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ABSTRACT In the realm of AI-enhanced programming education, there is growing interest in using such
tools to help students understand good coding principles. This study investigates the impact of ChatGPT
on code quality among part-time undergraduate students in introductory Java programming courses, who
lack prior Java experience. The source code of 16 students from the control group (without ChatGPT)
and 22 students from the treatment group (with ChatGPT) who completed identical programming exercises
focused on coding conventions was analyzed. Static code analysis tools assessed adherence to a common
coding convention ruleset and calculated cyclomatic and cognitive complexity metrics. The comparative
analysis shows that the ChatGPT-assisted group significantly improved code quality, with fewer rule
violations and reduced cyclomatic and cognitive complexities. The treatment group adhered more closely
to coding standards and produced less complex code. Violations primarily occurred in line length, final
parameters, and the extensibility of object-oriented programming (OOP). These findings suggest that
ChatGPT can be beneficial in programming education by helping students write cleaner, less complex code
and adhere to coding conventions. However, the study’s limitations, such as the small sample size and novice
status of participants, call for further research with larger, more diverse populations and different educational
contexts.

INDEX TERMS Programming education, ChatGPT large language models, static code analysis.

I. INTRODUCTION
ChatGPT, an advanced Large Language Model (LLM)
developed by OpenAI [1], has emerged as a significant tool
capable of generating human-like text based on the input it
receives. Since its introduction, ChatGPT has been leveraged
across various domains, including coding and programming
education. The capacity of ChatGPT to understand and
generate code snippets in response to natural language
prompts signifies a transformative potential for educational
practices, especially in enhancing learning experiences and
outcomes in programming courses. As the era of ChatGPT
unfolds, programming education must identify the most
effective ways to integrate and apply chatbots like ChatGPT
in the classroom. It is essential that students possess the
ability to evaluate the quality of AI-generated code while also
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enhancing their programming fluency and critical thinking
skills [2].

Code quality is a critical aspect of software development,
encompassing properties like code structure, code layout, and
statement quality. Previous studies have analyzed the static
code quality of student code [3], [4], [5], common mistakes
made by students when learning to program [6], and the
semantic style of code [7].

This study examines the impact of ChatGPT on the quality
of code produced by students in an introductory Java course.
It complements our previous qualitative study regarding
the suitability of ChatGPT for programming exercises and
typical application scenarios from students’ perspective [8].
In this survey-based study, we also asked students about the
additional required effort to adapt ChatGPT’s generated code
to the concrete programming task of an exercise, which they
predominantly assessed as either high or very high. Hence,
we can conclude that even when students use ChatGPT in an
assistive manner, the quality of a student’s submitted code
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for an exercise is an amalgamation of ChatGPT’s generated
code and the student’s own work. In the presented study we
employed static code analysis to detect rule violations to
Java coding standards as well as cyclomatic and cognitive
complexity in the source code of two groups and analyzed
the deviations in the measurements. One group of students
employed ChatGPT to implement the course’s programming
assignments, whereas the other group was devoid of access to
ChatGPT. Static code analysis tools such as Checkstyle [9]
and PMD [10] have also been used in previous studies
to ensure code in a project conforms to a defined coding
standard style and to identify flaws that could manifest
themselves as bugs.

The motivation behind this study is to provide insights into
the implications of ChatGPT on code quality, particularly in
an educational setting. Our findings may help educators tailor
teaching materials to promote students’ awareness of code
quality and code understandability when using ChatGPT.
To investigate the effect of ChatGPT onto code quality and
code understandability among students in an introductory
Java course, we formulated the following three research
questions:

• RQ1. What violations to coding conventions [11] can
be observed in the source code if students use or not use
ChatGPT for the course’s programming exercises?

• RQ2. What are the most violation-dense topics in
the programming exercises if students use or not use
ChatGPT for implementing them?

• RQ3. How does using ChatGPT influence the cyclo-
matic and cognitive complexity of the students’ pro-
gramming exercises’ source code?

This paper is organized as follows: Section II delves into
the related studies, while Section III outlines themethodology
employed in our research. Afterwards, in Section IV,
the results of our study are presented and specifically
their implications for programming education discussed in
Section V. Consequently, in Section VI, the potential threats
to the validity of our study are addressed, before concluding
our work and suggesting avenues for future research in
Section VII.

II. RELATED WORK
We identified four streams of related research. The first
stream involves investigating the quality of ChatGPT-
generated code. In a study conducted by Li et al. [12], the
authors examined the differences between human-authored
code and code generated by ChatGPT. They developed a
discriminative feature set and a dataset cleansing technique
to differentiate between the two sources and achieved high
accuracy in distinguishing ChatGPT-generated code from
human-authored code. In another study by Guo et al. [13],
the potential of ChatGPT in automating the code review
process and improving the quality of student-generated code
was evaluated. The results showed that ChatGPT outperforms
CodeReviewer in code refinement tasks, but the authors
also identified challenges and limitations, such as refining

documentation and functionalities due to a lack of domain
knowledge, unclear location, and unclear changes in the
review comments. Liu et al. [14] systematically studied the
quality of ChatGPT-generated code and found that although
it can generate correct code for a significant number of tasks,
there are still issues with wrong outputs, compilation or
runtime errors, and maintainability. The study also revealed
that ChatGPT’s performance drops significantly on new
programming tasks. The authors concluded that ChatGPT can
partially address these challenges and improve code quality
by more than 20%. Idrisov and Schlippe [15] evaluated the
performance of generative AIs, including ChatGPT, BingAI
Chat, GitHub Copilot, StarCoder, Code Llama, CodeWhis-
perer, and InstructCodeT5+, for six LeetCode problems of
varying difficulty in Java, Python, and C++ based on metrics
such as correctness, efficiency, and maintainability. Their
analysis revealed that Github Copilot generated the most
accurate Java and C++ code, while BingAI excelled in
Python. The authors concluded that AI-generated code can
be beneficial but often requires minor corrections, and AI
tools can still significantly speed up the coding process by
providing a solid starting point.

Studies examining the code quality of Github Copilot
are in the center of the second stream of research. Nguyen
and Nadi [16] assessed GitHub Copilot’s code recommen-
dations’ accuracy and comprehensibility across different
programming languages using LeetCode questions. They
evaluated Copilot’s suggestions in Python, Java, JavaScript,
and C, measuring accuracy with LeetCode test cases and
comprehensibility with SonarQube’s complexity metrics.
Results indicated Java had the highest accuracy at 57%,
while JavaScript had the lowest at 27%. Although Copilot’s
code was generally comprehensible and low in complexity,
issues included generating redundant code and relying on
undefined helper methods. The study’s limitations, such as
a small sample size and Copilot’s closed-source nature,
suggest the need for further research under varied conditions.
Yetistiren et al. [17] used the HumanEval dataset with
164 coding problems to evaluate GitHub Copilot’s code
generation based on validity, correctness, and efficiency.
They found that 91.5% of the generated code was valid,
28.7% correct, and 51.2% partially correct, with efficiency
comparable to human-written code in 87.2% of cases.
Removing docstrings reduced correctness from 28.7% to
19.5%. The study concluded that while Copilot can generate
valid and partially correct code, its accuracy is significantly
influenced by input quality, such as docstrings and function
names. The research highlights the need for further improve-
ments in AI code generation tools for better accuracy and
reliability.

The third stream of research examines the code quality
of novice programmers. Studies by Izu and Mirolo [4] and
Börstler et al. [18] revealed disparities in the definition and
prioritization of code quality among novice programmers,
with aspects such as performance, structure, conciseness,
and comprehensibility being evaluated differently. Izu and
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Mirolo [4] explored novice computer science students’
perceptions of code quality, finding that students prioritize
performance, structure, conciseness, and comprehensibility.
The authors suggested that teaching should encourage
discussion of best practices and personal preferences, rather
than simply proposing a set of rules. Börstler et al. [18]
investigated perceptions of code quality among students,
educators, and professional developers. The authors observed
that there was no common definition of code quality among
the groups, and that readability was the most frequently
named indicator of code quality.

Several studies have investigated the nature of com-
mon coding mistakes and quality issues among novice
programmers. Brown et al. [19], Karnalim et al. [20],
and Keuning et al. [21], [22] provide insights into the
frequent types of errors and code quality problems students
encounter, including neglect of coding conventions and
difficulties with program flow and modularization. These
studies collectively underscore the importance of targeted
instruction and feedback in helping students overcome these
challenges and highlight the potential role of automated tools
in educating students about code quality issues. Östlund et al.
[5] and Brown and Altadmri [23] point to the impact of
teaching assistants and changing instructional practices on
improvements in code quality. However, Breuker et al. [3]
revealed that despite these efforts, there is no significant
difference in code quality between first-year and second-
year students, suggesting a plateau in learning that needs
to be addressed through more effective teaching strategies.
Brown and Altadmri [23] conducted a study to determine the
frequency of common mistakes made by students learning
Java programming and to assess the accuracy of educators’
estimations of these mistakes. By analyzing data from nearly
100 million compilations across over 10 million program-
ming sessions from novice Java programmers, as well as
a survey among educators, the researchers discovered a
discrepancy between the estimates of educators and the actual
mistakes made by students. This finding implies that edu-
cators may need to enhance their understanding of common
students’ mistakes to improve their teaching effectiveness.

The last stream of related research explores the potential
of LLM-based chatbots such as ChatGPT in programming
education. In a recent study, Kazemitabaar et al. [24]
examined the suitability of OpenAI Codex on supporting
introductory programming for novice programmers. The
research aimed to determine whether novices could com-
prehend, modify, or extend code generated by these tools
without developing a reliance on technology. The study,
which involved young learners with no prior experience
in text-based programming, found that LLM-based code
generators significantly improved code-authoring perfor-
mance, suggesting that such tools do not necessarily result
in reliance on technology for coding tasks. Jacques [25]
investigated the influence of ChatGPT on the quality of
student-generated code in an introductory course in computer

science. Using a qualitative approach, Jacques demonstrated
how these tools could enhance students’ understanding of
coding concepts and critical thinking skills by providing
multiple solutions to problems, thereby increasing their
engagement with the programming language. The work con-
cluded that LLM-based coding tools could serve as valuable
resources in improving programmingStudents’ experiences
of using ChatGPT in an undergraduate programming course
education. Daun and Brings [26] identified both potential
benefits and drawbacks of using generative AIs chatbots
ChatGPT in software engineering education, noting that
while ChatGPT performed well in providing answers to
software engineering questions and literature references, its
unsupervised use could be detrimental. They recommended
supervised integration of these tools in educational practices
to leverage their benefits while mitigating potential risks.
Ali et al. [27] conducted a study in an educational context
using quantitative testing on 460 Google-certified Python
problems to evaluate the performance of various LLMs,
including GPT-3.5, GPT-4, Claude, Bard, and Bing. The
objective was to assess the efficiency and challenges of
ChatGPT in code generation tasks. Results showed GPT-4
with the highest score at 87.51%, followed by GPT-3.5 at
83.18%, and Bing at 81.96%, while Claude and Bard scored
71.43% and 76.16%, respectively. GPT-based models gener-
ated more concise and efficient code. The study concluded
that GPT-4 is the most efficient coding assistant but noted
that LLMs require human feedback to ensure accuracy and
face compatibility issues with existing code. Chen et al. [28]
employed a mixed-method approach combining surveys,
interviews, and performance metrics to evaluate ChatGPT’s
efficacy in higher education. The study aimed to assess
ChatGPT’s benefits and drawbacks in enhancing learning and
teaching. Findings showed that ChatGPT provided instant
feedback and explanations, boosting student engagement and
understanding. However, issues such as information accuracy
and potential over-reliance on AI, which might hinder critical
thinking development, were noted. The study concluded that
ChatGPT offers valuable educational support but should be
integratedwith caution to avoid negative impacts. Limitations
included a small sample size, short intervention duration,
and a focus on higher education, limiting generalizability
to other educational levels. Hartley et al. [29] assessed
ChatGPT’s role in supporting independent coding learning,
examining its effectiveness in delivering instructional mate-
rials, feedback, and planning. Through an evaluative case
study, they queried ChatGPT on self-regulated programming
learning and analyzed the responses. Findings indicated that
ChatGPT provided comprehensive, personalized guidance
on programming concepts, integrated multimodal informa-
tion, and offered detailed planning schedules. However,
it lacked interactivity and assessment capabilities. The
study concluded that ChatGPT holds significant potential
for personalized learning akin to one-on-one tutoring,
contingent on learners’ metacognitive skills. Limitations
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included ChatGPT’s current capabilities, focus on Python
programming, and the scope of the analysis. Rahman
and Watanobe [30] examined the use of ChatGPT in
programming education and research, conducting coding
experiments to assess its capabilities in code generation,
pseudocode creation, and code correction, validated by an
online judge system. Surveys revealed that students and
teachers found ChatGPT beneficial for personalized feedback
and solutions in programming education. However, concerns
arose about content accuracy and over-reliance on AI, which
might impair critical thinking. The study concluded that
ChatGPT can enhance programming education but must be
carefully integrated to prevent issues like diminished critical
thinking and cheating. Prather et al. investigated the effects
of generative AI tools on novice programmers, using a lab
study with 21 participants. The study observed students’
interactions with tools like GitHub Copilot and ChatGPT
during a programming task. While some students benefitted
from these tools by accelerating their learning, others faced
persistent metacognitive challenges, such as misunderstand-
ing problems and overestimating their skills. Generative AI
occasionally worsened these issues or introduced new ones,
like reliance on incorrect suggestions. Limitations include a
small sample size and focus on specific AI tools, potentially
affecting the generalizability of the findings.

III. METHODOLOGY
We conducted our study with two separate groups of
part-time undergraduate students in an introductory Java
programming courses. Each group’s course lasted five weeks
and followed a Python programming course. The students,
who had no prior experience with Java, were expected to
attend on-campus lectures, complete programming exercises
at home, and pass a written exam at the end of the
course. The programming exercises, which were identical
in both groups, covered a wide range of Java programming
concepts, including fundamentals, loops, object-oriented
programming, interfaces, collections, file handling, lambda
expressions, and multithreading. Both courses also empha-
sized the importance of code quality, i.e., the adherence
to coding conventions, by encompassing regular training
sessions designed to instruct students on avoiding code
smells. The lecturer provided individualized feedback and
graded the students’ programming exercises, which were
submitted on a weekly basis through the university’s online
teaching system. Although not mandatory, submission of
programming exercises was strongly encouraged to enable
students to benefit from the lecturer’s feedback. For a
positive grade of an exercises it was necessary that its
code compiled. Uncompilable code resulted in zero points.
Incorrect implementation of the programming task resulted
in point deductions.

The first group of student (n = 16, control group)
attended the course during the 2022 summer term, thus before
the public availability of ChatGPT. The second group of
students (n = 22, treatment group) attended it during the

TABLE 1. Students’ submissions of programming exercises.

2023 summer term. In this course, students could choose
for each programming exercise whether they wanted to use
ChatGPT. The decision to use or not use ChatGPT needed to
be given during submission of their programming exercise.
Table 1 shows the number of exercise submissions among the
two groups in chronological sequence of the exercises. In the
treatment group, with 63.2% GPT-4 was the predominant
version used compared to 36.8% for GPT-3.5. All students
used the free version of ChatGPT without subscription.

A. STATIC CODE ANALYSIS
We used Checkstyle [9] to perform static analysis of the
source code submitted by students and employed a predefined
ruleset [32], [33] to detect violations of ‘‘Oracle’s Code
Conventions for Java’’ [11]. The ruleset encompasses rules
specifying the correct implementation of established coding
conventions. These data were utilized to answer the first two
research questions (RQ1 and RQ2).

Furthermore, to address the third research question (RQ3),
we also calculated the cyclomatic and cognitive complexity
of the submitted exercise source code. Cyclomatic complex-
ity [34] is a quantitative measure that assesses the number of
linearly independent paths through a program’s source code,
reflecting its complexity and potential for modification. It is
often employed to predict a program’s maintainability, with
higher values indicating more intricate code that could be
harder to understand and modify. We determined this metric
using Checkstyle.
Similarly, cognitive complexity [35] is a quantitative

measure that evaluates the ease of comprehending code,
diverging from cyclomatic complexity by focusing on the
mental effort required to comprehend code rather than just
control flow complexity. Its calculation involves evaluating
elements such as the depth of nesting in control structures,
the complexity added by logical operators, and the presence
of multiple conditions within statements, all contributing
to the overall score. This metric was determined using the
SonarQube platform [36] for static code analysis.

B. STATISTICAL TESTS
Upon an initial assessment of the data, we discovered that
the distribution of rule violations and complexity measures
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TABLE 2. Definitions of the checked coding rules [31].

was right-skewed, which suggested a concentration of lower
values with a long tail extending towards higher values.
This skewness indicated that a considerable number of
students had fewer violations, while a smaller subset had
a higher number of violations. As the distribution of the
data was non-normal, traditional parametric tests, which
presume normality of the data distribution, were deemed
inappropriate for statistical analysis of the data. Parametric
tests rely on the assumption that the data are normally
distributed within each group being compared. However, the
right-skewed nature of our data violated this assumption,
which could lead to erroneous conclusions if such tests were
applied.

To address this issue, we opted for theWilcoxon Rank Sum
Test with continuity correction for our comparative analysis
between the two groups. This non-parametric test does not
assume normal distribution of the data and is particularly
well-suited for analyzing differences in median values
between two independent groups when the data are skewed.
It evaluates whether the distribution of rule violations or
complexity measures significantly differs between students
who used ChatGPT for the course’ programming exercises
(treatment group) and those who did not (control group).
The statistical significance was set to p ≤ 0.005 and we
formulated the following null hypotheses H1-2,0 for research
questions RQ1 and RQ2:
There is no correlation between the usage of ChatGPT by

students to implement programming exercises and

• H1,0: the number of rule violations (to code conven-
tions).

• H2.1,0: the cyclomatic complexity of the source code.
• H2.2,0: the cognitive complexity of the source code.

As a result, the corresponding alternative hypotheses H1-2,a
can be accepted with a p-value of less than 0.05, indicating
that there is a statistically significant correlation between the
usage of ChatGPT by students to implement programming

exercises and rule violations (H1,a), and cyclomatic or
cognitive code complexity (H2.1,a and H2.2,a respectively).

IV. RESULTS
The following section outlines the findings of our study in
sequential manner with the research questions.

A. MOST FREQUENT RULE VIOLATIONS (RQ1)
In our initial analysis, we assessed the quality and distribution
of the acquired rule violations and complexity measures.
Subsequently, we normalized the data to account for the
varying number of students in the control and treatment
groups, which was essential for maintaining the integrity of
our study. After preparing the data, we calculated the key
statistical properties for both groups.We focused on assessing
the likelihood of observing particular rule violations under
the null hypothesis H1,0 (see Section III), which assumes
no influence of ChatGPT on the probability of specific rule
violations. If the p-value of a rule violation is smaller than
or equal 0.005, the null hypothesis H1,0 for this rule can be
rejected, and the alternative hypothesis H1,a can be embraced.
This hypothesis signifies that the use of ChatGPT has an
effect on the likelihood of violations of this rule.

We ranked the rules in ascending order of their p-value,
i.e., with decreasing statistical significance. To focus our
discussion, we concentrate on the top 12 rule violations with
the highest significance. The results from these calculations
are presented in Table 3. Also, we give the Pearson correlation
coefficient between the groups for each rule. An asterisk (*)
in the first column of the table marks rule violations that
have been identified as statistically relevant, i.e., for which
the alternative hypothesis H1,a is applicable. Figure 1 shows
the rule violations for each programming exercise among the
two groups.

The treatment group demonstrated greater adherence
to rules LineLength, FinalParameters, HiddenField, Miss-
ingSwitchDefault, DesignForExtension, MagicNumber,
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FIGURE 1. Most frequent rule violations across the different programming exercises. The treatment group (blue) shows students using ChatGPT, the
control group (green) students not using ChatGPT.

VisibilityModifier, RightCurly, NeedBraces, LocalVari-
ableName across all programming exercises with sta-
tistical significance. In the treatment group rules Line-
Length and FinalParameters had even less than half

of median violations of the control group across all
exercises. However, the tests of rules MethodParamPad and
AvoidNestedBlocks did not produce statistically significant
results.
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TABLE 3. Static code measures, p-values and Pearson correlation for H1,0 (rule violations ∼ ChatGPT usage).

FIGURE 2. Distribution of rule violations across the different programming exercises. The treatment
group (blue) shows students using ChatGPT, the control group (green) students not using ChatGPT.

B. MOST VIOLATION-DENSE TOPICS (RQ2)
Figure 2 shows the total number of rule violations per
exercise and group. For the sake of brevity, we only present
the top three exercises with the highest frequency of rule
violations and the leading five rules that were violated most
frequently across all exercises for each group. We identified
‘‘Collections’’, ‘‘File IO and Streams’’, and ‘‘Object-Oriented
Programming’’ as the exercises with the highest number of
rule violations for both groups.

The concrete number of rule violations for each exercise
and the top three most violated rules among control
and treatment group are given in Table 4. As can be
depicted from this table, exercises ‘‘Collections’’ (Co), ‘‘File

IO and Streams’’ (Fi), and ‘‘Object-Oriented Program-
ming’’ (OO) are the most violation-dense exercises and
rules LineLength, FinalParameters, and DesignForExtension
are the most frequently violated rules among both groups.
Also, the Pearson correlation coefficient shows a differently
manifestations of linear correlation with the highest being for
MissingSwitchDefault, RightCurly, and NeedBraces.

C. INFLUENCE ON CYCLOMATIC AND COGNITIVE
COMPLEXITY (RQ3)
Figure 3 shows the distribution of cyclomatic and cog-
nitive complexity of the students’ implementation of the
programming exercises. The statistical analysis concerning
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TABLE 4. Total number and mean (x̄) of rule violations among students not using ChatGPT (control group) and students using ChatGPT (treatment group)
per exercise in descending order.

FIGURE 3. Complexity measures of students’ code when using (treatment group) or not using
ChatGPT for implementing programming exercises (control group).

the cyclomatic complexity of the students’ code showed
a p-value below 0.005, indicating a significant difference
and thus supporting the alternative hypothesis H3.1,a. This

notable discrepancy underscores a trend to lower cyclomatic
complexity of the code in the treatment group, evident
across various parts of the exercise. For instance, in
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‘‘Object-Oriented Programming’’ exercise, the treatment
group reported a median complexity of 5.91, substantially
lower than the control group’s 8.67. Such patterns are
consistent across all exercises, with the treatment group fre-
quently demonstrating lower median complexity measures.
This suggests that ChatGPT potentially aids in producing
code with reduced cyclomatic complexity.

Similarly, the statistical analysis of the cognitive com-
plexity revealed a p-value below 0.005, thus supporting
the alternative hypothesis H3.2,a. This significant finding
indicates lower cognitive complexity in the treatment group
across various programming exercises. For instance, in the
‘‘Object-Oriented Programming’’ exercise, the treatment
group’s median complexity was 1.36, compared to 2 in
the control group. This trend of lower median complexity
values in the treatment group suggests that ChatGPT
slightly assists students in writing code that is easier to
understand. However, given the only small difference in the
median values we regard this effect as rather negligible and
requiring further research with larger student populations for
further evaluation. Finally, the Pearson correlation coefficient
shows slight linear correlation among the groups for both
complexity metrics.

V. DISCUSSION
The results of our study indicate a consistent pattern,
wherein the treatment group that utilized ChatGPT dis-
played significantly fewer violations across several Java
programming rules compared to the control group. This
pattern was particularly evident in rules pertaining to code
structure and syntax, such as LineLength, FinalParameters,
and MissingSwitchDefault. This aligns with findings from
previous studies, such as those by Guo et al. [13] and
Liu et al. [14], which demonstrated ChatGPT’s capability to
improve code quality and perform well in code refinement
tasks, despite certain limitations.

One of the most noteworthy observations was the
treatment group’s ability to more closely adhere to Java
programming best practices, as evidenced by their lower
median violations in rules like DesignForExtension and
VisibilityModifier. These results suggest that incorporating
ChatGPT into programming education can not only assist
students in writing syntactically correct code but also in
understanding and applying good design principles, which
are essential for creating maintainable and scalable software.
This supports the findings of Jacques [25] and Daun and
Brings [26], who found that LLM-based tools can enhance
students’ understanding of coding concepts and design
principles.

Furthermore, the reduction in cyclomatic and cognitive
complexities in the treatment group’s code underscores
another vital educational benefit. Lower complexitymeasures
often correlate with simpler, more readable code, which not
only reduces the cognitive load on programmers but also
potentially decreases the likelihood of bugs and errors. This
finding is crucial for educators as it emphasizes the potential

of tools like ChatGPT to enhance students’ ability to write
efficient, understandable, and less complex code, thereby
improving their overall coding proficiency. This observation
is in line with research by Hartley et al. [29], which
highlighted ChatGPT’s role in providing comprehensive
guidance on programming concepts, leading to more efficient
and readable code.

Our research further revealed that violations of specific
coding rules, including MethodParamPad and AvoidNested-
Blocks, did not result in statistically significant differences
between the groups. This suggests that while ChatGPT can
be beneficial for many coding aspects, there may be nuances
in coding style and structure that may not be adequately
addressed if students rely solely on assistance from an LLM
like ChatGPT. This aligns with findings from Chen et al. [28]
and Rahman and Watanobe [30], which highlighted potential
drawbacks of over-reliance on AI tools, such as reduced
critical thinking and the risk of not developing independent
problem-solving skills.

The trend of lower median complexity values in the
treatment group suggests that ChatGPT slightly assists
students in writing code that is easier to understand. However,
given the only small difference in the median values,
we regard this effect as rather negligible and requiring
further research with larger student populations for further
evaluation. This cautionary note is consistent with findings
by Idrisov and Schlippe [15] and Ali et al. [27], who noted
that while AI tools can be beneficial, their impact varies and
must be evaluated in broader contexts.

Given the limited sample size, these results should be
interpreted cautiously. To delve deeper into the underlying
factors contributing to these disparities, additional research
with larger sample sizes is necessary. This echoes the
sentiments of the study of Nguyen and Nadi [16], who
highlighted the need for further research to validate findings
under varied conditions and larger datasets.

VI. THREATS TO VALIDITY
We acknowledge several potential threats to the validity
of our study that could impact the interpretation and
generalizability of our findings.

Regarding internal validity, one major concern is the level
of experience of the participants. Given that the students were
novices with no prior experience in Java programming, their
learning curve over the course could affect their ability to
adhere to coding conventions and manage code complexity,
regardless of the assistance provided by ChatGPT. Addition-
ally, the individualized feedback provided by the lecturer may
have varied in its effectiveness across students, potentially
confounding results related to improvements in code quality.

In terms of external validity, the small sample size poses
a significant threat, limiting the generalizability of the results
to a broader population of programming students. Moreover,
the specific educational context of part-time undergradu-
ate students may not represent the diverse backgrounds
and educational settings in which programming is taught,
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affecting the applicability of the findings to other learning
environments.

The measurement of code quality through static code
analysis tools and predefined rulesets to detect violations
may raise concerns about construct validity. The reliance
on these tools and rulesets to quantify code quality and
complexity may not fully capture the nuances of what consti-
tutes high-quality, maintainable code, potentially overlooking
aspects of code quality not encompassed by static code
analysis per se.

Similarly, concerns have been expressed about statistical
conclusion validity of the non-parametric Wilcoxon Rank
Sum Test, which is often used in non-normal distributions.
Given the right-skewed distribution of rule violations and
complexity measures, there is a risk that the test may not have
the power to detect subtle differences between groups due to
outliers or the distribution shape.

VII. CONCLUSION
Our research systematically investigated the impact of Chat-
GPT on code quality among undergraduate students through
a detailed analysis of rule violations and complexity metrics.
Subsequently, we present the key findings in alignment with
our research questions.

• Most Frequent Rule Violations: Our investigation
revealed statistically significant differences in rule
adherence between students using ChatGPT (treatment
group) and those not using it (control group). Specif-
ically, the treatment group showed fewer violations
across several key coding conventions. Notably, rules
verifying the length of code lines (LineLength), the dec-
laration of parameters for methods, constructors, catch
blocks, and for-each loops as final (FinalParameters)
or verifying code extensibility (DesignForExtension)
showed marked improvements, with p-values < 0.005,
indicating a statistically significant difference in adher-
ence between the two groups.

• Most Violation-Dense Topics: We observed exercises
related to ‘‘Collections’’, ‘‘File IO and Streams’’, and
‘‘Object-Oriented Programming’’ as topics with the
highest incidence of rule violations. Despite a significant
overall reduction in violations among the treatment
group, these areas remained challenging, underscoring
the need for targeted educational interventions. The
rules LineLength and FinalParameters were among the
most frequently violated, highlighting specific areas
where ChatGPT’s guidance notably improved student
performance.

• Influence on Cyclomatic and Cognitive Complexity:
Our study further explored the cyclomatic and cognitive
complexity of student submissions. We observed
that code from the treatment group displayed lower
complexity levels across both metrics, notably in
cyclomatic complexity (p-value < 0.005). These
findings imply that ChatGPT contributes not merely
to simplifying code complexity but also to enhancing

code comprehensibility, as evidenced by the statistically
significant difference in cognitive complexity (p-value <
0.005).

The outcomes of our study offer novel insights into the impact
of ChatGPT on code quality among novice programming
students. Nevertheless, it is crucial to exercise caution when
interpreting the results, taking into account the identified
threats to validity. Expanding on these findings requires
future research involving larger, more diverse samples,
considering various educational contexts and more refined
measures of code quality and ChatGPT usage. In addition,
it is essential to explore the experiences of a larger number
of students, possibly also assessing ChatGPT’s suitability for
supporting students in programming courses beyond Java.
A qualitative analysis of the students’ prompts to ChatGPT
could help examine the structure and quality of their input,
enabling educators to better instruct students on how to tailor
their input to ChatGPT to improve code quality.
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