diverse training
data. This will enhance the model’s generalization ability
under different imaging conditions.
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