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ABSTRACT The anomaly detection in data links aims to identify the state of the link during data
transmission, which is a critical task for ensuring information transmission security. Most anomaly detection
methods focus solely on individual link characteristics, disregarding the inter-link structural information,
thus hindering effective generalization to graph-structured data. In this study, we introduce a Graph
Learning-based Data Link Anomaly Detection model (GLDAE) that considers both the link features and
the communication network structure. Specifically, GLDAE comprises a graph enhancement module, a link
feature autoencoder, a structure autoencoder, and a discriminator, enabling simultaneous learning of edge
features and the latent representation of the graph structure. Moreover, to enhance the model’s generalization
capability, we employ contrastive learning between the original graph and its enhanced version. Additionally,
to achieve joint learning of edge features and graph structure, we integrate edge feature embeddings and
structure embeddings as inputs to the decoder. Finally, utilizing the well-trained encoder to encode link
features and derive a new feature representation, we feed it into an MLP classifier to determine the link’s
status. Experimental evaluations were conducted on four authentic datasets (NF-UNSW-NB15, NF-UNSW-
NB15-v2, NF-ToN-IoT, NF-ToN-IoT-v2), comparing our model against state-of-the-art baseline models,
showcasing the substantial potential of our approach.

INDEX TERMS Anomaly detection, contrastive learning, data links, graph neural networks.

I. INTRODUCTION
The proliferation of communication networks has led to a
significant increase in the volume of communication data,
resulting in a rapid expansion of data flow and connections.
This surge in data transmission can give rise to various
issues [1], including link disruptions and data loss, which
can lead to incomplete and erroneous data transfer, ulti-
mately impacting the overall data analysis and application
efficacy. Consequently, ensuring the stability and reliability
of information transmission within data links is paramount
for transmission operations, with timely detection of anoma-
lies in data links emerging as a key area of concern.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

Early research efforts focused on utilizing traditional
machine learning techniques for anomaly detection in data
links. For instance, Lawal et al. [2] employed XGBoost
to compare the accuracy of signature-based and anomaly-
based binary and multi-class tasks in IoT data link analysis.
Sarhan et al. [3] assessed classification performance on an
enhanced link dataset using an Extra Tree ensemble classifier
comprising more than 50 random decision trees. Wang et al.
[4] introduced a novel clustering method (CCAD) tailored for
collective anomaly detection in network traffic. Xiao et al.
[5] adopted a strategy of transforming link data into bipartite
graphs and hypergraphs, leveraging graph embedding fea-
tures and original link attributes for anomaly detection. The
intricate nature and variability of data links pose challenges
for traditional methods in accurately identifying abnormal
link states and pinpointing the specific links affected by
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FIGURE 1. The proposed framework of GLDAE. First, the embedded representation of the graph is obtained by using an encoder, which generates
positive and negative samples of the graph’s edges. Further learning is conducted through mutual information comparison. The learned edge features
are then fused with the structural features, and these fused features are used to reconstruct the graph. Finally, the trained model is employed to
re-encode the test data to obtain the embedded representation, which is utilized to complete the downstream anomaly detection task.

anomalies, thereby impeding the maintenance efficiency of
data links.

As deep learning has advanced, researchers have increas-
ingly explored the application of neural networks for anomaly
detection in data links. Liu et al. [6] utilized Convolutional
Neural Networks (CNN) to extract statistical features from
network traffic for anomaly identification. Lunardi et al. [7]
employed autoencoders to detect network anomalies by ana-
lyzing the initial data packets of network flows, incorporating
adversarial training techniques.

Graph structures possess a robust capability to represent
non-Euclidean data. This area of research is gaining signifi-
cant traction, with ongoing advancements and a continually
solidifying theoretical foundation. Zhuo et al. [8] developed
an end-to-end detection model using Graph Convolutional
Neural Networks (GCN) to identify zombie network nodes
based on topological data. Lo et al. [9] directly classified link
features using E-GraphSAGE. Caville et al. [10] introduced
perturbed graphs based on E-GraphSAGE, derived feature
embeddings of links through mutual information between
edges and graphs, and applied anomaly detection algorithms
for classification. Xu et al. [11] integrated attention mecha-
nisms into encoders to generate graph embeddings, sampled
node subgraphs, employed positive and negative subgraphs
for contrastive learning, and conducted self-supervised detec-
tion of network flows. Wang et al. [12] introduced the Edge
Feature Attention Network (EGAT), which integrates edge
and attention mechanisms. In EGAT, the computation of
messages and attention weights encompasses all features
of nodes and edges. Chang et al. [13] enhanced Graph
Neural Networks (GNNs) by incorporating residual learn-
ing into E-GraphSAGE and EGAT, thereby maximizing the
utilization of available graph information. Zhang et al. [14]
proposed the Graph Inference and Distribution (GID) frame-
work, which combines network structure learning with GNN
parameter optimization in a two-layer learning framework.
GID employs multi-head cosine similarity and reconstruction
techniques to achieve improved graph structure representa-
tion. Altaf et al. [15] developed a model that constructs the
data link as a multi-edge graph structure. This model merges

the strengths of spatial and spectral GNNs, making it suitable
for complex multi-graph structures and capable of handling
multi-edge and multi-dimensional edge features.

Detecting anomalies in data links plays a crucial role
in safeguarding the security of information transmission.
Most existing studies concentrate on a single aspect of
the graph, such as edge features or structural properties.
However, the state of a link is intrinsically linked to both
aspects. To improve detection results, this study introduces
a novel graph-based model, named GLDAE (Graph Learn-
ing Framework for Data Link Anomaly Detection).The key
contributions of this research are outlined below:

1) We propose a novel model for data link state anomaly
detection based on graph learning. This model employs
a dual-channel network to extract features from both
edge attributes and structural characteristics of the
data link. By integrating these two types of features,
the model significantly enhances its expressive capa-
bility. For learning link features, we utilize graph
enhancement techniques to generate positive and neg-
ative examples from the original data, introducing
graph contrastive learning. The approach maximizes
the mutual information between edge and graph rep-
resentations to achieve more stable anomaly detection
for links.

2) We have developed a feature fusion module designed
to integrate edge features and topological structure
features learned by the dual-channel network. This
integration enhances the model’s capacity to under-
stand and interpret the data link comprehensively.

3) By combining the autoencoder architecture with the
graph neural network, we effectively leverage the
autoencoder’s nonlinear feature learning and data
dimensionality reduction capabilities alongside the
graph neural network’s feature extraction strengths.
This synergy results in richer and more meaningful
feature embeddings.

4) Both contrastive learning and autoencoders are
well-suited for unsupervised learning scenarios.
Our model, which integrates these two techniques,
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is particularly applicable in situations with limited
labeled data. It offers an unsupervisedmethod for learn-
ing low-dimensional representations of graph data.

5) The effectiveness of our approach, GLDAE, was eval-
uated on four network datasets, demonstrating superior
performance compared to existing technologies.

II. METHODOLOGY
This section presents a comprehensive overview of the
anomaly detection framework devised for data links. Illus-
trated in Fig. 1, the framework comprises a graph enhance-
ment module, edge feature and graph structure encoders,
decoders, feature fusion module, and discriminator. Initially,
the original graph undergoes transformation into an enhanced
graph through the graph enhancement module. Subsequently,
the encoders process both graphs, utilizing edge feature
embedding and mutual information from positive and nega-
tive graph pairs to compute the discrimination score. The edge
features and graph structure information are then integrated,
followed by the individual reconstruction of edge features and
graph topology. Ultimately, anomaly detection for data links
is executed using the amalgamated embedding features. The
detailed operational steps are outlined in Algorithm 1.

A. GRAPH AUGMENTATION
To enhance the model’s generalization capability, we ran-
domly shuffle the edges within the original link graph to
create augmented graphs for comparison with the initial
graph. The alteration involves solely rearranging the order
of edge features, resulting in X̃ ̸= X , while maintaining the
adjacencymatrix and edge count unchanged, ensuring Ã = A.

B. ENCODER
The model adeptly integrates structural and edge fea-
ture information to holistically learn the graph’s features.
By jointly acquiring the graph’s structural details and edge
features, the model ensures comprehensive learning. Given
that data link features are embedded within the graph’s
edge structure, k-hop depth sampling and aggregation tech-
niques are employed to capture edge feature information. The
E-GraphSAGE algorithm [9] is utilized for precise extraction
of edge features.

The algorithm takes as input the edge features {euv, uv ∈
ε}. Given that network flows solely consist of edge features
without node features, the node features are initialized as xv =
{1, 1, . . . , 1}, aligning the node feature vector’s dimension
with that of the edge feature vector. At the k-th layer, the
neighbor aggregation function combines the edge features of
sampled neighbors:

hkN (v) = AGGk ({ek−1uv ,∀u ∈ N (v), uv ∈ ε}) (1)

Here, ek−1uv denotes the edge feature of uv within the sampled
neighbors N (v) of node v at the (k − 1)-th layer, where
{ek−1uv ,∀u ∈ N (v), uv ∈ ε} represents the edges in N (v).
The aggregation function AGG can take various forms, such
as mean, pooling, or LSTM. For experimental simplicity,

Algorithm 1 Training Process of GLDAE
Input:

Graph G(v, e, x);
Edge features e;
Node features x;
Depth K ;
Differentiable aggregator functions AGG;

Output:
Embeddings zuv and Optimized E-GraphSAGE and GCN

encoder f
1: Initialize the parameters θ and w for the encoder f, the parameters
α and β,and the discriminator D;
2: for epoch←1 to T do
3: zKv , zKuv = f1(G, θ)
4: z̃Kuv = f1(G̃, θ)

5: gv = Readout(zKv ) =
n∑

k=1

zkv
n

6: D(zKuv, ev) = sigmoid(zKuv · w · gv)
7: D(̃zKuv, ev) = sigmoid (̃zKuv · w · gv)

8: Lcon = − 1
2n

n∑
i=1

(EGlogD(zKuv, gv)+ EG̃log(1− D(z̃
K
uv, gv)))

9: H l
i = f2(G, θ)

10: Z = αzuv ⊕ (1− α)Hi
11: Â = sigmoid(Z (Z )T )
12: X̂ = Z lj = ReLU (MLP(Z l−1j |W

l
j , b

l
j ))

13: Lstr =
∥∥A− Â∥∥

14: Lfea =
∥∥X − X̂∥∥

15: L = βLcon + (1− β)(Lstr + Lfea)
16: θ,w← Adam(L)
17: end for

this study opts for the mean aggregation approach, comput-
ing the average of edge features within the node’s sampled
neighbors. Subsequently, the aggregated information hkN (v)
is concatenated with the node embedding hk−1v from the
previous layer:

hkv = σ (W k
· CONCAT (hk−1v , hkN (v))) (2)

Here, W k denotes the weight parameter, CONCAT signi-
fies the concatenation function, and σ indicates a nonlinear
activation function, which could be ReLU, Tanh, Sigmoid,
or another function. After these operations, the final node
embedding hkv is obtained. The node embedding at the k-th
layer is then expressed as:

zKv = hKv (3)

The ultimate edge embedding zKuv is derived by concatenat-
ing the embeddings of nodes u and v:

zKuv = CONCAT (zKu , zKv ), uv ∈ ε (4)

Likewise, the edge embedding of the augmented graph z̃Kuv
can be acquired, and the comprehensive graph information is
gathered through the Readout function:

gv = Readout(zKv ) =
n∑

k=1

zkv
n

(5)

114822 VOLUME 12, 2024



C. Yang et al.: Graph Learning Framework for Data Link Anomaly Detection

TABLE 1. Statistics of datasets used in our experiments.

The local edge embeddings from both graphs and the
global graph information are inputted into the bilinear
discriminator for comparison, enabling the calculation of
corresponding scores:

D(zKuv, ev) = sigmoid(zKuv · w · gv) (6)

D(̃zKuv, ev) = sigmoid (̃zKuv · w · gv) (7)

w represents a trainable scoring matrix. The objective is
to enhance the mutual information between the edge embed-
dings of the original graph and the augmented graph, while
reducing the mutual information between the edge embed-
dings of the augmented graph and the original graph. The
binary cross-entropy (BCE) loss function is employed to
compute the loss for the current training iteration:

Lcon = −
1
2n

n∑
i=1

(EGlogD(zKuv, gv)+ EG̃log(1− D(̃z
K
uv, gv)))

(8)

where E represents entropy, EG denotes the data from the
original graph, and EG̃ denotes the data from the enhanced
graph. The first term represents the entropy of the edge
features from the original graph as well as the mutual infor-
mation of the entire graph passing through the discriminator.
Similarly, the second term represents the entropy of the edge
features from the enhanced graph and the mutual informa-
tion of the entire graph passing through the discriminator.
The objective of the discriminator is to maximize the first
term to 1 and minimize the second term to 0. In order to
capture structural information, Graph Convolutional Network
(GCN) is employed to project the initial network graph into

a lower-dimensional embedding space. The input comprises
the adjacency matrix A and the node feature matrixH (0)

i = x:

H l
i = GCN (x,A|W ) = ReLU (D̃

−
1
2

i ÃiD̃
−

1
2

i H l−1
i Wi) (9)

Here, Ãi represents the adjacency matrix with self-loops,
D̃i denotes the degree matrix of Ãi, Wi signifies the net-
work parameter of GCN, and ReLU (·) denotes the activation
function.

C. FEATURE FUSION
Enhancing detection accuracy requires leveraging both edge
features and graph structural information effectively. The
element-wise addition operation ⊕ is employed to merge
these components, with α ∈ (0, 1) controlling the weight
distribution for improved anomaly detection in data links:

Z = αzuv ⊕ (1− α)Hi (10)

D. FEATURE FUSION
The structural decoder utilizes matrix inner product to fuse
feature Z as input for reconstructing the edge features of the
original network graph:

Â = sigmoid(Z (Z )T ) (11)

Minimize the structural reconstruction error through train-
ing with the Mean Squared Error (MSE) loss function:

Lstr =
∥∥∥A− Â∥∥∥ (12)

Employing a Multilayer Perceptron (MLP) to reconstruct
the edge feature matrix of the graph, the edge feature matrix
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TABLE 2. Comparison of main parameter settings.

is reconstructed using the fusion feature Z as input:

X̂ = Z lj = ReLU (MLP(Z l−1j |W
l
j , b

l
j)) (13)

Minimize the error in edge features by utilizing the Mean
Squared Error (MSE) loss function during training:

Lfea =
∥∥X − X̂∥∥ (14)

E. OBJECTIVE FUNCTION AND ANOMALY DETECTION
The objective function is defined as follows:

L = βLcon + (1− β)(Lstr + Lfea) (15)

The objective function comprises several terms: Lcon
denotes the contrastive loss, Lstr signifies the reconstruction
error of the graph structure, and Lfea indicates the reconstruc-
tion error of the edge features. The parameter β ∈ (0, 1)
is utilized to adjust the weight between mutual information
contrast loss and reconstruction error.

Upon convergence of the objective function, the trained
encoder is employed to encode the link features, produc-
ing edge embeddings. These embeddings are subsequently
inputted into anMLP classifier to perform anomaly detection.

F. TIME COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of
GLDAE. For graph composition, constructing an enhanced
graph requires randomly rearranging the edges of the original
graph to achieve perturbation. Assuming there are V vertices
and E edges, the time complexity of this process is O(V +E).

Next, the two graphs are encoded by the encoder. Assum-
ing that GCN and E-GraphSAGE have L layers and each
layer has F filters, the time complexity of the encoder is
O(LF(V + E)).

For the feature fusion module, most operations are linear,
so the time complexity can be reduced to O(V + E).

In the reconstruction stage of the graph, the edge features
are processed using an MLP. Assuming there are L layers,
each with F neurons, and the input dimension is X , the time
complexity is O(LFX).

The adjacency matrix reconstruction uses the matrix inner
product operation. Assuming the matrix dimension isM×N ,
where M is the number of rows and N is the number of
columns, and considering the matrix can be calculated in par-
allel, the time complexity of this operation is approximately
O(N ).
For anomaly detection, which also uses an MLP, the time

complexity is O(LFX).

TABLE 3. Hyperparameter values used in GLDAE.

In summary, the total time complexity of the proposed
model can be approximated as O(2V + 2E + N + LF(2X +
V + E)).

III. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents a comprehensive evaluation of our
proposed method’s performance in detecting anomalies in
data transmission links and identifying the types of abnor-
mal attacks on data links. Furthermore, a series of ablation
experiments were performed to validate the efficacy of each
component within the model.

A. DATASETS
For the experiments, we utilized a dataset comprising univer-
sal NetFlow features [16] developed by Sarhan et al. [17],
[18]. Specifically, we selected four datasets: NF-UNSW-
NB15 [18], NF-UNSW-NB15-v2 [17], NF-ToN-IoT [18],
and NF-ToN-IoT-v2 [17]. Given the datasets’ extensive size,
a subset of the data was chosen for experimentation, with
abnormal samples representing approximately 4% of the
normal samples. Detailed information about the datasets, sup-
porting both binary and multi-class anomaly detection tasks
in data transmission, is provided in Table 1.

NF-UNSW-NB15 is derived from the UNSW-NB15
dataset [19] and comprises 8 features. Within the dataset’s
1,623,118 network flow records, there are 1,550,712 benign
samples and 72,406 abnormal samples, encompassing nine
types of attacks. NF-UNSW-NB15-v2 extends NF-UNSW-
NB15 by incorporating 39 features, resulting in an expanded
dataset of 2,390,275 samples, including 2,295,222 benign
samples and 95,053 abnormal samples.

NF-ToN-IoT is derived from the ToN-IoT dataset [20]
and comprises 8 features. Within the dataset’s 1,379,274
network flow records, there are 270,279 benign samples
and 1,108,995 abnormal samples, encompassing nine types
of attacks. NF-ToN-IoT-v2 extends NF-ToN-IoT by incor-
porating 39 features, resulting in an expanded dataset of
16,940,496 samples, including 6,099,469 benign samples and
10,841,027 abnormal samples.

B. BASELINES
The model is compared against three baseline methods for
binary and multi-class tasks in detecting anomalies in link
transmission and identifying abnormal link attacks.

E-GraphSAGE [9] is a Graph Neural Network (GNN)
technique that enhances the message passing mechanism of
the original GraphSAGE to effectively learn edge features.
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TABLE 4. Binary classification results.

TABLE 5. Multiclass classification results.

Anomaly-E [10] is a Graph Neural Network (GNN)-based
self-supervised approach that integrates E-GraphSAGE and
DGI, leveraging the maximization of local-global mutual
information through graph perturbation. Post-training, the
encoded edge features are fed into four anomaly detection
algorithms for classification, with the top-performing Iso-
lation Forest (IF) detection algorithm chosen as a baseline
method.

NEGSC [11] is a Graph Neural Network (GNN)-based
self- supervised technique that employs an encoder featur-
ing a graph attention mechanism to acquire edge features.
Subsequently, node sampling is utilized to create subgraphs
and generate positive and negative samples for contrastive
learning.

C. EVALUATION METRICS
To assess the model’s performance effectively, we employ
four evaluation metrics: Accuracy, Precision, Recall,
and F1-score. These metrics are commonly utilized in
various studies [21] and are well-suited for evaluat-
ing model performance in both binary and multi-class
tasks.

D. EVALUATION METRICS
The three baseline methods utilized the hyperparameter
configurations specified by the authors. Our model was
implemented using Python, PyTorch, and DGL. The experi-
mental setup was conducted on a platform with the following
specifications: 20 vCPU Intel(R) Xeon(R) Platinum 8457C,
100GB of memory, and an L20 GPU with 48GB. The weight
hyperparameters α and β were optimized within the range of
[0.1,0.9] through grid search, while the other hyperparame-
ters are outlined in Table 3. The training phase utilized 70%
of the data, with the remaining 30% of samples reserved for
testing and performance evaluation.

E. DATASETS PREPROCESSING
Before training the model, we preprocessed the dataset.
To facilitate subsequent operations, the numbers in the IP and
Port columns were converted to string types. Given that the
range of some feature values in the dataset is relatively wide
and the comparability between features is low, directly using
them without processing would lead to unstable calculations.
Therefore, we normalized each column of numerical features,
scaling the feature values to the range [0, 1]. The ‘‘Attack’’
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FIGURE 2. The results of different values of β on four datasets.

column,which is a categorical feature, cannot be used directly
as a label for multi-classification task training. Thus, it was
converted to a numerical feature using digital encoding based
on its categories.

F. EXPERIMENTAL RESULTS
This section presents the experimental results of our pro-
posed method. We commenced with binary classification
experiments to differentiate between normal and abnormal
network flows, followed by detailed multi-class experiments
to evaluate the model’s detection performance across differ-
ent network anomalies. Additionally, ablation experiments
were conducted to assess the effectiveness of each component
in the model.

To ensure the scientific rigor of our experimental results,
we conducted each experiment five times and then averaged
the results. To determine whether the differences in these
results are statistically significant, we performed a t-test on
the outcomes of these five experiments, assuming the data
follows a normal distribution. First, we established a null
hypothesis: there is no significant difference in the mean
results of the four evaluation indicators (Accuracy, Precision,
Recall, and F1) between GLDAE and the baseline method.
We then calculated the mean and standard deviation of the
results for both GLDAE and the baseline method. Using
these statistics, we derived the p-values. The results show
that the p-values for all evaluation indicators are less than the
commonly accepted significance level of 0.05. Consequently,
we reject the null hypothesis, concluding that there is a sig-
nificant difference between the evaluation indicators of our
proposed method and the baseline method. This difference is
not due to chance.

1) BINARY CLASSIFICATION RESULTS
In the binary classification experiments, GLDAE was com-
pared with E-GraphSAGE and Anomaly-E. Table 4 presents
the binary classification results of GLDAE and other baseline
methods across the NF-UNSW-NB15-v2, NF-ToN-IoT-v2,
NF-UNSW-NB15, and NF-ToN-IoT datasets in terms of
Accuracy, Precision, Recall, and F1-score. GLDAE outper-
formed the other baseline methods in all four metrics for
NF-UNSW-NB15-v2, NF-UNSW-NB15, and NF-ToN-IoT.
Specifically, compared to the best baseline method, GLDAE
showed improvements in Accuracy by 0.41%, 0.13%, and
2.04%, Precision by 0.56%, 0.12%, and 2.38%, Recall by

FIGURE 3. The results of different values of α on four datasets.

0.41%, 0.13%, and 2.04%, and F1-score by 0.45%, 0.12%,
and 2.88% respectively. However, in NF-ToN-IoT-v2, the
Precision and F1-score of GLDAE were lower than the best
baseline method, possibly due to the dataset’s significantly
higher number of abnormal samples compared to normal
samples, leading to insufficient model learning and misclas-
sification during classification.

2) MULTICLASS CLASSIFICATION RESULTS
In the multi-classification experiments, GLDAE was com-
pared with E-GraphSAGE, Anomaly-E, and NEGSC. Table 5
displays the multi-classification results of GLDAE and other
baseline methods in terms of Accuracy (Acc), Precision,
Recall, and F1 score on the NF-UNSW-NB15-v2, NF-ToN-
IoT-v2, NF-UNSW-NB15, and NF-ToN-IoT datasets. Across
these datasets, GLDAE outperformed the other baseline
methods in all four metrics in NF-UNSW- NB15 and NF-
ToN-IoT.Specifically, compared to the best baseline method,
GLDAE achieved improvements of 0.4% and 0.32% in Accu-
racy, 0.64% and 1.29% in F1 score, and 0.4% and 0.32%
in Recall. The Precision metric exhibited a more substan-
tial increase, with gains of 0.76% and 2.6%, indicating that
GLDAE canmore accurately distinguish between normal and
abnormal network types in these two datasets.

By analyzing the primary parameters of the experimental
models in Table 2, it is evident that GLDAE exhibits greater
diversity in network selection compared to the baseline mod-
els during the graph embedding stage. This diversity allows
GLDAE to leverage the unique characteristics of multiple
networks, whereas the three baseline models rely on a single
network to extract edge or topological structure features,
resulting in limited learned information. GLDAE combines
the strengths of E-GraphSAGE, which efficiently aggre-
gates edge features, and GCN, which captures comprehensive
graph structure information, through a dual-channel network.
This approach not only enhances the richness of the extracted
features but also introduces variability in parameter settings,
enabling the formation of different model combinations by
adjusting the parameters. Furthermore, by integrating graph
neural networks into the autoencoder architecture and utiliz-
ing MLP and matrix inner product for graph reconstruction,
GLDAE ensures robust graph embedding representation dur-
ing the encoding stage. Consequently, it learns richer and
more meaningful features compared to the baseline methods,
thereby enhancing overall model performance.
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TABLE 6. Results of ablation experiments.

In the NF-UNSW-NB15-v2 and NF-ToN-IoT-v2 datasets,
GLDAE exhibited a slight decrease in all four metrics com-
pared to the baseline methods, with variances ranging from
approximately 0.15% to 1.14%. Upon examination, it was
observed that the NF-UNSW-NB15-v2 and NF-ToN-IoT-v2
datasets consist of 39 features, while the NF-UNSW-NB15
and NF-ToN-IoT datasets contain only 8 features. This
observation suggests that GLDAE may be better suited for
scenarios with fewer feature dimensions, resulting in rela-
tively strong detection performance. Conversely, in scenarios
with higher feature dimensions, GLDAE may be susceptible
to overfitting due to the impact of feature dimensions, leading
to a marginal decline in detection performance.

3) PARAMETER SENSITIVE ANALYSIS
This section primarily investigated the influence of hyper-
parameters α (the fusion weight of edge features and graph
structural information) and β (the trade-off between con-
trastive loss and reconstruction loss) on the multi-class
detection performance of GLDAE across the NF-UNSW-
NB15-v2, NF-ToN-IoT-v2, NF-UNSW-NB15, and NF-ToN-
IoT datasets. The experimental findings are depicted in Fig.2
and Fig.3. During the experiments, leveraging the optimal α

and β values of the model, one parameter was held constant
while the other was systematically varied within the range of
(0,1) to assess the F1 score across different combinations of
α and β.

Across the four datasets, GLDAE demonstrated consis-
tent performance under varying values of α, with fluctuation
ranges of 2.18%, 1.22%, 1.29%, and 2.71% for the metrics.
This stability can be attributed to the feature fusion module,
which adeptly integrates edge features and graph structural
information to generate the final embedding features, thereby
bolstering the algorithm’s stability and efficacy. Similarly,
when considering different values of β, the model exhibited
stable performance across the four datasets, with fluctuation
ranges of 1.51%, 1.68%, 1.19%, and 3.48%. This suggests
that GLDAE possesses the advantage of being robust to
parameter variations.

4) ABLATION EXPERIMENTS
To assess the efficacy of each module in GLDAE, we con-
ducted a series of ablation experiments. In this context,
‘‘w/o-str’’ signifies the exclusion of GCN for graph struc-
tural feature learning, elucidating the significance of learn-
ing graph structural information. ‘‘w/o-ref’’ indicates the
omission of the decoder module for graph reconstruction,

confirming the decoder’s effectiveness. ‘‘w/o-aug’’ denotes
the absence of the graph augmentation module, highlighting
the impact of graph augmentation on the model. ‘‘w/o weight
α’’ signifies the elimination of the weight parameter for fea-
ture fusion, while ‘‘w/o weight β’’ represents the removal of
the weight parameters for contrastive loss and reconstruction
loss, underscoring the importance of the hyperparameters α

and β.
Table 6 illustrates the efficacy of each module in GLDAE.

The experimental findings reveal that the complete GLDAE
exhibited the most superior overall performance across the
four datasets, with only a slightly lower F1 score in NF-
UNSW-NB15, potentially attributed to the imbalance in
abnormal sample type distribution within the dataset. The
outcomes of ‘‘w/o-str’’ and ‘‘w/o-ref’’ indicate that learning
edge features or structural information features indepen-
dently did not yield as strong results as when both were
jointly learned, underscoring the importance of considering
both aspects for network integrity. The results of ‘‘w/o-aug’’
demonstrate that training solely on the original network graph
is less effective than incorporating augmented graphs, high-
lighting how contrastive learning of graphs can significantly
enhance the model’s generalization capability and detection
performance. Moreover, the outcomes of ‘‘w/o weight α’’
and ‘‘w/o weight β’’ suggest that appropriately adjusting
the loss function and feature fusion weights in the model
can effectively boost its performance. Overall, the analysis
indicates that all modules and hyperparameters of GLDAE
have positively contributed to its performance.

IV. CONCLUSION
This study explores anomaly detection in data links, intro-
ducing a graph-based approach named Graph Learning
Framework for Data Link Anomaly Detection (GLDAE).
GLDAE leverages edge features and graph structural infor-
mation to learn the latent feature representation of links for
anomaly detection in data links. Experimental assessments
were conducted on various netflow-based datasets, providing
quantitative and qualitative evidence of the efficacy of the
proposed methodology.

Although GLDAE is designed for anomaly detection in
data links, its capability extends to processing information
from both nodes and edges, rendering it suitable for vari-
ous other scenarios. Future research endeavors will explore
the temporal dependencies within data traffic and anomaly
categories in data links. Given the dynamic nature of real

VOLUME 12, 2024 114827



C. Yang et al.: Graph Learning Framework for Data Link Anomaly Detection

data links, integrating temporal information is crucial for
enhancing prediction accuracy.
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