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ABSTRACT In this article, the problem of optimal guaranteed cost control for a single specie bio-economic
singular system in an algal environment is investigated using fuzzy methods. Based on the aquaculture of
whitebait in algae environment, a class of non-linear bio-economic model is established. In addition, owing
to the practical problem of a finite production cycle and the need to control biomass within a certain range,
a cost-guaranteed controller based on a fuzzy model was developed to ensure that the biomass concentration
reaches a certain range in a limited time and at a minimum cost. Finally, the feasibility of the developed
controller is demonstrated through a practical example.

INDEX TERMS Algae environment, bio-economic singular systems, finite-time bounded, guaranteed cost
control, Takagi-Sugeno (T-S) fuzzy model.

I. INTRODUCTION
How to optimize the yields in agriculture is a constant concern
for people and a hot topic for scientists. Loads of related
research has been done in recent years. A lot of bio-economic
systems are discussed. In 2019, Meng and Li proposed a
delayed phytoplankton-zooplankton system with Allee effect
and linear harvesting, the optimal harvesting strategy of the
system is obtained [1]. Two years later, in the paper pub-
lished by Nadjah Kerioui and others, a differential-algebraic
bioeconomic system with predator harvesting is studied
[2]. A mathematical model of harvesting strategy for fish
population was presented to calculate the optimal economic
return of sustainable fishing fish stocks by Chen [3]. Based on
the classical modern control theory, Hasan and others studied
the application of optimal control in biological economic
system [4]. In recent years, research methods have been
continuously innovated. In 2021, Shao introduced stochastic
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processes into environmental variables and generalized them
to the study of continuous-time Mahalanobis decision-
making processes [5]. Subsequently, Chinese scholar Zhang
Lin discussed the finite time contraction stability and optimal
control of the mosquito population inhibition model [6].
Meanwhile, the method can also be used for researching
the conditions of the symbiosis of herring and mysis shrimp
[7]. Nowadays, the optimal control of population dynamical
systems with age structure has been widely discussed [8], [9].
In order to save costs andmaximize economic returns, De Feo
and others studied the economics of optimal advertising and
investment portfolios in 2024 [10]. As the situation with
various toxins and pollution become more and more serious,
researchers are increasingly focusing on how to optimise
harvesting, particularly in the face of toxins and pollution.

Using applied mathematical model to study how the
pollution affects biological systems began with Hallam and
colleagues [11], [12], [13]. Since then, there has been a
steady stream of related research. In the following years,
some related research results were emerging. Zhang and
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others have investigated the optimal harvesting of farmed
fish under the prymnesiaceae toxin environment and fuzzy
optimal guaranteed cost control of a single species model
with stage-structure in toxic environment [14], [15]. Agmour
and others discussed the effects of harmful phytoplankton
population on the stability of bio-economic system model
and the dynamic profit of phytoplankton species in 2021
[16]. For the problem of population competition in polluted
environments, Li studied the optimal harvesting problem
of the scale-structure competitive population system in the
environment with toxin pollution by controlling the harvest
effort [17]. Then, Gunathilaka discussed the global issue of
pollution and summarized the recent studies on the response
of plankton community to antibiotics [18]. It is worth noting
that Wang Quan his colleague sused probability density
function to study the effects of environmental toxins and
time delays on the population dynamics of the model [19].
They found that concentrations of the toxin could lead to
extinction.In the actual breeding process, farmers tend to
ignore the existing age characteristics of the organisms and
the age structure of natural reproduction when releasing
population, which is equivalent to the organisms have the
same growth cycle. And according to the theory of economics
of shared resources, when the economic benefit of fishing
is zero (m = 0), the economic profit maintains a certain
equilibrium, this phenomenon is also known as overfishing,
which we do not want to happen. Therefore, we should take
measures to view this system as a bio-economic singular
system and introduce differential algebraic equations to
study it, so that the biological system can be stabilized and
access to sustainable benefits. Simultaneously, in order to
make the system have stronger stability, PDC, Non-PDC
and H∞ controllers can be designed. And the method has
gradually become mainstream. Shen constructs a nonlinear
compensation composite controller for the fuzzy Markov
jump system, studies the H∞ output feedback problem, and
finally obtains the stochastic and stable impulse condition
[20], [21]. The main highlighted contributions of the article
are:

1) Based on the traditional biological economic model, this
paper introduces Differential algebraic equation which can
ensure the system is stable and the sustainable benefits can
be maximized.

2) A PDC controller is designed by combining the
biological economic system with the fuzzy control theory,
and the Linear matrix inequality method is used to ensure
the innovation and effectiveness of the method, at last, the
relevant parameters of the system are obtained.

In this paper, we focus on the algae effect and its influences
on the species. By fuzzy methods, the complex nonlinear
model is first changed into fuzzy model. Second, we show
that the system is regular and pulse-free. At the same time,
in order to maximize the benefits at the lowest cost, a closed-
loop system with a PDC controller was discussed. At last,
a practical example is carried out to illustrate the feasibility
of designed controller.

For the reason that the aquacultural environment is the
limited space in general. Then the increase of the farmed
population and algae concentration produced by the growth
and reproduction of them can be performed by growth model
with limited space

dx1(t)
dt

= x1(t)(r1 − a1x1(t)),

dx2(t)
dt

= x2(t)(r2 − bx2(t)),

where x1(t) is the concentrate of the farmed population and
x2(t) is the algae concentrate at the time t , r1 and r2 are
the natural growth rate of farmed population and the algae,
respectively. a1 and b respectively stand for the restrictive
coefficient of the farmed population and algae in certain
aquaculture space. At the same time, the excess algae growth
will make the farmed population died of anoxic, and the
coefficient of it is a2.
Let E(t) is the harvesting effort of x1(t) at the time t . α is

the harvesting coefficient of E(t). Then αE(t) is the capture
rate of the farmed population. The the harvesting model in
algae environment is built as follow

dx1(t)
dt

= x1(t)(r1 − a1x1(t) − a2x2 − αE(t)),

dx2(t)
dt

= x2(t)(r2 − bx2(t)).

The bio-economic singular model system in this article
is built by considering the economic interest of harvesting
effort on the farmed population which is first proposed by
Zhang et al. [22]

dx1(t)
dt

= x1(t)(r1 − a1x1(t) − a2x2 − αE(t)),

dx2(t)
dt

= x2(t)(r2 − bx2(t)),

0 = E(t)(ραx1(t) − c) − m. (1)

where E(t) is the harvesting effort of the farmed population,
ρ is a price coefficient of per unit farmed population, c is the
cost coefficient, cE(t) is the total cost, and m is the economic
interest of harvesting.

In the next section, the equilibria and fuzzy model of
system (1) will be discussed.

II. THE EQUILIBRIA AND FUZZY MODEL
According to the economic theory of a common-property
resource [23], there is a phenomenon of bio-economic
equilibrium when the economic interest of harvesting is zero
(m = 0), i.e, total revenue is equal to total cost, which
is also known as the economic overfishing. Then, this will
cause the ecological imbalance, there must be an ecological
disaster. But some artificial means can be used to control it.
For example, in order to protect resources and promote the
economic development by adjusting the amount of the tax to
increase or decrease the cost for harvesting, the government
implements control to the bio-economic system such that the
system can develop continuously and continue to profit [24].
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Firstly, the equilibrium points of system (1) will be discussed
when m = 0 in this section. Then, the considered system is
converted into T-S fuzzy models and we write it in the general
form.
Lemma 1: There is a positive equilibrium point of sys-

tem (1), if

a1bc+ a2αr2ρ − αbr1ρ < 0.

proof: The points of equilibrium of the parametric
model (1) are given by the equations of the steady state

x1(t)(r1 − a1x1(t) − a2x2(t) − αE(t)) = 0,

x2(t)(r2 − bx2(t)) = 0,

E(t)(ραx1(t) − c) = 0, (2)

After algebraic calculation, we obtain the trivial and the
non-trivial points of equilibrium: P1(0, 0, 0), P2(0,

r2
b , 0),

P3(
r1
a1

, 0, 0), P4(−
a1r2−br1

a1b
, r2b , 0), P5( c

αρ
, 0, − a1c−αr1ρ

α2ρ
),

P6( c
αρ

, r2b , −
a1bc+a2αr2ρ−αbr1ρ

α2ρ
)

Clearly, P1 and P2 are extinction equilibrium points. P3,
P4 are the non-harvesting equilibrium points. And P5 is
the non-algae equilibrium point (indeed it is an unpractical
equilibrium). And if

a1bc+ a2αr2ρ − αbr1ρ < 0, (3)

then −
a1bc+a2αr2ρ−αbr1ρ

α2ρ
> 0, P6 is the positive equilibrium

point.
This completes the proof of the theorem.
For the system (1), P6 is the positive equilibrium point. Let

Z (t) = (z1(t), z2(t), z3(t))T , where z1(t) = x1(t)− c
αρ
, z2(t) =

x2(t) −
r2
b and z3(t) = E(t) +

a1bc+a2αr2ρ−αbr1ρ
α2ρ

.
Then system (1) can be transformed into the following

equivalent form

dz1(t)
dt

= −a1z21(t) − a2z1(t)z2(t) −
a1c
αρ

z1(t)

− αz1(t)z3(t) −
a2c
αρ

z2(t) −
c
ρ
z3(t),

dz2(t)
dt

= −bz22(t) − r2z2(t),

0 = αρz1(t)z3(t) −
a1bc+ a2αr2ρ − αbr1ρ

αρ
z1(t)

+ u(t), (4)

where u(t) is the control input representing regulation control
for a biological resource, such as the increase or decrease in
tax.

The system (4) is then transformed into a fuzzy T-S model
and the model is described in its general form. Finally,
considering the general form of the system, the main results
of this paper are presented.

Since z1(t) and z2(t) represent the aquaculture population
density and algal concentration, respectively, it can be
assumed that z1(t) ∈ [l1, l2], and z2(t) ∈ [d1, d2], li, di ∈

R, i = 1, 2. Hi and Ni (i = 1, 2) is a fuzzy set for system (4).
Then the fuzzy state model can be written as follows, which

is suitable for the description of the model system (4) as
z1(t) ∈ [l1, l2], and z2(t) ∈ [d1, d2].

Rule 1: If z1(t) is H1 and z2(t) is N1, then

E
dZ (t)
dt

= A1Z (t) + B1u(t).

Rule 2: If z1(t) is H2 and z2(t) is N1, then

E
dZ (t)
dt

= A2Z (t) + B2u(t).

Rule 3: If z1(t) is H1 and z2(t) is N2, then

E
dZ (t)
dt

= A3Z (t) + B3u(t).

Rule 4: If z1(t) is H2 and z2(t) is N2, then

E
dZ (t)
dt

= A4Z (t) + B4u(t),

where

A1 =

 −
a1c
αρ

− a1l2 −
a2c
αρ

− a2l2 −
c
ρ

− αl2
0 −r2 − bd2 0

−
a1bc+a2αr2ρ−αbr1ρ

αρ
0 αρl2

 ,

A2 =

 −
a1c
αρ

− a1l1 −
a2c
αρ

− a2l1 −
c
ρ

− αl1
0 −r2 − bd2 0

−
a1bc+a2αr2ρ−αbr1ρ

αρ
0 αρl1

 ,

A3 =

 −
a1c
αρ

− a1l2 −
a2c
αρ

− a2l2 −
c
ρ

− αl2
0 −r2 − bd1 0

−
a1bc+a2αr2ρ−αbr1ρ

αρ
0 αρl2

 ,

A4 =

 −
a1c
αρ

− a1l1 −
a2c
αρ

− a2l1 −
c
ρ

− αl1
0 −r2 − bd1 0

−
a1bc+a2αr2ρ−αbr1ρ

αρ
0 αρl1

 ,

E =

1 0 0
0 1 0
0 0 0

 ,

B1 =

0
0
1

 , B2 =

0
0
1

 ,B3 =

0
0
1

 , B4 =

0
0
1

 ,

Z (t) =

z1(t)z2(t)
z3(t)

 .

Denote: m1[z1(t)] =
z1−l1
l2−l1

, m2[z1(t)] =
l2−z1
l2−l1

,
n1[z2(t)] =

z2−d1
d2−d1

, n2[z2(t)] =
d2−z2
d2−d1

. Then h1 =

m1[z1(t)] × n1[z2(t)], h2 = m2[z1(t)] × n1[z2(t)], h3 =

m1[z1(t)] × n2[z2(t)], h4 = m2[z1(t)] × n2[z2(t)].
Fuzzy blending is used to obtain a overall fuzzy model as

follows:

E
dZ (t)
dt

=

4∑
i=1

hi[AiZ (t) + Biu(t)]. (5)

Remark 1: In the above process, we transform the
single-species algae environment model into a generalized
fuzzy economic system, which is convenient for us to
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maximize the performance benefit of the guaranteed cost, and
treat the nonlinear model approximately into several linear
models, it’s a huge efficiency boost.

In order to improve the readability of the article, we have
written (5) as a standard way to describe fuzziness, and have
changed it to (6). In the following, the related definitions and
results will be introduced for the general form of T-S fuzzy
singular systems.

E
dX (t)
dt

=

r∑
i=1

hi[AiX (t) + Biu(t)], (6)

where X (t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input. r is the number of If-Then rules, Ai and Bi are real
known matrices with appropriate dimensions.

III. OPTIMAL GUARANTEED COST CONTROL
This section begins with introducing the definitions and
results related to the general form of biological fuzzy sys-
tems, then focused on researching mode-dependent control
law for system (6) and the following cost function has
been designed for the system in order to meet certain
requirements:

JT0 =

∫
0

T0
[XT(t)M1X (t) + uT(t)M2u(t)]dt, (7)

where M1 and M2 are two symmetric positively defined
matrices of appropriate dimensions.
Remark 2: In system (6),

∫
0
T0XT(t)M1X (t)dt represents

the average cost per unit volume of biomass storage in period
[0,T0], and

∫
0
T0uT(t)M2u(t)dt represents the average cost

per unit volume of biomass and algae control in period
[0,T0]. In this paper, T0 is the length of the production
cycle.

The state feedback fuzzy control rule

u(t) =

r∑
i=1

hi(ξ )KiX (t) = KξX (t) (8)

based on parallel distributed compensation, is adopted,
resulting in the following closed-loop system:

E
dX (t)
dt

=

r∑
i=1

r∑
j=1

hihj(Ai + BiKj)X (t). (9)

First, we introduce the definitions necessary to develop the
main results of this paper. System (9) can be transformed into
an equivalent system

E
dX (t)
dt

= (Aξ + BξKξ )X (t), (10)

for simplicity, where Aξ =
∑r

i=1hiAi, Bξ =
∑r

i=1hiBi.

Definition 1 ([25]): The system (10) is said to be regular
in the time interval [0,T0], if the characteristic polynomial
det(sE−(Aξ+BξKξ )) is not identically zero for all t ∈ [0,T0].

2) The system (10) is said to be impulse free in the interval
[0,T0], if deg (det (sE − (Aξ + BξKξ ))) = rank E for all
t ∈ [0,T0].
Definition 2 ((SFTB) [26]): The closed-loop system (10)

is said to be singular finite-time boundedness (SFTB) with
respect to (c1, c2,T0,R), if

xT(t0)ETREx(t0) ≤ c1 ⇒ xT(t)ETREx(t) < c2,

t0 ∈ [−τ, 0], t ∈ [0,T0]. R is positive definite matrix
with proper dimension. c1 and c2 are real numbers, and
c2 > c1 > 0.
Lemma 2 ([27]): If the following conditions hold

Mii < 0, 1 ≤ i ≤ r,
2

r − 1
Mii +

1
2
(Mij +Mji) < 0, 1 ≤ i ̸= j ≤ r,

then the following parameterized matrix inequality holds
r∑
i=1

r∑
j=1

αi(t)αj(t)Mij < 0,

where αi(t) ≥ 0 and
∑r

i=1 αi(t) = 1.
Theorem 1: The system (10) is SFTB with respect to

(c1, c2,T0,R) and the cost function (7) has an upper bound
in the time interval [0,T0], if there exists a scalar ϱ ≥ 0,
matrices P, Q > 0 such that

ETP = PTE ≥ 0 (11)

(Aξ + BξKξ )TPT + P(Aξ + BξKξ ) − ϱETP

+ M1 + KT
ξ M2Kξ < 0 (12)

ETP = ETR1/2QR1/2E (13)

eϱT0c1λmax(Q) − c2λmin(Q) < 0, (14)

And the upper guaranteed cost bound is

J∗
= λmax(Q)c1eϱT0

proof: Firstly, it can be proved that singular system (10)
is regular and impulse free in the time interval [0,T0].
From(12),M1 > 0 and M2 > 0, we have

(Aξ + BξKξ )PT + PT(Aξ + BξKξ ) − ϱETP < 0 (15)

We know E =

[
Ir 0
0 0

]
. Supposing that there exist matrices P

such that (11) holds, P can be constructed as P =

[
P1 0
P3 P4

]
.

Accordingly, take Aξ + BξKξ =

[
A1ξ A2ξ
A3ξ A4ξ

]
. Then, by (15),

it follows that [
⋆ ⋆

⋆ AT4ξP4 + PT4A4ξ

]
< 0 (16)

which implies A4ξ is nonsingular. According to Definition
3.1, the system (10) is regular and impulse free in the time
interval [0,T0].

Choose the Lyapunov functional candidate as

V (X (t)) = XT(t)ETPX (t). (17)
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Then, from (15), it can be obtained

dV (X (t))
dt

− ϱV (X (t)) = XT(t)((Aξ + BξKξ )PT

+ PT(Aξ + BξKξ )

− ϱETP)X (t) < 0 (18)

Multiplying (18) by e−ϱt , we can obtain

d
dt
(e−ϱtV (X (t))) < 0. (19)

Integrating (19) from 0 to t with t ∈ [0,T0], we have

V (X (t)) < V (X (0))eρt . (20)

Then

V (X (t)) < V (X (0))eϱt = [XT(0)ETPX (0)]eϱt

= [XT(0)ETR
1
2QR

1
2EX (0)]eϱt

≤ λmax(Q)XT(0)ETREX (0)

≤ c1λmax(P)eϱt

≤ c1λmax(P)eϱT . (21)

On the other hand,

V (X (t)) > XT(t)ETR
1
2QR

1
2EX (t)

≥ λmin(Q)XT(t)ETREX (t). (22)

Combining (21) and (22) leads to

XT(t)ETREX (t) <
c1λmax(Q)
λmin(Q)

eϱT0 . (23)

Then, by (14), we have

XT(t)RX (t) < c2 (24)

for all t ∈ [0,T0]. Once again from (12) and (19), it can be
easily seen

dV (X (t))
dt

< ϱV (X (t)) − X (t)TM1X (t) − u(t)TM2u(t).

(25)

Further, (25) can be represented as

d
dt
(e−ϱtV (X (t))) < −e−ϱt (X (t)TM1X (t) + u(t)TM2u(t)).

(26)

Integrating (26) from 0 to T0, we have∫ T0

0
e−ϱt (X (t)TM1X (t) + u(t)TM2u(t))

< −

∫ T0

0

d
dt
(e−ϱtV (X (t))). (27)

Noting that ϱ ≥ 0, it follows that:

JT0 =

∫ T0

0
(X (t)TM1X (t) + u(t)TM2u(t))

≤ eϱT0
∫ T0

0
e−ϱt (X (t)TM1X (t) + u(t)TM2u(t))

< −eϱT0
∫ T0

0

d
dt
(eϱtV (X (t)))

≤ eϱT0λmax(Q)c1. (28)

This completes the proof of the theorem.
Theorem 2: There exists a state feedback controller with

u =
∑r

i=1 hi(ξ )YiX
−1X (t) such that the system (10) is SFTB

with respect to (c1, c2,T0,R) and the cost function (7) has an
upper bound in the time interval [0,T0], if there exist scalars

ρ > 0, η1 > 0, η2 > 0 and matrices X =

[
X1 0
X3 X4

]
, V =[

X1 0
0 9

]
, X1 ∈ Rr×r , X1 > 0, X4 ∈ R(n−r)×(n−r) > 0,

9 ∈ R(n−r)×(n−r) > 0, Yi, such that

�ii < 0, 1 ≤ i ≤ r, (29)
2

r − 1
�ii +

1
2
(�ij + �ji) < 0, 1 ≤ i ̸= j ≤ r, (30)

η1I < R−
1
2VR−

1
2 < η2I (31)

e−ρT0c1η2 − c2η1 < 0 (32)

and the upper guaranteed bound is

JT0 < J∗
=

1
η1
c1eϱT0 ,

where

�ij

=

AiX + BiYj + (AiX + BiYj)T − ρXTE XTM1 YjTM2
MT

1 X −M1 0
M2Yj 0 −M2

 ,

proof: From (29), (30) and Lemma 1, we get λX + XTλT − ρXTE XTM1 Yξ
TM2

M1
TX −M1 0

M2Yξ 0 −M2

 < 0 (33)

where λ = Aξ + BξKξ

Similar the proof of Theorem 1, we can obtain that X is
nonsingular. So, X1 and X4 are also nonsingular. Then, there
exists P = X−1 such that

ETP = ETX−1

=

[
Ir 0
0 0

] [
X−1
1 0

−X−1
4 X3X

−1
1 X−1

4

]
=

[
X−1
1 0
0 0

]
= PTE (34)

Now pre and postmultiply (III) by diag {X−1, I , I } and
its transposition. Then using the Schur complement Lemma,
it follows that (29) and (30) imply (12).

Further, letting Q = R−
1
2V−1R−

1
2 , it can be obtained

that

ETR
1
2QR

1
2E = ETR

1
2R−

1
2V−1R−

1
2R

1
2E

= ETVE =

[
Ir 0
0 0

] [
X−1
1 0
0 9−1

] [
Ir 0
0 0

]
116222 VOLUME 12, 2024
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FIGURE 1. Closed-loop system state response diagram.

=

[
X−1
1 0
0 0

]
= ETP (35)

Therefore (13) holds. By (31), we can obtain

1
η2

≤ Q = V−1
≤

1
η1
I , (36)

So, from (32), combining (36), it follows (14) holds. Then

JT0 < J∗
=

1
η1
c1eα̃T0 .

This completes the proof of the theorem.
Remark 3: Here, we first present a finite-time stability

analysis of a single population using fuzzy technique, and
solve the controller parameters by strict Linear matrix
inequality.

IV. A PRACTICAL EXAMPLE
In this section, we illustrate themain conclusions of this paper
with practical examples.

Whitebait is very famous for its high nutritional value and
economic value. The protein content of whitebait is 72.1 per-
cent, and the amino acid content of whitebait is also rich.
What’s more, whitebaits are rich in calcium and very little in
fat [28], which are popular because of their high nutritional
value and flavor. Whitebaits are popular because of their
high nutritional value and flavor. Furthermore the whitebait
has the special nutritious function to the undernourished
people. However, whitebait is extremely sensitive to algae.
Flourishing algae caused by the continuing high temperature,
too much nutrition in the water, and a shortage of running
water, is said to have contributed to the whitebait dying from
hypoxia. The effects of algae cause significant economic
damage to aquaculture (especially whitebait aquaculture)
because of their high concealment capacity, short time from
hypoxia to death, and high mortality rate. When algal blooms
occur, whitebait quickly die if no control measures are taken.
As a result, agriculturists lose their entire initial investment.

The Shangsantai reservoir, situated in Siping, Jilin
Province, China, produces around 400 tons of fish and
prawns annually, generating a total income of approximately

6.4 million RMB (The data above is from the 2021 fishery
production statistics in Siping City, Jilin Province).

The cultivation of Shangsantai is a thriving industry in
the area, with 30 ponds covering an area of 3 hectares
and an initial concentration of 20,000 fish per hectare. The
whitebaits produced by these farmers are of high quality and
command an price of 120 yuan per kilogram. According to
the 2022 fishery production statistics of Siping City, Jilin
Province, the net profit per pond during the rearing period
is approximately 10,800 RMB. Nearly 20 ponds died due
to algae blooms in 2022. (The above data was taken from
the 2021 fishery production statistics of Siping City, Jilin
Province.)

We built the model on the basis of data from the city
of Siping, includes key parameters such as the initial
concentration of whitebait r1 is 0.60. The internal control
coefficient of whitebait a1 is 0.008. The natural growth rate of
algae in algae blooms condition r2 is 0.5. The internal control
coefficient of algae b is 0.01. Additionally, the mortality
rate of whitebait a2 in an algae environments is 0.005. The
coefficients of the whitebait-harvesting effort α is 0.6, and
the coefficient of price per unit of whitebait ρ is 0.8. Using
these parameters, we can specially determine the model (4)
as the following form:

dz1(t)
dt

= −0.008z21(t) − 0.005z1(t)z2(t) − 0.083z1(t)

− 0.60 z1(t)z3(t) − 0.052z2(t) − 8.333z3(t),
dz2(t)
dt

= −0.01z22(t) − 0.50z2(t),

0 = 0.48 z1(t)z3(t) − 0.245z1(t) + u(t),

When T0 = 5, c = 5, c1 = 0.4, c2 = 10, l1 = 1, l2 = 10,

d1 = 1, d2 = 10, M1 =

1 0 0
0 2 0
0 0 3

; M2 = 1, R =

 1
2 0 0
0 1

2 0
0 0 1

2

,

byTheorem 2, the controller gains are given by η1 = 0.0197,
η2 = 0.0337
K1 =

[
−69.4143 3.1422 387.6187

]
,

K2 =
[
−68.7910 3.1132 386.3748

]
,

K3 =
[
−67.8841 3.0726 378.9678

]
,
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FIGURE 2. System state response diagram with PDC-controller.

FIGURE 3. Finite time stable response diagram.

K4 =
[
−68.0379 3.0792 382.1225

]
,

X =

0.3486 0.0006 0
0.0006 0.3773 0
0.0619 −0.0029 −0.0012

,

V =

0.3486 0.0006 0
0.0006 0.3773 0

0 0 0.4269


The optimal guaranteed cost’s upper bound is 248 RMB

yuan, which represents the optimal average cost per unit
volume of biomass storage and control over the period [0, 5].
To demonstrate the effectiveness, Fig.1 and Fig.2 display

the state response of an open-loop system and a closed-loop
system controlled by (8) under the initial condition Z (0) =

[0.1 0.3 0.1]T.
To further verify the finite time stability of the system,

we give a trajectory plot of time t as a function of
xT (t)ETREx (t) as shown in Fig. 3.
Remark 4: As illustrated in Fig.1, if system (4) can not be

effectively controlled, the algae concentration will continue
to increase. Under the influence of algae, the density of
the aquaculture population will decrease. If the methods
presented in this paper are used, algae can be managed to
reduce the density of the cultured population. The harvesting
effect will also reduce the density of the growing population

and the labor involved in harvesting. Both the concentration
of algae and the density of cultured populations reached
the specified range in a limited time and at minimum cost,
as shown in Fig.2.

V. CONCLUSION
This article investigates fuzzy optimal guaranteed cost
control for single-species model in algal environment. Firstly,
a harvesting model of aquaculture in algae environment is
built based on actual aquaculture. Secondly, considering the
limited duration of the culture, a controller for this systemwas
developed to bring the concentration of the cultured stock to
the specified range for a limited period of time at minimum
cost. The presented approach is exemplified to demonstrate
its feasibility.
In the follow-up research, we can combine the fuzzy

method with the multi-species model. At the same time,
we can study how to minimize the time when the system
reaches a certain target profit.
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