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ABSTRACT Self-report measures (e.g., Likert scales) are widely used to evaluate subjective health
perceptions. Recently, the visual analog scale (VAS), a slider-based scale, has become popular owing to
its ability to precisely and easily assess how people feel. These data can be influenced by the response style
(RS), a user-dependent systematic tendency that occurs regardless of questionnaire instructions. Despite
its importance, especially in between-individual analysis, little attention has been paid to handling the
RS in the VAS (denoted as response profile (RP)), as it is mainly used for within-individual monitoring
and is less affected by RP. However, VAS measurements often require repeated self-reports of the same
questionnaire items, making it difficult to apply conventional methods used for Likert scales. In this study,
we developed a novel RP characterization method for various types of repeatedly measured VAS data. This
approach involves modeling RP as distributional parameters θ through a mixture of RS-like distributions,
and addressing the issue of unbalanced data through bootstrap sampling for treating repeated measures.
We assessed the effectiveness of the proposed method using simulated pseudo-data and an actual dataset
from an empirical study. The assessment of parameter recovery showed that our method accurately estimated
the RP parameter θ , demonstrating its robustness. Moreover, applying our method to an actual VAS dataset
revealed the presence of individual RP heterogeneity, even in repeated VAS measurements, similar to the
findings for Likert scales. Our proposed method enables RP heterogeneity-aware VAS data analysis, similar
to Likert-scale data analysis.

INDEX TERMS Response style, subjective rating, visual analogue scale, repeated measures, in-the-wild,
ecological momentary assessment, experience sampling, subjective health.

I. INTRODUCTION
Monitoring human health is essential in various health-related
fields. Both objective and subjective monitoring play an
important role in examining human health [1]. Self-reports
using specific measurement scales have been widely used to
monitor subjective feelings such as the degree of fatigue [2],
[3], depression [4], pain [5], and emotions [6]. For example,
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previous studies assessed patients’ pain using various scales
including Likert, face, numerical rating, and visual analog
scales (VAS) [7], [8].

Recently, the use of VAS has become more popular [7].
The VAS consists of a line whose length is typically 100 mm,
with anchor descriptors at both ends of the line (unipolar
VAS) or both ends and center (bipolar VAS) [9]. Unlike
Likert scales, which require the response to fit descriptors in
a categorical or discrete manner (e.g., selection from 5- and
6-point), the VAS enables continuous responses to subjective
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FIGURE 1. Examples of response styles (RSs) observed in histograms with
the empirical density distribution of VAS data. (A) dis-acquiescent RS,
DRS. (B) acquiescent RS, ARS. (C) extreme RS, ERS. (D) midpoint RS, MRS.
(E) bimodal MRS, BiMRS. These data were simulated using Beta
distribution with specified parameters. (F) Typical histogram of actual VAS
responses of some participants.

health conditions, enabling precise assessment of how people
feel [10]. Owing to these characteristics, the VAS has been
generally accepted as appropriate for comparing conditions
and assessing the time course of how the feelings of specific
persons change over time (i.e., within-individual assess-
ment). Furthermore, as smartphones become more readily
available, researchers can introduce an electronic VAS (e.g.,
a slider scale) as a substitute for the conventional paper
VAS, enabling the digital collection of large amounts of VAS
data [11], [12]. This transition has expanded VAS usage not
only among within-individual assessments but also among
between-individual comparisons.

One of the issues regarding the application of the VAS to
between-individual comparisons is the difference in response
styles (RSs) among individuals [13], [14]. RS is the system-
atic tendency not to depend on the scale instructions, and has
been studied extensively for Likert scales (Fig. 1). Among
well-known RSs for Likert scales, a popular RSs is the dis-
acquiescent RS (DRS, Fig. 1A), in which persons respond to
the lower/left end of lines regardless of the instructions, and
acquiescent RS (ARS, Fig. 1B), vice versa. The other popular
RS is the extreme RS (ERS, Fig. 1C), in which individuals
tend to preferentially respond at both ends of the scales.
Furthermore, some people, especially Asians, tend to show
midpoint RS (MRS, Fig. 1D), in which they prefer to select
rating items around the center of the scale [14], [15]. RSs
similar to those observed for the Likert scale are also observed
for the VAS. We often observed an MRS-like response ten-
dency on both sides across the center (hereafter referred to
as bimodal MRS, BiMRS, Fig. 1E) upon using the bipolar
VAS as a rating scale, which places the neutral position
at the center of the scale, and conflicting concepts at both
ends [16]. The VAS has often been used to evaluate relative
changes among individuals, such as in clinical studies of
pain and fatigue [17], [18]. Consequently, there have been
cases in which the absolute values of VAS responses were
analyzed across patients [19], [20], with little attention paid
to RS-like bias in the VAS. However, these individual vari-
ations in RS (i.e., individual RS heterogeneity) may affect
inter-individual comparisons of subjective health status [21].
Therefore, RS heterogeneity in the VAS is consequential.

Several RS quantization methods based on Likert scales
have been proposed [22]. Previous studies, using simple
ideas, represented RSs as the ratio of midpoints or extremes
to the total number of questionnaire items [13]. This method
is easy to use, but cannot be used to separate the RS
from the responses. Other studies attempted to separate RSs
and psychological constructs using the anchoring vignette
method [23], [24]. In anchoring vignette methods, people
report their feelings as well as the status of hypothetical
individuals or situations based on short descriptions of the
hypothesis (referred to as anchoring vignettes). Using both
self-reports and reports on others, the anchoring vignette
method separates the RS through statistical modeling. This
method can separate RS from responses but requires the
modification of questionnaires to carefully design anchor-
ing vignette parts, and satisfy response consistency and
vignette equivalence. Similarly, several studies have pro-
posed RS elimination methods without modifying the ques-
tionnaires [25], [26], [27], [28]. Considering RS emerges
independently of questionnaire items, it is possible to dis-
tinguish instruction-independent RS parameters using item
response theory (IRT). Although this third method can elim-
inate RS without questionnaire modification, it requires that
all people answer the items of various questionnaires in the
same manner (i.e., every individual rates all questionnaire
items on multiple occasions as instructed) to assume task
independence. Thus, three types of RS quantization have been
proposed for the Likert scale.

Most previous related studies focused on RS handling
methods for Likert scales [29]. One reason for this is that
most methods rely on IRT modeling for single or multiple
questionnaires, including a fixed number of response items
[24], [27]. IRT has been vigorously developed from the per-
spective of test theory, and generally assumes that responses
to the same items of specific questionnaires are obtained
from all participants only once. With this restriction, IRT-
based RS elimination methods estimate the item-independent
effects of the questionnaire as RS parameters. The exten-
sion of IRT from items with discrete ordinal scales, such
as the Likert scale, to that with continuous interval scales
including VAS, have already been proposed [30], [31], [32].
However, repeated VASmeasurements, for which the number
of responses to items can vary among respondents, and some
responses may be omitted, do not satisfy such assumptions.
For example, participants #A and #B may have responded
to the same scale three and four times, respectively, dur-
ing the monitoring period. Considering these characteristics,
IRT extensions to repeatedly measured VAS are not simple;
quantification methods of RS in VAS are required (hereafter
referred to as response profile (RP), to distinguish it from
RS), especially considering repeated-measures assumptions.

We developed a novel RP characterization method for
VAS data. The proposed method models the RP using mix-
ture distributions that represent the RPs using a model
selection scheme. We validated its robustness using simu-
lated pseudo-data and evaluated real-world RP characteristics
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using actual VAS datasets. A preliminary version of this
study was reported as a poster presentation at the 45th annual
international conference of IEEE Engineering in Medicine
and Biology Society (IEEE EMBC 2023) [33].

II. PROPOSED METHOD
We developed a novel RP characterization method that can
be adapted for both VAS and interval scales. The proposed
method is composed of (i) response profile modeling using
fitting to mixture distributions of known RS-like distribu-
tions, and (ii) handling of data imbalance using bootstrap
sampling and aggregation. Because the proposed method
does not employ IRTmodeling, it can be applied to VAS data,
including with repeated responses, and different numbers of
responses among individuals. Additionally, by adopting the
bootstrap method, the proposed method can relieve the effect
of item-dependent response tendencies on RP characteriza-
tion, which is beyond the definition of RP, by adjusting the
volume of each questionnaire item.

A. RESPONSE PROFILE MODELING
In response profile modeling, we estimate the mixture dis-
tribution parameters θ , representing the RP of a user user
(Fig. 2). Here, the proposed method estimates θ for the
user-wise VAS dataset of

Duser = {x1, . . . , xn, . . . , xN }⊂ (0, 1) (1)

where x is the self-reported data obtained using the VAS,
normalized to the open interval data between 0 and 1. When
x has extreme values (i.e., 0 and 1), the sample x of Duser
is converted to open interval data using the following [34]
and [35]:

x ′ =
x (N − 1)+ 0.5

N
, (2)

where N is the total number of Duser . The empirical proba-
bility density distribution is represented as Emp(x|Duser ).

FIGURE 2. Schematic diagram of the proposed response profile
modeling.

The proposed method approximates Emp(x|Duser ) by
the mixture distribution ResponsePrifile(x|θ ). Generally, the

probability distributions of unimodal continuous variables
are modeled using Gaussian and Beta [36], [37], [38], [39].
However, some actual VAS datasets show a non-unimodal
distribution, such as a mixture of ERS and BiMRS distri-
butions, as shown in Fig. 1F. Additionally, when we handle
RPs in the following analysis, it was desirable to access
knowledge of RS for Likert scales. Regarding widely known
RSs, ARS/DRS/ERS and MRS are observed at both ends
of, and the center of the scale, respectively. Considering
these requirements, the proposed method splits dataset Duser
into sub-datasets DMainuser ⊂ [th, 1.0 − th] and DDistSubuser ⊂

(0.0, th)∪ (1.0− th, 1.0), and fits each dataset to distributions
Main(x|θMain) andDistSub(x| θDistSub) using known RSs, and
model RP(x|θuser ) based on these two distributions, where
th is the threshold to split the dataset on the dimension of
the VAS scale. By connecting RPs with widely known RSs,
we can utilize the various types of knowledge reported in RS
studies based on a Likert scale.

Algorithm 1 Estimate Main Response Profile

1 Construct DMainuser by extracting [th, 1.0−th] range
from Duser ⊂ (0.0, 1.0)

2 for DistMain = {Base, MRS, BiMRS} do
3 Obtain θDistMain by fitting Emp(x|DMainuser )

to DistMain(x| θDistMain)
4 Calculate fitness indices

for Emp(x|DMainuser ) and DistMain(x|θDistMain)
5 end for
6 if {Bipolar VAS was collected in Duser}

and {Dist(BiMRS(x|θBiMRS) ≥ ACCEPT_
BIDIST} and {BiMRS(x|θBiMRS) gets best fitness
in Main} do

7 Select BiMRS(x|θBiMRS) as Main(x|θMain)
8 else if{MRS(x|θMRS) gets better fitness than

Base(x|θBase) } do
9 Select MRS(x|θMRS) as Main(x|θMain)
10 else do
11 Select Base(x|θBase) asMain(x|θMain)
12 end if
13 returnMain, θMain

The proposed method estimates θMain(Algorithm 1). Here,
we assume Main(x|θMain) can be modeled by MRS(x|θMRS)
or BiMRS(x|θBiMRS) if RP exists in [th,1.0−th]. Then, MRS
can be represented by an adequate unimodal distribution such
as a normal distribution Gaussian(x|µ, σ ), where µ repre-
sents the mean, and σ represents the standard deviation, or a
beta distribution Beta(x|α, β), where α and β are shape
parameters. Moreover, BiMRS can be modeled using an ade-
quate mixture of two unimodal distributions. For example,
when we select Beta(x|α, β) as a unimodal distribution, then
we select BetaMixture(x|w1, α1, β1, w2 = 1−w1, α2, β2)
as a bimodal distribution, where w denotes the weight of
Beta1(x|α1, β1) and Beta2(x|α2, β2).
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Algorithm 2 Estimate Sub Response Profiles

1 ConstructDDistSubuser by extracting (0.0, th) ∪ (1.0−th,
1.0) range from Duser

2 for DistSub = {ERS, DRS, ARS} do
3 Obtain θDistSub by fitting Emp(x|DDistSubuser ) to

DistSub(x| θDistSub)
4 Calculate fitness indices for Emp(x|DDistSubuser )

and DistSub(x|θDistSub)
5 end for
6 return θERS, θDRS, θARS,

We further fit Main(x|θMain) from DMainuser using a model
selection scheme with a criterion such Akaike’s information
criterion (AIC). However, because actual datasets do not
always show clear RPs, a simple model selection for a dataset
with unclear RPs tends to choose BiMRS, which is more
complex in terms of the number of parameters. Thus, in addi-
tion to information criterion-based selection, the proposed
method also evaluates the degree of separation of the bimodal
distribution, which selects the BiMRS with the satisfaction
of the smallest information criterion and higher separation
than the minimum separation threshold ACCEPT_BIDIST.
For example, to calculate the degree of separation, we can use
a distanceDist(θ) between peaks of each of the fitted mixture
distributions. When we approximate BiMRS by BetaMixture,
Dist(θ) can be defined by the difference in the mode of the
two Beta distributions, as follows:

Dist (θBiMRS) =

∣∣∣∣ α2 − 1
α2 + β2 − 2

−
α1 − 1

α1 + β1 − 2

∣∣∣∣ (3)

Thus, the proposed method selects θMain from θMRS or
θBiMRS, or regards no RPs in [th, 1.0−th].

Algorithm 3Whole Response Profiles Estimation
1 Main, θMain ← Estimate main response profile in

Algorithm 1
2 θERS, θDRS, θARS← Estimate sub response profiles in

Algorithm 2
3 for DistSub = {ERS, DRS, ARS} do
4 Obtain weight wDistSub by fitting Emp(x|Duser ) to

wDistSub × DistSub(x| θDistSub) + (1−wDistSub) ×
Main(x| θMain)

5 Calculate fitness indices between Emp(x|Duser )
and wDistSub × DistSub(x| θDistSub) + (1−wDistSub)
× Main(x| θMain)

6 end for
7 If model better than Main(x| θMain) exists then
8 Select best model components wADE and

DistSub(x| θDistSub)
9 ResponseProfile(x| θ ) ← wADE × DistSub(x|

θDistSub)
+ (1− wADE) × Main(x| θMain)

10 elseResponseProfile(x| θ ) ←Main(x| θMain)
11 end if
12 return ResponseProfile(x| θ )

The proposed method estimates θDistSub based on
the RS knowledge (Algorithm 2). Here, we assume
DistSub(x|θDistSub) can be modeled by ARS(x|θARS),
DRS(x|θDRS), or ERS(x|θERS) if RP exists. Because these
RSs show monotonic or U-shaped distributions (Fig. 1A-C),
DistSub(x|θDistSub) is modeled by a Beta distribution
Beta(αADE, βADE) satisfying the shape restriction to repre-
sent each RS shape, which can flexibly change its distribution
shape. The proposed method obtains θARS, θDRS, and θERS,
which are candidates of θDistSub, based on DDistSubuser to fit
to Beta(αADE, βADE), respectively. For each candidate RP,
fixing θMain and candidates of θDistSub, the proposed method
calculates the optimal mixture weight wDistSub, and finally
selects the best integration of θMain, wADE, and the candidate
of θDistSub in terms of information criterion for Duser . For
example, when θERS obtains the best fit, the proposedmethod
accepts θERS as θDistSub.

Finally, the proposed method characterizes RPs as θ

(Algorithm 3). Using the obtained parameters θMain, wADE,
and θDistSub, we obtain the mixture distribution representing
RPs as

ResponseProfile (x | θ) = wADE × DistSub (x|θDistSub)

+ (1− wADE)×Main (x | θMain)

(4)

and the RP parameters θ as θ = {wADE, θDistSub, θMain}.
For example, in the case of Fig. 1F, with a beta distribution
representation, the proposed method characterizes ERS and
BiMRS as RPs and obtains

θ = {wADE, θERS,θMain}

= {wADE, αERS,βERS,w1, α1,β1,w2 = 1− w1, α2,β2} .

(5)

B. UNBALANCED DATA HANDLING
An unbalanced data handling process adjusts the imbalance
of the number of responses for each instruction and evaluates
the range of RP parameters θ (Fig. 3). In contrast to responses
to validated questionnaires, in which all users are expected
to respond to the same number of questions, the number
of responses varies depending on the question in repeated
VAS measurements. Because RS and RP are defined as
question-independent systematic response tendencies, such
an imbalance in the datasetDuser may affect bias in the quan-
tification of RPs by item-dependent tendencies. Specifically,
for VAS, the tendency to respond to the instruction center
emerges as MRS in monopolar VAS scales, and BiMRS in
bipolar VAS scales. To relieve and estimate the impact of such
bias, the proposed method uses bootstrapping.

When Duser has a data imbalance, the proposed method
constructs a sub-dataset ofDuser by bootstrap sampling.Duser
comprises M types of unipolar VAS VASum and N types
of bipolar VAS VASbn. Each type of VAS may include a
different number of responses. The proposed method then
conducts sampling with replacement by the type of VAS
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TABLE 1. Simulation data generated based on beta distributions.

FIGURE 3. Schematic diagram of the proposed response profile
quantification method. The proposed method comprises (A) Data volume
balancing of several types of VAS data, (B) i-th response profile θuser ,i
estimation, and (C) Bootstrap aggregation process of 2user = {θuser ,i } to
aggregated response profile indicator θuser .

scale to extract the same number of samples (Fig. 3(i)).
When VAS types have a hierarchical structure, such as in
the case of both unipolar and bipolar scales, and with dif-

ferent instructions within the scale type, this process can be
repeated. After sampling, all the sampled data were used as
the dataset for response profile modeling. During sampling,
the proposed method constructs an i-times sampling of the
sub-dataset Duser,i from the original dataset Duser . The sub-
dataset Duser,i includes the same number of responses by
instruction type; therefore, this process can be regarded as
the artificial construction of a dataset in which themethod can
characterize RPs under relieving the effect of item-dependent
response tendencies. From the machine learning perspective,
this process is also interpreted as class imbalance address-
ing methods such as oversampling, undersampling, and
bagging [40], [41].

Using the sub-dataset Duser,i, the proposed method evalu-
ates the variability of the RP parameters. After constructing
Duser,i, we obtain i th sampling of RP parameters θ as θuser,i
by the response profile modeling process (Fig. 3(ii)). How-
ever, θuser,i may differ from the actual RP parameters owing
to the biased extraction in the sampling process. To assess
such variability, the proposed method repeats this sampling
and RP modeling cycles N times as Θuser = {θuser,i}, and
estimates the characteristics of this bootstrap samples, includ-
ing ranges and representative statistics (Fig. 3(iii)). Finally,
the proposed method obtains RP parameters θ by aggregating
Θuser .

III. PSEUDO-DATA SIMULATION
A. SETUP OF SIMULATION
To assess the robustness of the proposed method, we per-
formed a parameter recovery experiment using simulated
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FIGURE 4. Parameter recovery results similarity in the shape of the recovered distribution. The similarity is evaluated by Pearson’s correlation
coefficient, Corr. The main response profile distributions are approximated for (A) Gaussian and (B) Beta distributions. Each color depicts the result
for hyperparameter th. (a)-(c) represent the effect of hyperparameter ACCEPT_BIDIST. (C) Empirical and estimated response profile distribution for
#19 with th = 0.05. As shown in the change from (Cb) to (Cc), the selected Main, BiMRS is substituted with MRS.

data. We included various RP types and those mixtures with
21 conditions as θgroundtruth (Table 1), regarded as partici-
pants with different RPs. For each condition, 1000 samples
of response data were extracted from a beta mixture dis-
tribution parameterized by θgroundtruth. The model selection
used Akaike’s information criterion. Assuming this simulated
data satisfies the task independence (i.e., already balanced),
we obtained RP parameters θuser = θestim when the hyper-
parameters were changed; we changed the data splitting
threshold th from 0.05 to 0.45 in steps of 0.10, the minimum
separation threshold ACCEPT_BIDIST with three conditions
(i.e., 0.00, 0.15, 0.30), and unimodal distribution with two
conditions (i.e., Gaussian and Beta).

B. EVALUATION
We evaluated the robustness of the metrics by changing
the hyperparameters. We further calculated Pearson’s cor-
relation coefficient for the histograms (Corr) to assess

how the proposed method approximated the shape of the
empirical probability density distribution [42]. For com-
parison, we obtained empirical probability density dis-
tributions using a histogram with a bin width of 0.05.
We also analyzed the agreement between the estimated
RP parameters θestim and θgroundtruth with both Pearson’s
correlation coefficient r and its linear regression. Here,
θgroundtruth was defined with beta distributions Beta(x|α, β),
with mean µ and standard deviation σ calculated as
follows:

µ =
α

α + β
, σ =

√
αβ

(α + β)2 (α + β + 1)
(6)

Therefore, in the agreement analysis for theGaussian approx-
imation, we compared w and the converted µ and σ based
on θgroundtruth, and RP parameters θestim estimated with
Gaussian(x|µ, σ ).
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FIGURE 5. Parameter recovery results in terms of response profile indicators: (A) is_BiMRS, (B) is_ERS, and (C) weight of sub-response profile
distribution wADE. Each color depicts the result for hyperparameter th. (a)-(c) represent the effect of hyperparameter ACCEPT _BIDIST . Black crosses
represent the groundtruth values. In these results, the main response profile distributions are approximated using a Gaussian distribution.

IV. HUMAN EXPERIMENT
To describe RP characteristics in the real world, we empir-
ically analyzed the RP distribution and the relationship
between RPs and participant characteristics using an
enhanced version of the experimental dataset called Daily-
Sense1 [43]. The experimental design and procedure details
have already been reported in [44], from which only the
number of participants has been updated. Herein, we briefly
describe the experimental information related to this analysis.

A. EXPERIMENTAL PROCEDURE
We conducted a consecutive 14-day experiment in a real-life
setting composed of a smartphone-based subjective psy-
chological evaluation and physiological sensing. The study
protocol was approved by the internal review board of the
Research & Development Group, Hitachi, Ltd., and was con-
ducted in accordance with the Declaration of Helsinki. All

1See: https://dx.doi.org/10.5281/zenodo.10816004

participants provided informed consent prior to enrollment
in the study.

Thirty-six healthy Japanese adult workers who mainly
worked remotely (mean±SD, 35.8±7.5; range, 27–58 years;
21 male and 15 female participants) participated in the exper-
iment through two terms. In the first term, 18 participants
joined voluntarily, based on their recruitment using com-
pany bulletin boards. In the second term, 18 participants
were recruited through the participant pool of a research
support company, with rewards depending on the engagement
rate in the experiments. One participant (#47) was excluded
from analysis because they did not complete the personality
questionnaire. Accordingly, we analyzed the data of 35 par-
ticipants (mean±SD, 35.9±7.6; range, 27–58 years; 20 male
and 15 female participants).

The participants responded to various VAS and ques-
tionnaires using their smartphones. Before and after the
14-day experimental period, participants reported their demo-
graphics and completed seven questionnaires, including the
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Neuroticism Extraversion Openness Five-Factor Inventory
(NEO-FFI), to evaluate Big Five personality traits [45].
Participants were randomly notified of the timing of their
responses six times per day using an experience sampling
method (ESM), also known as ecological momentary assess-
ment (EMA). They reported the two dimensions of emotions
as felt in the 30 minutes immediately before response onset.
The dimensional emotions (i.e., valence and arousal) were
evaluated using the Affective Slider [46], a bipolar VAS
scale with face icon instructions on both ends. Participants
also reported their degrees of fatigue, stress, anxiety, depres-
sion, and sleeplessness using the day reconstruction method
(DRM). These five self-reports were evaluated using unipolar
VAS with the instruction of ‘‘not at all’’ on the left end
as 0 to ‘‘worst’’ on the right end as 1. In both ESM and
DRM self-reports, guidelines for the exact midpoint of VAS
were not drawn on the scales; that is, participants had to
make their responses without an available exact midpoint
reference. Finally, we analyzed 2337 records of two types of
bipolar VAS in ESM (on average, 66.8±16.4 [times/person])
and 466 records of five types of unipolar VAS in DRM (on
average, 13.3±1.2 [times/person]) (Supplementary Table 1).

B. EVALUATION
The proposed method was applied to an actual VAS dataset.
Because this dataset was an integration of five and two types
of unipolar and bipolar VAS, respectively, and the number of
responses varied, we conducted sampling with replacement
in two steps to construct Duser,i. Based on the total num-
ber of VAS data, we sampled 300 and 1800 records in the
first and second steps, respectively. We experimentally per-
formed the response profilemodeling process usingGaussian
with hyperparameters th=0.15 and ACCEPT_BIDIST=0.15.
Bootstrap sampling was repeated 1000 times. To simplify the
calculation, the mixture weight wADE was estimated using a
0.1 step resolution (i.e., 0.0 to 1.0 with 0.1 steps).

Note that both valence and arousal were presented as
bimodal scales using the Affective Slider [46]. Many studies
have treated valence as bimodal, ranging from neutral to
either negative or positive, and arousal as unimodal, ranging
from low to high. For example, the Self-assessment Manikin
(SAM), one of the standard scales for dimensional emotions,
treats arousal as unimodal [47]. Conversely, the Affective
Slider, which shows a high correlation with SAM, placed
two symmetrically mirrored isosceles triangles as an inten-
sity instruction even for arousal, such that arousal could be
regarded as bimodal. Our treatment of the arousal scale as
bimodal could have led to more unbalanced data collection
versus a unimodal treatment. To evaluate the impact on the
parameter estimation, we compared both estimation results
when arousal scales were treated as bimodal in the bootstrap-
ping process and vice versa.

We evaluated RP characteristics in the real world in two
ways. First, we analyzed the stability of the shape of the RP
distributions for each bootstrapped Duser,i. We also checked

FIGURE 6. (A) Parameter agreements in correlation between θgroundtruth
and θestim approximated using (a) Gaussian and (b) Beta distribution.
(B) Representative parameter recovery results with th=0.15,
ACCEPT _BIDIST =0.15, and Beta. Parameter agreements between
θgroundtruth and θestim are shown. The star∗ highlights underestimation
in α1. (C) Underestimated example in (B). Blue and orange histograms
represent the empirical and the estimated distribution of the whole
response profile distribution (i.e., MRS+ERS) for simulation #21,
respectively.

whether RPs, which may cause analysis bias, emerged in the
actual repeated VAS measurements. Additionally, previous
studies reported that subjective perception and its output
of feelings differ depending on the heterogeneity of indi-
viduality [48], [49], [50]. To clarify whether such RPs are
affected by one of the individuality indicators–the partic-
ipants’ personality–we analyzed the relationships between
RP parameters and the Big Five personality traits. Here,
RP parameters θ comprised eight distributional parameters,
which is shown in Eq. 5 except for w2(=1− w1), and
four one-shot features (i.e., whether they have BiMRS or
MRS, whether they have ERS, whether they have DRS, and
whether they have ARS). As Big Five personality indicators,
we used standardized scores of five-dimensional personality
as assessed by NEO-FFI as θdem = {Nt , Et , Ot , At , Ct},
where each represents neuroticism, extraversion, openness,
agreeableness, and conscientiousness, respectively (Supple-
mentary Table 1). Because we cannot assume normality in
the relationship between θ and θdem, we evaluated this by
Spearman’s correlation coefficient ρ.
All data processing and analyses were performed using

Python 3.8.13, including SciPy 1.10.1, scikit-learn 1.0, and
opencv-python 4.7.0.68. The beta mixture distribution was
fitted using a previously proposed method [51]. Statistical
significance considered as p < 0.05, denoted by an
asterisk (∗).
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FIGURE 7. Response profile distribution by the proposed method for
real-world data. (A) BiMRS-like distribution of participant #18,
(B) MRS-like distribution of participant #37, (C) Distribution composed of
BiMRS-like main RP distribution and ERS-like sub-RP distribution of
participant #25, and (D) MRS-like distribution but not fully characterized
in terms of its peak concentration of participant #38. Blue and orange
histograms represent the empirical distributions of bootstrap samples
and estimated RP distributions in each bootstrap trial. Bold lines show
the histograms parameterized by the median of bootstrap samples of RP
parameters. Boxes around the median lines are 5−95% and 25−75%
ranges, respectively.

V. RESULTS
We confirmed the performance of the proposed method using
simulated data, and analyzed the characteristics of the RP of
repeated VAS measurements using actual experimental data.

A. ASSESSMENT OF RP PARAMETER RECOVERY BY
PSEUDO DATA SIMULATION
We confirmed the performance of the proposed method by
assessing parameter recovery.

First, we compared the effects of the hyperparameters on
the shape of the approximated distribution (Fig. 4). Even
when we used Gaussian (Fig. 4a) or Beta (Fig. 4b) dis-
tributions, the proposed method obtained similarly shaped
RP distributions based on Corr with varying thresholds
th between 0.05 to 0.25. This shape similarity gradually
decreased when th was over 0.25. Since larger th (e.g.,
th=0.25) includes both the end and the center ranges of
the scales, this indicates robustness in terms of the model
distribution and the change in th if DistSub only affects the
end of the VAS scales. However, when the degree of separa-
tion of the bimodal distribution was changed, Corr changed
significantly, especially when both centers of responses were
closed (Fig. 4ab, #19). For example, theMain RP of #19 was
accurately estimated as BiMRS for ACCEPT_BIDIST=0.15,
and MRS for ACCEPT_BIDIST=0.30 (Fig. 4Cbc). This
result suggests ACCEPT_BIDIST requires appropriate set-
tings based on the data characteristics.

We further assessed the stability of the estimated param-
eters, particularly for one of the Main RP parameters
(is_BiMRS), one of the DistSub parameters (is_ERS), and
mixture weight wADE. Because we confirmed the robustness
of the estimation results regarding the candidate distribution
seed, hereafter, we only show the results of Gaussian fitting
(Fig. 5), unless otherwise stated. As in the shape similar-
ity analysis, these parameters were correctly estimated even
when the hyperparameters were changed with th smaller than
0.25, indicating robust estimation of the RP parameters.

Finally, we assessed the agreement of θestim and
θgroundtruth. The analysis showed that the agreement was less
affected by the approximated distribution (i.e., Gaussian and
Beta) and ACCEPT_BIDIST, but changed depending on th
(Fig. 6A). The agreement became best when the threshold
th approximated 0.15, although the agreement gradually
decreased when th became large (see Supplementary Table 2
for details). This result indicates that data thresholding should
be adequately considered. For more comprehensive analysis,
we focused on the better agreement case (i.e., with Betamix-
ture modeling, th=0.15, ACCEPT_BIDIST=0.15; Pearson’s
correlation coefficient, r = 0.99, p < 0.001; y=1.01x −
0.19, R2 = 0.97; Fig. 6B). This result showed good linear
relationships, but several parameters, such as α1, seemed to
be slightly underestimated. For a detailed analysis, we con-
firmed the results in #21 as the worst underestimation case
(Fig. 6C). When we compared the shape of the RP distri-
bution, the height of ERS and the estimated peak showed a
slight difference. However, most of the characteristics of the
ERS and unimodality were sufficiently approximated by the
proposed method. These results indicate the acceptable RP
characterization using the proposed method, unless several
parameters are underestimated.

B. RP CHARACTERIZATION FOR EMPIRICAL STUDY
Using the proposed method, we evaluated the emergence of
RP in an empirical study using repeated VAS measurements.
Fig. 7 shows the representative types of RP characterizations.
Through unbalanced data handling, the proposed method
estimated the range of RP depending on each questionnaire
response; for example, in #25, µ1, the mean of the first peak,
was estimated as 0.66 (0.30–0.67; 95% bootstrap confidence
interval, CI). Although the ranges of estimated parameters
may be slightly wider, similar RP distribution results were
observed based on the estimated parameters (Fig. 7C). Even if
the arousal scale was treated as unimodal, most of the ranges
of estimated parameters overlapped (e.g., 0.30–0.67 for the
case treated in bimodal manner vs. 0.31–0.67 for the case
treated in unimodal manner, µ1 for #25; see Supplementary
Table 3 and 4 for details). These results suggest the robustness
of our method by introducing unbalanced data handling. This
indicates that RP in the VAS stably emerges, similar to studies
using Likert scales. Hereafter, we only show the analysis
results in which the arousal scale was treated as bimodal in
the unbalanced data handling process.
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We comprehensively analyzed each characterization result.
Even in a study using both bipolar and unipolar VASs,
although most participants (34 of 35) showed BiMRS-like
tendencies as Main RP, the proposed method clarified the
existence of both BiMRS-like andMRS-like RPs (Fig. 7AB).
Moreover, some participants had bothMain andDistSubRPs,
such as the BiMRS and ERS (Fig. 7C). Regarding DistSub
RPs, our method quantified 14 participants with an ERS
tendency and three with a DRS tendency, but none with an
ARS tendency. Despite this success in RP characterization,
a few participants showed insufficient fit. For example, for
participant #38, the proposed method cannot fully approx-
imate the shape of the response distribution in terms of its
peak concentration, which seems to be a limitation of using a
Gaussian distribution (Fig. 7D). In this case, the proposed
method also identified #38 as BiMRS-like RP with larger
weight w1 = 0.83 (CI, 0.16–1.00) but it might appear
MRS-like RP based on visual inspection. This tendency was
also observed when the CI of w1 included 1.00 in its range
(3 out of 35).

Finally, we analyzed the relationships between the RP
parameters and the participants’ personalities. Regarding
background demographics, the participants exhibited five
personalities, as shown in Table 2. The correlation analysis
indicated almost no clear relationship between RP parameters
and Big-Five parameters (Table 3), except for the mean of the
left peak µL and conscientiousness (ρ = –0.39, p = 0.020).
This result indicates that RP parameters may be unique char-
acteristics as distinct from the respondents’ personalities.

VI. DISCUSSION
We developed a novel method to characterize RSs in VAS
measurements (i.e., RPs) consisting of response profile mod-
eling and unbalanced data handling. We further assessed the
robustness of the proposed method using a parameter recov-
ery experiment with simulated pseudo data. The proposed
method was also applied to evaluate the RP characteristics
of an empirical study dataset, clarifying the existence of RP
heterogeneity, even in repeated VAS measurements.

We confirmed the characteristics of the proposed method
through simulated and actual data analyses. The proposed
method has three hyperparameters: degree of separation
of the two peaks ACCEPT_BIDIST, data-split threshold
th, and types of candidate distributions. We showed that
ACCEPT_BIDISTmight change the characterization ofMain
to MRS or BiMRS (Fig. 4C). ACCEPT_BIDIST is a param-
eter that provides the constraints for selecting a complex
bimodal model. Considering its background, this character-
istic does not cause severe issues when only one Main RP
exists (e.g., when the applied dataset is constructed only
from unipolar or bipolar VAS responses). However, other
cases using both scales, such as the human experiment in this
study, require careful setting of the peak separation param-
eter. In particular, the proposed method sometimes selected
BiMRS-like RP different from the visual inspection-based
MRS-like envelope in the model selection process, although

the bootstrap CI implied the possibility of MRS-like RP
(Fig. 7D). For more stable RP characterization, in future
studies we must consider better model selection criteria to
distinguish whether RP has MRS or BiMRS.

Moreover, in some cases, the proposed method showed a
slightly lower approximation of the RP distribution than that
of the empirical existence distribution (Figs. 6C and 7D).
This is partly because of the characteristics of the candi-
date distributions. Gaussian and Beta distributions are the
first choices to represent a unimodal probability distribution.
These distributions are limited to specific shape characteris-
tics, especially in the center concentrations, and the length
of the tail. Although an improvement in fit is not necessarily
needed when only RP classification is required because the
proposed method sufficiently captures the RP-related shape
characteristics, better fit is desirable when RP parameters
themselves are used in the following between-individual
comparison, such as for controlling covariates. Regarding
the use of these RP parameters, introducing more parameter
distributions, such as the Student’s t distribution and Laplace
distribution, may improve model fit [52]. Another possible
reason for inadequate fit may be the conversion of the dataset
using Eq. 2. This conversion was used to omit extreme values
and may have particularly affected approximating ERS-like
RS as DistSub. Updates for better ERS approximation will
be a topic of our future studies.

The empirical analysis showed heterogeneity of actual
RP emergence in VAS measurements. In our analysis,
most participants identified their MRS or BiMRS ten-
dency as Main RP, although the intensity of how they
preferred midpoint selection differed among participants
(Supplementary Table 1). When we interpret BiMRS as a
midpoint preference between neutral and the instructions
at both ends, this result is consistent with previous studies
that showed a clear MRS tendency in Japanese respon-
dents [14], [15]. This heterogeneity in the modality also
follows previous studies, in which various emotion mea-
surement datasets using VAS showed bimodality between
20.3–48.9%, regardless of whether the location guidelines
of the scales were initially set to the exact midpoint or
not [16]. Since midpoint guidelines were not shown on the
VAS scales in this experiment, this tendency was likely not
a consequence of our data collection procedures, but rather
represented participants’ characteristics. This result may
imply the effectiveness of ACCEPT_BIDIST=0.15, which
we experimentally set for this dataset, for other general
datasets handling self-reports. In addition to Main RP, Dist-
Sub RP varied among participants. Unlike the conventional
VAS usage of within-individual comparisons, RP hetero-
geneity can distort the results of between-individual VAS
comparisons, similar to cross-sectional studies using Likert
scales [13], [53]. Moreover, the RP parameters had fewer
relationships with the participants’ personalities, indicating
the difficulty in controlling the effect by introducing demo-
graphic covariates (Table 3). Our analysis suggests that we
must consider the existence of RP heterogeneity, which can
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TABLE 2. Correlations among big five personality traits.

TABLE 3. Correlations between big five personality traits and RP parameters.

degrade inter-individual analysis, even for real-world VAS
measurements.

Finally, this study has limitations. In contrast to RS
removal methods [25], [26], [27], it is challenging to extend
our method directly to RP removal methods. Based on the
realistic constraints that users rated various self-report ques-
tionnaires with repeated measures, our method assumes that
users repeatedly respond to various questionnaire items a
different number of times. Owing to this constraint, we cannot
simply utilize the task independence of the previously pro-
posed methods, which assume that various users answer fixed
questionnaire items the same number of times, especially
once per item. Although RP characterization is helpful in
terms of using RP parameters as covariates, there is need for
future studies to extend this to enable RP removal. Moreover,
we applied the proposed method to a single empirical dataset.
This DailySense dataset was limited to a small Japanese
population [43], [44]. To confirm the deleterious effects of RP
heterogeneity, the proposed method should be utilized with
larger datasets that include participants with diverse cultural
backgrounds, namely cross-cultural studies.

VII. CONCLUSION
This study proposes a novel characterization method for the
RSs observed in the VAS (denoted as the response profile,
RP). Our proposed method robustly identified RPs in simu-
lated and repeatedly measured VAS datasets. These findings
suggest the existence of participant-dependent RP hetero-
geneity, which can degrade inter-individual analyses. These
results elucidate the importance of RP evaluation, even in
the analysis of self-reported data obtained by VAS. Future
RP-aware analyses of repeatedly measured VAS data will

offer the possibility of RP heterogeneity-less inter-individual
analyses, enabling more precise subjective health research.
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