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ABSTRACT Human monitoring using radar systems operating in the GHz regime has generated significant
interest as a result of the increasing availability of commercial radar systems. These sensors offer all weather
performance, the ability to measure range and velocity, and the protection of anonymity. However, visually
inferring activities present in radar data is often challenging without prior knowledge. Here, we address this
by implementing a radar-to-pose system that converts the raw radar data into human poses, such that human
forms can be identified and activities monitored. In comparison to prior works, we place our radar in an
elevated position, more in line with the placement of existing real world monitoring systems e.g. cameras,
or emerging systems, e.g. quadcopters. We present an ensemble predictor network and apply it to a number
of human poses of increasing complexity, reporting accuracies in excess of 90%, and verify the generalizable
nature of our approachwith unseen validation data.We perform an in depth explainability analysis, exploiting
the unique mappings created by our radar placement and network structure to confirm that the network is
making rational predictions based on the true location of limbs.

INDEX TERMS Convolutional neural network, mmWave radar, human pose detection, explainable A.I.,
FMCW.

I. INTRODUCTION
The increasing availability of commercial radar systems
operating in the GHz regime has recently generated sig-
nificant interest in these sensors for human monitoring.
Compared to optical sensors, radar based imaging techniques
offer superior all weather performance and reduced privacy
concerns. Additionally, the native ability of radars to record
additional information, notably range and velocity, makes
them appealing in several contexts. However, the often poor
transverse resolution of commercially available radar systems
means that the data they produce is often not directly human
interpretable. This limitation is increasingly overcome with
the use ofmachine learning approaches which convert the raw
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data into a more intuitive form, such as in the case of Human
Activity Recognition (HAR).

Radar based HAR has seen significant recent progress
with a common approach for recognition being the
use of an activities micro-Doppler signature [1], [2],
[3], [4]. Additionally, a large number of neural net-
work architectures have been presented including; atten-
tion augmentation [5], [6], [7], [8], transformers [9], [10],
convolutions [11], [12], [13], [14], [15], custom layers [16],
and GANs to produce synthetic training data [17]. Whilst
most HAR implementations feature a single radar, work has
been presented showing the use of multi-radar distributed
systems [18], [19], [20]. A complete analysis of radar based
HAR is beyond the scope of this work and the reader is
directed to relevant review sources, [21], [22], [23].

In comparison to HAR, the problem of converting
radar data to human pose is less well investigated and
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presents unique challenges. Unlike HAR where activities
can typically be recognised retrospectively, pose requires
that the estimation takes place on roughly a frame-by-frame
timescale. Additionally, whilst most HAR implementations
only identify if a single action has taken place somewhere
within the radar’s Field-of-View (FoV), pose estimation
requires the simultaneous spatial localization of several
joints. This spatial localization is challenging given that
many readily available radars operate as, or approximately
as, 2D sensors. For instance, sensors which can determine
the range and bearing (azimuth) to an object, but not its
relative elevation. Despite these challenges, radar-to-pose has
been achieved in a number of regimes notably, in looking
through walls [24]. Single radar implementations of through
wall systems have employed convolutional and transformer
based networks [25], [26], [27], [28] and been used to identify
the presence of multiple individuals [29], [30]. In this context,
prior work has also examined reducing the complexity of the
prediction networks [31] and performing HAR once a pose
has been established [32].
Beyond through-wall applications, radar-to-pose has also

been realised using micro-Doppler [33] and radar point
cloud processing [34], [35] with other works focusing on
shaping of input data [36] or optimizing predictions in
cluttered environments [37]. In addition to single radar
implementations, dual or multi-radar systems have also been
reported. These multi sensor systems often overcome the
2D sensing nature of radars by rotating co-located sensors
to orthogonal orientations such that they produce horizontal
and vertical projections of the environment [38], [39],
[40], [41]. Other implementations have explored distributed
radar systems that view an area from multiple co-plannar
perspectives [42], [43].

Inherent to the problem of radar-to-pose is a mechanism
for capturing the ground truth position of limbs to create
training labels for the radar data. This is most commonly
achieved by widely available depth camera based image-
to-pose systems such as the Microsoft Kinect [32], [44] or
Intel RealSense [45] which have the benefit of being readily
available. However, the accuracy of the ground truth positions
output by these systems is often dependent on, occlusion,
the operating environment, and the quality of the image-to-
pose predictor being implemented. These limitations can be
mitigated by using multiple cameras [40] or by using camera
based motion capture technology which relies on optically
tracking markers on a special garment [28], [46]. However,
the use of multi-camera systems introduces challenges
around cost, synchronisation, calibration, and cluttering the
radar environment.

Existing radar-to-pose implementations focus on radars
mounted on tripods co-planar with the ground. This is in
contrast to most real world monitoring systems, e.g., security
cameras, which are typically mounted in an elevated position.
A limitation associated with the co-planar approach is that
without the use of multiple or spatially separated radars,
azimuthally symmetric human poses appear degenerate to

FIGURE 1. A conceptual representation of the experimental scenario.
A mmWave radar is placed in an elevated position and declined at a 45

◦

angle. This results in measurably distinct ranges R0 and R1 along the Z
axis of objects within the Field-of-View. A markerless motion capture suit
was worn by participants to record ground truth limb positions which
were synchronised to the radar data by means of a time tagger system.
The radar data was processed to output range-azimuth and
range-Doppler depictions of the scene.

2D line sensors. Here, as shown conceptually in Fig. 1,
we extend the prior work on single radar-to-pose detection
by implementing a regime based on a single mmWave radar
placed in an elevated position. In comparison to prior dual
radar works using orthogonally rotated radars, our scheme
allows a single radar with only range and azimuth sensitivity
to measure a 3D space. This is achieved by projecting the
elevation component into a range difference as shown in
Fig. 1 R0 and R1. Additionally, this scheme improves the
occlusion resistance of the radar for most human actions.
We make use of a camera-free inertial sensor based motion
capture suit to record ground truth limb positions without the
aforementioned challenges and with cm scale accuracy.

We present an ensemble predictor network which features
13 parallel independent networks for joint prediction and
apply it to a number of human poses of increasing complexity.
We experimentally evaluate the performance of this network
and comment on the impacts of limb size and range of motion
when making pose predictions. Additionally, we demonstrate
the generalizable nature of our approach by applying a
trained network to outdoor validation data featuring unseen
individuals and backgrounds. Further, in contrast to prior
works, we perform an explainability analysis on our network
by using a novel ablation technique. This technique allows us
to visualize the features of the input data which the network is
using to make predictions. When combined with our unique
radar placement, this analysis allows us to confirm that the
network is making rational predictions based on the true
location of limbs in the radar data.
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II. EXPERIMENT AND NETWORK ARCHITECTURE
Our experimental setup is depicted conceptually in Fig. 1.
We made use of a Texas Instruments TIDEP-01012 cascade
Frequency Modulated Continous Wave (FMCW) radar. This
radar consists of 4 AWR2243 radar modules each with
3 transmit and 4 receive channels monitoring an ≈ 70

◦

azimuthal FoV. The modules are arrayed together in series
to create a 12 × 16 Tx/Rx system. We operated our
radar in a MIMO configuration summing over the elevation
channels to improve the signal to noise ratio of the data.
This configuration created a linear virtual antenna array
with 86 elements having a boresight azimuthal resolution of
1.4

◦

and no direct elevation resolution. The radar operated
in the 77-81 GHz range with a bandwidth of 3.95 GHz
corresponding to a range resolution of ≈ 3.6 cm. For the full
radar specifications see supplementary materials S1.

At the start of each frame a trigger signal from the radarwas
conditioned into a TTL pulse by a Stanford Research Systems
DG645 digital delay generator. This pulse was passed to
the GPIO pins of a Raspberry Pi, which by means of a
Python script, timestamped the pulse. Additionally, the first
TTL pulse received by the Pi generated a UDP message that
was passed through the local network of the WiFi router to
the control PC. This UDP message was used to commence
recording of the motion capture suit data in sync with the
radar. The motion capture data was recorded using a marker
free mocap system specifically, a Rokoko smartsuit pro 2
which communicated by WiFi with the control PC via the
local network of the router.

Each frame of radar data was acquired in a 200 ms
period and consisted of a 468 × 128 × 86 data structure
with the format; samples-per-chirp, chirps-per-frame, virtual
channels. By taking Fourier transforms along each axis of
the data a range-azimuth-Doppler structure was created. This
data structure was then used to create a two-dimensional
range-azimuth representation of moving objects in the scene
by summing over the non-zero Doppler components of
the range-azimuth-Doppler data. Similarly, a range-Doppler
representation was created by summing the azimuthal com-
ponents. By representing the radar data as two-dimensional
structures we were able to implement a neural network
designed around convolution layers which are known for
being effective in extracting features from image type data.

We present a network architecture built on an ensemble
predictor. Specifically, in contrast to prior works where a
single network is used to predict the position of all joints
in the skeleton, we employ an ensemble of 13 identical
independent networks, one for each joint. By maintaining
independence between the networks, we could ensure that
they learnt features in the radar data rather than becoming
dependent on the inputs of companion networks. The
structure of these networks is shown in Fig. 2. This
ensemble approach means multiple joints can be identified
simultaneously through network parallelization. Further,
since each network is responsible for only a single joint,
simpler networks can be used which reduces computation

FIGURE 2. A summary of the network structure, here a single joint
predicting network is shown. The networks take in range-azimuth and
range-Doppler depictions of the scene grouped into stacks
of 3 consecutive frames. Using convolution and pooling the inputs are
reduced to a common dimensionality and concatenated. Additional
convolution and pooling is applied to reduce the data to a dense latent
space which is flattened and connected to a dense layer. The final dense
layer contains 3 nodes corresponding to the X,Y, and Z coordinates of the
joint.

time when making estimates. Additionally, by discretizing
the problem to individual coordinate outputs across multiple
networks we are able to better isolate the features in the data
used by the networks to make predictions, aiding in network
explainability. The networks take in range-azimuth and
range-Doppler depictions of the scene grouped into stacks
of 3 consecutive frames which introduces a constant offset
of 600 ms in the predictions. Using convolution and pooling
the inputs are reduced to a common dimensiotabnality and
concatenated. Additional convolution and pooling is applied
to reduce the data to a dense latent space which is flattened
and connected to a dense layer. The final dense layer contains
3 nodes corresponding to the X,Y, and Z coordinates of the
joint.

To train the networks, the ground truth coordinates of
all joints from the motion capture suit were normalized to
values between −1 and 1 based on the FoV of the radar.
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Further, the positions of all of the body joints were expressed
in terms of their locations relative to the position of the
head and re-normalized to span between −1 and 1. This was
done to ensure that even small relative motions, such as arm
movements during walking, are seen as significant changes
in label values as opposed to small fluctuations around the
global position of the joints [47]. The convolutional layers
used ReLu activation whilst the final output layer used a
tanh activation to match the −1 to 1 range of the training
labels. Training loss was calculated as the root-mean-square
error between the output of the network and the training
label whilst using the Adam optimizer. The networks were
monitored whilst being trained for at least 50 epochs and
the best performing networks selected. A flowchart of this
process is given in supplementary material S2.

III. RESULTS
Before conducting our experiments we verified that the
motion capture suit would not provide an anomalously large
radar return, see supplementary material S4. Additionally,
informed consent was gained from all trial participants.
To verify the functionality of our approach we first consider
the case of arm motion in a single position. We select
this action to explore the functionality of the network in
characterising small features e.g. hands within a relatively
local space. The participant was positioned in the centre of the
2.5×2×2.5 (X,Y,Z)m region of a squash court illuminated by
the radar. A squash court was selected to mitigate the impact
of clutter from the environment. The radar was placed in an
elevated position using an observation balcony overlooking
the squash court with an R0 value of≈ 4.8 m. The participant
laterally raised an extended arm from a rest position at their
side to over their head. This motion was repeated for both
arms individually as well as both arms together. An initial
dataset of 1296 frames was gathered for training the network,
with an additional 432 frames gathered for validation.

Figure 3 shows a pose skeleton predicted by the network
for a frame of validation data. The inset subpanel shows a
reference photo of the pose from the perspective of the radar.
The coloured dots in the skeleton correspond to the ground
truth positions of the joints. The coloured lines indicate the
predicted skeleton. The good overlap between the predicted
and ground truth joint positions confirms the ability of the
network to learn the relationship between the data from
the elevated radar and the 3D positions of joints, even for
cases of relatively little training data. A video showing the
networks predictions on all validation data is available as
supplementary material S5.

Table 1 quantifies the agreement between the predicted and
ground truth skeletons on a per-joint-per-coordinate basis.
The table shows overall errors of 2.0, 1.4, and 1.0 cm for
the X,Y, and Z axes respectively, in line with previously
reported single radar-to-pose systems [48]. A root mean
squared error analysis is given in supplementary material S3.
These values confirm the viability of elevated radars for
human pose prediction. Table 1 also illustrates that accuracy

FIGURE 3. The skeleton predicted by the network for single location arm
movements. The dots correspond to the ground truth positions of the
joints, whilst the lines correspond to the network predictions. The
subpanel shows a reference photo of the pose from the perspective of the
radar. The figure has been plotted using the same perspective as Fig. 1.

TABLE 1. Per-coordinate-per-joint error for arm motion in a single
position.

is not necessarily uniform across all joints or axes despite
all predictors sharing the same structure and training regime.
Notably, the mean validation error and associated standard
deviation is largest for the hands in the Z axis. This is
consistent with both the small radar cross section of the
hands [49], [50], [51] as well as hand motion in the Z axes
having the largest range of motion in this case. Each network
in the ensemble takes ≈ 9 µs (on an Nvidia 3090 GPU)
to make a prediction on a single frame. Given that this
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is less than the 200 ms frame acquisition time, real time
processing would be feasible with sufficient optimization of
the implementation.

Having confirmed the viability of our system we examined
its ability to characterise an individual at arbitrary locations
within the FoV. The network was retrained on a larger dataset
of 10800 training frames (with 576 validation frames) of an
individual walking within the FoV of the radar. In comparison
to lateral arm movements, walking represents the movement
of a large feature (the body) throughout a large range of
motion. Figure 4 shows pose skeletons predicted by the
network. Note that two separate frames of validation data
for the same individual have been plotted on the same axes.
The inset subpanel shows a reference photo of the pose
from the perspective of the radar. The coloured dots in the
skeleton correspond to the ground truth positions of the joints.
The coloured lines indicate the predicted skeleton. The good
agreement between the predicted and ground truth skeletons
demonstrates the ability of our ensemble network architecture
to generalize to multiple activities. A video showing the
networks predictions on all validation data is available as
supplementary material S6.

FIGURE 4. The skeleton predicted by the network for a single individual
walking. The two skeletons correspond to a single individual at two
different points in time. The dots correspond to the ground truth
positions of the joints, whilst the lines correspond to the network
predictions. The subpanel shows a reference photo of one of the poses
from the perspective of the radar. The figure has been plotted using the
same perspective as Fig. 1.

Figure 5 quantifies the error associated with the walking
case. Specifically, each panel corresponds to an axis with the
coloured lines and the bottom x-axis of each panel showing

the fraction of validation predictions within a given absolute
error. The upper x-axis maps the absolute error to a relative
accuracy based on the field of view. The dashed lines show the
average error and accuracy associated with an 80% threshold
for each coordinate. Figure 5 visualises the distribution of
errors associated with each joint and axes showing that for
this case, on average, 80% of network predictions are within
36, 32, and 7 cm of their true values for the X,Y, and Z axes
respectively. When considered relative to the total FoV of the
radar, these errors represent network prediction accuracies of
93%, 92%, and 99% respectively. Comparing table 1 to Fig. 5
shows that adding the requirement of general localization
to the network somewhat impacts performance, particularly
in the X and Y axes where the change in the scope of the
motion is the most significant. Further, in contrast to table 1,
the errors associated with low radar cross section joints in the
body, e.g. the hands, is not significantly different from the
overall localisation error. This implies that for cases where
the relative motion of body joints is small, the distribution
of errors across the ensemble network will be approximately
uniform.

Next we examine a case where the relative motion of body
joints is large in the context of general localization. The
participant was placed at 20 pseudo random locations within
the FoV and performed a ‘clapping’ action by cyclically
moving their extended arms coplanar with the floor from an
outstretched position at their sides to in front of their chest.
For each location within the FoV this motion was repeated in
4 directions facing; towards the radar, away from the radar,
in the positive X direction, and, in the negative X direction.
A dataset of 11376 training frames (with 576 validation
frames) was used for training the network.

Figure 6 shows pose skeletons predicted by the network.
Note that two separate frames of validation data for the
same individual have been plotted on the same axes. The
inset subpanel shows a reference photo of the pose from the
perspective of the radar. The coloured dots in the skeleton
correspond to the ground truth positions of the joints. The
coloured lines indicate the predicted skeleton. The distinct
poses of the predicted skeletons in Fig. 6 demonstrates the
networks ability to reconstruct individuals at a variety of
angles and positions within the FoV of the radar. A video
showing the networks predictions on all validation data is
available as supplementary material S7.

Figure 7 visualises the distribution of errors associated
with each joint and axes for the clapping case in the same
manner as Figure 5. For the clapping case, on average,
80% of network predictions are within 28, 23, and 3 cm of
their true values corresponding to accuracies of 94%, 94%,
and 99% for the X,Y, and Z axes respectively. Comparing
Figs. 5 and 7 it can be seen that although the later case
exhibits a small improvement in 80% average accuracy, the
spread of errors across the joints is much larger. This spread
of errors can be characterised by a set of networks predicting
the global position of otherwise stationary joints, such as
the head and body, and networks predicting the position of
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FIGURE 5. The fractional joint wise error associated with a single individual walking. Panels a), b), and c) show the error associated with the X,Y, and Z
coordinates respectively. The coloured lines and the bottom x-axis of each panel show the fraction of validation predictions within a given absolute
error. The upper x-axis maps the absolute error to a relative accuracy based on the field of view. The dashed lines show the average error and accuracy
associated with an 80% threshold for each coordinate.

FIGURE 6. The skeleton predicted by the network for a single individual
clapping in several directions. The two skeletons correspond to a single
individual at two different points in time. The dots correspond to the
ground truth positions of the joints, whilst the lines correspond to the
network predictions. The subpanel shows a reference photo of one of the
poses from the perspective of the radar. The figure has been plotted using
the same perspective as Fig. 1.

joints with large motions relative to the head, in this case
the joints in the arms. The set of networks predicting joints
with small relative movements cluster together, exhibiting
similar accuracies, and so they dominate the overall 80%
average. By contrast, networks predicting joints with large

relative motion, and in particular those joints with small
radar cross sections, exhibit larger errors in prediction. This
distribution of errors is closely related to the radar cross
section of human limbs, since this directly impacts the
visibility of the limbs as features in the training data and
highlights one of the challenges of using relatively low power
consumer radars for human pose estimation.

A. NETWORK ANALYSIS AND DISCUSSION
To validate our approach we perform two additional studies
on our system. First, we apply the trained network to
data featuring an unseen background and an unseen human
subject. The new environment consisted of placing the radar
outside of a first story window to view a street below.
This configuration is analogous to both existing monitoring
systems e.g. security cameras, and emerging systems, such
as pose monitoring from drones [52], [53]. The height of the
radar above ground, the acquisition time of the radar frames,
and the absence of clutter from the scene was maintained
from the training scenarios. Supplementary information S8
contains additional details on the new environment. An
individual who was not present in the training data then
walked within the FoV of the radar. Figure 8 shows pose
skeletons predicted by the network. Note that two separate
frames of validation data for the same individual have
been plotted on the same axes. The inset subpanel shows
a reference photo of the pose from the perspective of the
radar. The coloured lines indicate the predicted skeleton.
Note that no ground truth is available as the participant
was not wearing the motion capture suit. This decision was
made to confirm that the network had learnt inherent human
features, as opposed to suit features, and that the network
would be robust against real world metallic clutter such as
keys, phones, and jewellery. Qualitative examination of Fig. 8
shows skeletons of comparable quality to those of Fig. 4
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FIGURE 7. The fractional joint wise error associated with a single individual clapping. Panels a), b), and c) show the error associated with the X,Y, and Z
coordinates respectively. The coloured lines and the bottom x-axis of each panel show the fraction of validation predictions within a given absolute
error. The upper x-axis maps the absolute error to a relative accuracy based on the field of view. The dashed lines show the average error and accuracy
associated with an 80% threshold for each coordinate.

FIGURE 8. The skeletons predicted by the network for a single individual
who was not in the training data whilst in an outdoor environment. The
two skeletons correspond to a single individual walking outdoors at two
different points in time. The lines correspond to the network predictions.
No ground truth is available as the subject was not using the motion
capture suit. The subpanel shows a reference photo from the perspective
of the radar. The figure has been plotted using the same perspective
as Fig. 1.

confirming that with sufficiently diverse training data and
adherence to salient factors such as the height above ground
of the radar and environmental clutter our approach could be
generalized to a wide range of scenarios and individuals.

Second, we exploit the unique characteristics of our
radar placement and ensemble network to conduct a novel
ablation analysis. The ablation study we performed focused
on validation data collected from the walking trial but
could be applied to any of the cases we performed. The
first phase of the ablation analysis was to determine which
of the two network inputs is more significant in pose
prediction. To compare the importance of the range-azimuth
input to the range-Doppler input, each was sequentially
set to zero and the performance of the pretrained network
on the walking data evaluated. It was found that whilst
removal of the range-Doppler data noticeably degraded the
performance of the network, the impact of removing the
range-azimuth input was more pronounced. This result is
consistent with the observation that the range-Doppler maps
do not natively encode azimuthal information about the
global location of objects. Consequently, the range-Doppler
input alone is insufficient to unambiguously determine
the azimuthal location of objects moving freely within
the FoV.

The next phase of the ablation study allows us to isolate
and identify the specific regions within the range-azimuth
input that are responsible for the networks predictions.
This is achieved by unambiguously projecting the ground
truth locations of the joints onto the range-azimuth map.
This procedure is enabled by the known trigonometric
relationships introduced by our novel radar placement and
the occlusion proof motion capture system we use. The
projection operation allows us to directly visualize the regions
of the range-azimuth maps which correspond to real joint
locations.

Figure 9 shows a ground truth skeleton projected onto
the range-azimuth map corresponding to the reference inset
seen in Fig. 4. Note how the height of the skeleton, i.e., the
difference between the head and the feet appears as a
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distribution in range due to the placement of our radar (R0 and
R1 in Fig. 1). Next, we apply the following operations:
i We generate a set of 213 binary masks, these masks
have a dimensionality of 256 × 256 to match the
range-azimuth input and consist of randomly assigned
4 × 4 regions of either 1 or 0.

ii The single range-azimuth frame shown in Fig. 9 is
multiplied by the set of masks to create 213 modified
frames.

iii The modified frames are passed through the pretrained
network and the new predictions recorded.

FIGURE 9. The activation maps for the head and left foot predicting
networks. The ‘floor’ of the figure shows the range-azimuth
representation of the scene. The skeleton is projected onto the
range-azimuth using only the ground truth data. The coloured risers show
the ground truth positions of the joints on the activation maps. The figure
has been plotted using the same perspective as Fig. 1.

iv A3×213 element vector is created by calculating the dif-
ference between each component of the new predictions
and the original prediction for the unmodified frame.

v This vector is then treated as a list of weights
corresponding to how much a given mask impacts the
networks prediction.

vi Each of the binary masks is then multiplied by its
corresponding weight (minus the average of all weights)
to produce a data structure with size 3×256×256×213.

vii The data structure is summed along its final axis
to produce three activation maps with dimensionality
256 × 256.

viii This procedure is repeated for each network i.e., joint in
the ensemble.

The procedure outlined above is conceptually similar to a
simpler implementation of the LIME protocol [54] and is
essentially a decomposition of the range-azimuth frame into
a random pixel basis [55], [56]. By mapping the ground
truth joint positions onto the radar data, we are able to
associate distinct regions of pixels in the input with joints.
By then creating the activation maps for each network we
are able to determine which regions of pixels in the radar
data the prediction of the network is most responsive to.
Combined, these two observations allow us to infer that the
network is most responsive to features in the radar data which
correspond to the ground truth joint positions.

Figure 9 shows the total activation maps, i.e., the sum
of the three component activation maps, for the head and
left foot predicting networks for the corresponding range-
azimuth frame. These activation maps show which regions of
the range-azimuth frame are most influential in the networks
prediction process. The coloured risers in Fig. 9 show the
ground truth positions of the joints on the activation maps.
From Fig. 9 it can be seen that the network responsible for
predicting the location of the head is most sensitive to a region
of the range-azimuth frame nearest the true position of the
head. Similarly, the network responsible for predicting the
location of the left foot is most sensitive to a region near
the true position of the foot. Interestingly, both networks are
somewhat aware of the positions of other features, the feet
in the case of the head network and vice-verse for the foot
network. This reciprocity occurs despite the networks being
totally independent from one another but it is consistent with
the observation that for the walking dataset the position of
the feet and the position of the head are well correlated.
Here, we have chosen to only show the activation maps
for two networks for a single frame to aid in clarity of
visualization and explanation. However, we stress that we
have observed similar trends in activation across all networks
for all tested validation frames in the walking dataset. The
activation maps for the remaining networks and validation
frames are available as a video in supplementary material
S9. Additionally, we believe this type of mask based ablation
study to be compatible with most image processing neural
networks allowing for improved insight into the functioning
of image-to-pose type classifiers.

IV. CONCLUSION
We extend the prior work on single radar-to-pose detection by
implementing a regime based on a single elevated mmWave
radar. We present an ensemble predictor network and apply
it to a number of human poses of increasing complexity,
reporting accuracies in excess of 90%. We demonstrate that
the accuracy of network predictions is closely tied to the radar
cross section of limbs and their relative range of motion in
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a scene. By applying a trained network to unseen validation
data we demonstrate the generalizable nature of our approach.
We perform an in depth explainability analysis, exploiting
the unique mappings created by our radar placement and
network structure to confirm that the network is making
rational predictions based on the true location of limbs.
We believe that this work demonstrates the viability of pose
prediction using an elevated radar, a finding which could
see radars augment existing elevated security sensors, i.e.,
cameras, or be implemented on new elevated platforms, such
as quadcopter drones.
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