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ABSTRACT For fault diagnosis, it is important to effectively leverage the inherent characteristics of small
datasets, but it is rarely considered in many the existing deep learning approaches. To this end, a dual-
path network model based on multiple attention mechanisms is proposed in this work. The proposed
model enriches the features of small sample by combining one-dimensional (1-D) frequency signals
with two-dimensional (2-D) time-frequency images. A 1-D attention mechanism is applied in the 1-D
frequency extraction path to focus classification on sensitive frequency information, while an improved
global attention mechanism is added to the 2-D feature extraction path, which refines the key features
and reduces interference resulting from noise in the image data. Moreover, the stability of the learning
process is enhanced through the application of a combinatorial loss function composed of label smoothing
regularization and gradient harmonizing mechanism loss functions. Finally, the diagnostic performance of
the proposed method is validated using two different public fault diagnosis datasets in comparison with the
state-of-the-art methods.

INDEX TERMS Vibration signal, attention mechanism, fault diagnosis, wavelet transform, small sample.

I. INTRODUCTION
The real-time diagnosis of bearing faults in mechanical sys-
tems based on vibration signals is imperative for ensuring
safety and high production in industry [1], [2]. However,
the increasing complexity and variability of modern working
conditions have in-creased the frequency and the range of
faults encountered by mechanical equipment. These condi-
tions have necessitated the development of fault diagnosis
methods with an increasing degree of intelligence and
sophistication.

In recent years, data-driven methods relying on large-scale
historical data in conjunction with artificial intelligence tech-
niques, such as artificial neural networks (ANNs) [3], random
forest (RF) classifiers [4], and support vector machine
(SVM) [5], have been rapidly developed and now include
many successful applications. Huo et al. [6] developed a
hybrid technology with SVM for identifying faults of rolling
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bearings. Nevertheless, these conventional artificial intelli-
gence methods rely on complicated processes for the manual
feature extraction and reduction, and their performances
are subject to the quality of the features considered and
the complexity of the data. Effectively extracting hidden
high-dimensional features becomes very difficult when the
data are complex, nonlinear, or involve several dimensions.
These issues represent significant limitations in practical
applications.

These issues associated with conventional data-driven fault
diagnosis methodologies have been addressed via a variety
of deep learning technologies [7], [8], [9], [10], [11], such as
convolutional neural networks (CNNs) [12], [13], [14] and
generative adversarial networks [15], Generative adversarial
networks [16], Deep belief networks [17], Recurrent neural
networks [18], etc. Deep learning-based approaches can be
classified into two types according to whether the input sig-
nal is a one-dimensional (1-D) signal, or a two-dimensional
(2-D) signal. In terms of 1-D vibration signals, Zhao et al.
[19] applied an enhanced gated recurrent neural network
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to recognize faults of rolling bearings for one-dimensional
input. Zhao et al. [20] designed a novel deep networkwith soft
thresholding for improving the anti-noise property of feature
extraction. Miao et al. [21] presented a sparse representation
layer in a convolutional structure to suppress hidden data
noise and learn 1-D high quality features directly. The use
of 2-D image-based data transforms the signal classification
problem into one of image classification. For example, Ding
and He [22] employed 2-D wavelet packet energy images
in the fault diagnosis model to improve the utilization of
feature information. In addition, attention mechanisms have
generated considerable interest at present for conducting fault
diagnosis in deep learning frameworks [23]. For example,
Zhang et al. [24] proposed a capsule network with atten-
tion mechanism that extracted dual-scale features from 2-D
images. Huang et al. [25] developed a multi-scale CNN
method combining channel attention that enhanced diag-
nostic performance by focusing on sensitive features in the
learning process. Jia et al. [26] proposed an improved CNN
model to reduce noise in the 1-D vibration signals employed
in fault diagnosis.

The increasing range of faults encountered by mechani-
cal systems in recent years has also generated considerable
interest in the need for conducting mechanical fault diag-
nosis using small training datasets [26]. A number of
methods have been commonly applied for this purpose,
such as data augmentation [27], transfer learning [28], and
meta-learning [29]. In general, these methods address the
sparsity of available data pertaining to a specific fault con-
dition in different ways. One common type of approach
seeks to generate new training data based on the small
dataset. In contrast, methods like transfer learning are appli-
cable in a setting where only small datasets are available
for a specific condition of interest but considerable data
exists for a related condition. Accordingly, Feng et al. [30]
constructed a gradient-penalized GAN model based on a
multi-module learning strategy to produce failure signals of
various states [31]. Yang et al. [32] developed an effective
trainable network based on transfer learning. Han et al. [33]
applied a meta-learning model for identifying roller bearing
faults under variable speed conditions. Another method for
addressing the issues associated with small datasets that has
demonstrated excellent performance involves the use of mod-
eling. Liu et al. [34] used a novel fault classification technique
that applied an attention mechanism to effectively model
fused spatiotemporal features of small vibration data. How-
ever, despite the significant advances in deep learning-based
fault diagnosis, the ability to make good use of the inherent
features of small datasets requires further development.

The present work addresses this issue by proposing a sys-
tematic method denoted as dual-path fault diagnosis based on
multiple attention mechanisms (DPMAM) that not only fuses
spatiotemporal features and small vibration data effectively,
but also applies separate attention mechanisms to focus the
classification network onto the most sensitive information

available. Moreover, the DPMAM method performs well
under variable speed and field noise conditions. The primary
contributions of this work can be described as follows.

(1) The dual-path network structure enriches the features
of small samples by combining 1-D frequency signal inputs
in one path, denoted as the 1-D feature extraction module,
which applies the fast Fourier transform (FFT) to generate
feature information, and 2-D time-frequency image inputs in
the other path, denoted as the 2-D feature extraction module,
which applies the wavelet transform (WT) to generate feature
information based on wavelet time-frequency (WTF) images.
Finally, the two features are concatenated to a 1-D feature
sequence.

(2) An improved 1-D attention mechanism is applied in
the 1-D feature extraction module to focus the classification
network on sensitive frequency information. Mean-while,
an improved global attention mechanism (GAM) is applied
in the 2-D feature extraction module for refining the key fea-
tures in the time-frequency images and reducing interference
arising from noise. The proposed attention mechanisms are
im-proved relative to previously proposed mechanisms by
adding a multilayer perceptron.

(3) A novel combinatorial loss function is applied when
training the proposed dual-path network. The stability of the
learning process is enhanced by applying a gradient harmo-
nizing mechanism (GHM) loss function, which is always
applied in the field of image recognition for addressing sam-
ple imbalance. Furthermore, label smoothing regularization
(LSR) is used instead of the actual class labels, and an LSR
loss function is applied to enhance learning capability and
alleviate over-fitting.

The remainder of this paper is organized as follows.
Section II introduces the theoretical foundation. Section III
presents a detailed description of the proposed method.
The performance of the proposed method is validated in
Section IV in comparison with the performances of other
state-of-the-art methods based on two public datasets. Finally,
the conclusions of the study are presented in Section V.

II. THEORY OF CONVOLUTIONAL NEURAL NETWORK
A standard CNN architecture is composed of a convolution
(Conv) layer, pooling layer, fully connected (FC) layer, and
a softmax classifier layer [35]. The convolution and pooling
layers are employed for extracting features, the FC layermaps
the feature space calculated by the pooling layer to a sample
label space, and the softmax layer converts the prediction
vector into probability values based on the softmax activation
function.

A convolution layer is described as

x lj =

∑
i
x l−1
i k lij + blj (1)

where x lj is the j-th feature graph output of the l-th layer,
x l−1
i is the i-th feature graph of the (l − 1)-th layer, k lij is the
convolution kernel between the i-th input feature graph and
the j-th feature graph, and blj is an offset term.
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FIGURE 1. Schematic illustrating the overall process of the proposed DPMAM model.

A pooling layer applies a downsampling operation to the
output of the Conv layer to achieve dimensionality reduction
while retaining the main original characteristics. Meanwhile,
it provides a network structure that is not prone to overfitting.
The output of a maximum pooling (MaxPool) layer ph(m,t) is
obtained as

ph(m,t)
= max

(n−1)g<t<ng

{
ah(m,t)

}
n = 1, 2, · · · . (2)

where ah(m,t) is the activation value of the t-th neuron of the
m-th feature graph in the h-th layer, g is the width of the
pooling region, and n is the n-th pooling kernel.
The FC layer achieves the classification task. Therefore,

the output ŷ of the FC layer is described as

ŷ = f (Wx + b) (3)

where W is the weight matrix, x is the input vector, b is a
bias vector, and f (·) is an activation function, which is the
softmax activation function in the present work.

The softmax activation function returns a normalized prob-
ability ŷi of a prediction with label i, and is defined as follows:

ŷi =
e(W ix+bi)∑C
k=1 e

(W kx+bk )
(4)

where C is the number of classes.

III. PROPOSED METHOD
A. OVERVIEW
The overall architecture of the DPMAM model is illustrated
schematically in Figure 1. As can be seen, a raw 1-D vibration
signal is firstly input into the network model, which branches
into two different paths to extract the 1-D and 2-D features
of the input signal using the FFT and WT, respectively. The
1-D feature maps are processed by the attention convolution
and pooling layers in the 1-D feature extraction module,
and the 2-D feature maps (i.e., time-frequency images) are
processed by the attention convolution and pooling layers in

the 2-D feature extraction module. Here, a large convolution
kernel can improve the anti-noise robustness of 2-D feature
extraction. After passing through the respective FC layers, the
features are fused through bitwise convergence, and the signal
is classified finally by a two-layer FC network with a softmax
layer. The details of the model are addressed in the following
subsections.

Finally, the WTF image is obtained after combining the
frequency sequence with the raw time sequence.

B. DATA PREPROCESSING
In the first data preprocessing step, the raw vibration signal
is segmented into N samples, y(n) with a length of k. Then,
in the 1-D path, y(n) is preprocessed by the Fast Fourier
transform (FFT) in the first 1-D path to generate feature
information.

In the 2-D path, y(n) is also preprocessed by theWT in the
2-D path to produceWTF images as feature information [32].
Cmor wavelet is selected as the basis function [32].

C. DUAL-PATH NETWORK
1) 1-D FEATURE EXTRACTION MODULE
The 1-D feature extraction module with the 1-D attention
mechanism is illustrated schematically in Figure 2. Firstly,
the input vector zO is transformed into a characteristic vector
z by a 5× 1 Conv function F1 and a MaxPool function FMP1
with a 1-D batch normalization (BN) function as follows:

z = FMP1[F1(zO)] (5)

Themechanism applied in the proposed 1-D feature extrac-
tion module is based on a previously proposed attention
mechanism [36]. Here, a global max pooling (GMP) layer is
used to obtain the crucial pulses zGMP from z as follows:

zGMP = max
0≤j<d

z(1, j) (6)
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Moreover, zGMP and z are then concatenated and input
into a 1 × 1 Conv function F1. This yields the following
intermediary matrix fim:

fim = δ (F1 [cat(z, zGMP]) (7)

after being subjected to the Acon-C activation function δ (g)
for addressing data nonlinearity, which is defined as

δ(x) = (p1 − p2)zσ [β(p1 − p2)x] + p2z (8)

Here, β, p1, and p2 are activation function parameters, where
β = p1 = 1 and p2 = 0, and σ denotes the sigmoid function.
Then, fim is separated into pulses z′, which are retained, and
other pulses that are discarded according to the previously
proposed method [35]. The retained pulses are then input into
another 1 × 1 Conv function F2 and a sigmoid function σ to
obtain the following signal:

g = σ [F2(f
z′
im)] (9)

Finally, after re-weighting, inputting into a 7 × 1 Conv
function F3 and a MaxPool function FMP2, and reshaping,
the final output yc is obtained as follows:

yc = FMP2[F3(z⊗ g)] (10)

where ⊗ represents element-wise product.

FIGURE 2. Schematic illustrating the architecture of the 1-D feature
extraction module with the 1-D attention mechanism.

FIGURE 3. Schematic illustrating the architecture of the 2-D feature
extraction module with the 2-D attention mechanism.

FIGURE 4. Schematic illustrating the architecture of the GAM module.

2) 2-D FEATURE EXTRACTION MODULE
The architecture of the 2-D feature extraction module with
the corresponding attention mechanism applied herein is
similar to that of a residual block [37], and is illustrated
schematically in Figure 3. As can be seen, two convolu-
tion attention channels are applied to characterize adequate
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FIGURE 5. Representative vibration signals associated with different bearing conditions in
the CWRU dataset: (a) 0.007 inch ball fault; (b) 0.014 inch ball fault; (c) 0.021 inch ball
fault; (d) 0.007 inch inner race fault; (e) 0.014 inch inner race fault; (f) 0.021 inch inner race
fault; (g) 0.007 inch outer race fault; (h) 0.014 inch outer race fault; (i) 0.021 inch outer
race fault; (j) normal race condition.
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information describing the complicated features in WTF
images. A preprocessed WTF image firstly passes through
a Conv layer with a convolution kernel of 5 and a Max-
Pool layer in the one convolution channel, while a larger
convolution kernel of 7 is applied in the other convolution
channel to remove noise. The outputs of the MaxPool layers
in both channels are processed via improved global attention
mechanisms (IGAMs). In contrast to a standard convolu-
tional block attention module (CBAM), which considers both
the spatial dimension and channel dimension without los-
ing cross-dimensional information by ignoring interactions
between the spatial and channel dimensions, a GAM pre-
serves the information to ensure the capture of key signal
characteristics in all dimensions. Finally, the outputs of the
two channels are concatenated and subjected to a Leaky-Relu
function for overcoming activation function sparsity.

As illustrated schematically in Figure 4, IGAM module
consists of a channel attention sub-module and a spatial atten-
tion sub-module, which both use the same reduction ratio r .
The mechanism is used to multiply the corresponding output
with the input as {

I ′ = MC (I ) ⊗ I
I ′′ = MS (I ′) ⊗ I ′

(11)

Here, the WTF image I ∈ RC×W×H , where C , W , and H
represent the number, width, and height of channels, respec-
tively, MC and MS are the respective channel and spatial
attention maps, and ⊗ represents the multiplication of cor-
responding elements. Accordingly, I ′ is the image resulting
from the channel attention sub-module and I ′′ is the image
resulting from the spatial attention sub-module.

The channel attention sub-module uses three-dimensional
(3-D) arrangements to retain 3-D information. The corre-
sponding feature matrix xopasses through a permutation layer
and an affine layer, and then passes through a five-layer
multilayer perceptron (MLP) to magnify cross-dimensional
dependencies. Here, the following affine function:

Affα,β (xo) = Diag (α) · xo + β (12)

where α and β are learnable weight parameters, and the
function Diag(·) creates a diagonal matrix, is adopted in this
module rather than batch normalization because an affine
function typically requires only a very short reasoning time
and has no reliance on batch statistics. Finally, the MLP
model applies an Acon-C activation function.

Spatial attention sub-module uses two convolution layers
for spatial information fusion to focus on spatial information.
The number of channels is reduced with a convolution to
reduce the amount of computation. After Acon-C activation
and another convolution operation, the number of channels
is then increased to keep invariant. Finally, it is output by a
sigmoid function.

D. LOSS FUNCTION
A loss function aides in model training by providing a consis-
tent measure of the difference between the values predicted

FIGURE 6. Representative data preprocessing result for the CWRU dataset
in Case I.

by a model and the true values. Under the condition of K
classes, the GHM classification loss is defined as follows:

LGHM =

K∑
k=1

LCE (pk , p∗
k )

GD(gk )
(13)

Here, LCE(g) is cross entropy loss function, where pk is the
distribution of the predicted values and p∗

k is the distribution
of the actual values for the k-th class, and GD(gk ) is the
gradient density function, where gk is gradient norm of the
k-th class. The LSR loss is expressed in conjunction with a
smoothing coefficient ε as follows:

LLSR = (1 − ε)LCE + εUk (14)

Uk = −

∑K
k=1 log(pk )

K
(15)

Hence, the combinatorial loss function LCom applied herein is
a weighted sum of LGHM and LLSR, and is defined according
to a weight ω as follows:

LCom = ωLGHM + (1 − ω)LLSR (16)

The value ω = 0.3 was applied herein based on the results of
various comparison experiments.

IV. CASE STUDIES
The two public fault diagnosis datasets were employed to
evaluate the fault diagnosis performance of the proposed
DPMAM method including the Case Western Reserve Uni-
versity (CWRU) rolling bearing dataset (48k Drive End)
[38], which is a benchmark constant-speed dataset widely
employed in bearing fault diagnosis, and the Xi’an Jiaotong
University (XJTU) variable speed Spectral Quest machin-
ery fault dataset (VSQ) [39], which includes samples with
variable speeds and field noise. Accordingly, the XJTU-VSQ
dataset is useful for evaluating the anti-noise performance of a
fault diagnosis method. These two datasets were respectively
applied in Cases I and II. Model training was implemented
using Pytorch 1.10 and Python 3.8 on a personal computer
runningWindows 10 with an Intel Core i7-8700 CPU, 16 GB

VOLUME 12, 2024 114543



X. Li et al.: Dual-Path Fault Diagnosis of Small Sample for Mechanical Systems

FIGURE 7. Performance of different optimizers: (a) accuracy; (b) stopping epoch.

FIGURE 8. Confusion matrixes pertaining to the classification results obtained with the four SRs extracted from the 0 HP
data subset in Case I: (a) SR1; (b) SR2; (c) SR3; (d) SR4.

of RAM, and an RTX 2060 GPU. In addition, the opti-
mization performances of six commonly applied optimizers
were compared, including Adma, Adagrad, SGD, Adamax,
AdmaW, RMSprop, for representative data in Case I.

Each condition consisted of 200 randomly selected sam-
ples for each experiment and each sample was composed of

960 data points. The order of the samples was shuffled prior
to each experiment to guarantee a random arrangement of
training and testing samples. Each experiment was repeated
20 times in succession. The impact of data sparsity was
evaluated using four set ratios (SRs) of training samples,
validation samples, and testing samples consisting of 2:1:17,
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FIGURE 9. Visualizations of two-dimension feature distributions obtained with the four SRs extracted from the 0 HP data subset in
Case I: (a) SR1; (b) SR2; (c) SR3; (d) SR4.

3:1:16, 2:1:7, and 3:1:6 under each condition. The random
distribution of training samples among classes in these differ-
ent SRs can be evaluated according to the sample imbalance
ratio Rim, which is defined as

Rim =
Max(Nc) −Min(Nc)

Avg(Nc)
(17)

where Nc = {n1tra,n
2
tra, · · · , n10tra, is the number of samples

ntra pertaining to each fault class in the training set, the
function Max(·) selects the maximum ntra value, the function
Min(·) selects the minimum ntra value, Avg(·) is the average
function, and Rim ∈ [0, 2). When Rim = 0, the number of
training samples in each condition is equal, and the degree of
sample imbalance among classes increases with increasing
Rim. The DPMAM parameters included a reduction ratio of
r = 4 applied to the attention mechanisms and a maximum
training epoch of 200. Decreasing accuracy under continuous
training was avoided by defining the actual training epoch in
accordance with an early stopping method using a patience
value of 10 [36]. All other parameter values are discussed in
the following subsection. Comparison experiments were exe-
cuted with four existing models without data augmentation,
including 1DCNN [40] and MK-ResCNN [41], which apply
standardized 1-D frequency signals as inputs, and Letnet-5

FIGURE 10. Classification accuracies obtained by the various methods
considered for the different load data subsets in Case I when trained
using the 0 HP data subset.

[42] and ResNet-18 [37], which apply 2-D WTF images as
inputs.

A. CASE I: CWRU DATASET
1) DATA DESCRIPTION AND PROCESSING
The vibration signals in the 48 k Drive End dataset were
sampled from accelerometers mounted on the fan end and the
drive end of a 2-HP motor housing. The dataset included four
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FIGURE 11. Representative vibration signals associated with different bearing conditions in the XJTU
dataset: (a) minor inner race fault; (b) medium inner race fault; (c) severe inner race fault; (d) minor outer
race fault; (e) medium outer race fault; (f) severe outer race fault; (g) normal race condition.

data subsets (0 HP, 1 HP, 2 HP, 3 HP) with different loads of
0 kW, 0.735 kW, 1.471 kW, and 2.206 kW, respectively. In all
experiments, the models were trained with samples selected

from the 0 HP data subset. The fault conditions include
ball, inner race, and outer race faults, and each fault cate-
gory includes three fault sizes of 0.007 inches, 0.014 inches,
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and 0.021 inches. Representative vibration signals associated
with the 10 different signal classes are presented in Figure 5,
and include 9 fault conditions (Figure 5(a)–(i)) and 1 normal
condition (Figure 5(j)). The SRs and Rim values pertaining
to the data samples employed in Case I are listed in Table 1.
The scale is set as 256. In addition, a representative result
of preprocessing, including the raw vibration signal, and
the corresponding 1-D FFT data and 2-D WTF image, are
presented in Figure 6.

TABLE 1. Set ratios and sample imbalance ratios Rim of the four SRs
employing different proportions of training, validation, and testing
samples in Case I.

2) TRAINING PERFORMANCE ANALYSIS
The training performance of the proposed model is signifi-
cantly sensitive to the batchsize and the applied optimizer.
Therefore, we first investigated the training performance
obtained with SR3 data extracted from the 0 HP data subset
conducted using the RMSprop optimizer with different batch-
sizes, and the actual training epoch reached under the early
stopping method, the evaluation loss, evaluation accuracy,
and total training time are listed in Table 2 for different
batchsizes. As can be seen, the training time and number of
training epochs decrease with increasing batchsize up to a
batchsize of 64, and then increase with further increase in the
batchsize. This increase in the training time arises because the
larger batchsize tends to decrease the generalization ability
of model. Therefore, a balance is obtained with a batchsize
of 64, which was applied in all subsequent experiments.
Moreover, as shown in Figure 7, the RMSprop optimizer
was found to achieve the highest accuracy of all optimizers
considered at the lowest stopping epoch of 30. Therefore,
the RMSprop optimizer was employed for training in all
subsequent experiments. It should be noted that the batchsize
and optimizer results obtained with all other SR datasets were
similar to those obtained with SR3.

3) IMPACT OF SET RATIO ON PREDICTION PERFORMANCE
The confusion matrixes pertaining to the classification results
obtained by the trained DPMAM model under the four SRs
extracted from the 0 HP data subset in Case I are presented
in Figure 8. As can be seen, the different fault conditions
are identified with an accuracy close to 100%, except that
the 0.014-inch ball fault (Class 2) is identified at a relatively
lower accuracy level at SR1 and SR3. It may be because that
the physical phenomena is raised in this specific case, such
as resonance. The features in the frequency domain are also
not obvious. The classification accuracy of the method can

FIGURE 12. Representative data preprocessing result for the XJTU dataset
in Case II.

be affected by SR. The visualizations presented in Figure 9
of 2-D feature distributions obtained with the four SRs in
Case I were obtained by applying a nonlinear unsupervised
dimension reduction technique based on t-distributed random
neighborhood embedding. As can be seen, each class is gen-
erally separated successfully.

TABLE 2. Training results obtained with different batchsizes in Case I
with SR3 data extracted from the 0 HP data subset.

4) PERFORMANCE COMPARISONS WITH OTHER METHODS
The classification results obtained by the various methods
considered under the four SRs extracted from the 0 HP data
subset in Case I are listed in Table 3. As can be seen, the clas-
sification accuracies generally increase with decreasing Rim,
as expected with increasing sample imbalance. However, the
classification accuracies of the proposed DPMAM method
outperform that of all other methods considered, particularly
at high Rim. Thus, the proposed method has better fault
detection performance for small-sample conditions. It should
be noted that the classification performance of ResNet-18 is
close to that of the DPMAMmethod, even at high Rim. How-
ever, the training time required by ResNet-18 was uniformly
greater than that required by the DPMAM model.

The generalization ability of these methods was evaluated
by analyzing their classification performance obtained for
the model trained with samples extracted from the 0 HP
data subset when applied to testing samples extracted from
the 1 HP, 2 HP, and 3 HP data subsets. The classification
accuracies obtained by the various methods considered for
the different load data subsets in Case I are presented in
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FIGURE 13. Confusion matrixes pertaining to the classification results obtained with the four SRs in Case II: (a) SR1; (b) SR2;
(c) SR3; (d) SR4.

TABLE 3. Classification results obtained by the various methods
considered for the 0 HP data subset in Case I.

Figure 10. As can be seen, the proposed DPMAM method
provides superior classification performance under all cases.
Moreover, its superiority is particularly dominant when the
load of the testing data samples differs greatly from the load
of the training data samples (i.e., for 2 HP and 3 HP testing
data samples).

B. CASE II: XJTU DATASET
1) DATA DESCRIPTION AND PROCESSING
The vibration signals in the VSQ dataset were sampled under
continuous varying speeds, and collected with a sampling fre-
quency of 25.6 kHz. The fault conditions in the VSQ dataset
include six bearing faults with minor, medium, and severe
levels of wear for the outer race and inner race. Representative

vibration signals associated with the 6 fault conditions and
1 normal condition are presented in Figure 11(a)–(f) and
Figure 11(g), respectively. The SRs and Rim values pertaining
to the data samples employed in Case II are listed in Table 4.
In addition, a representative result of prepocessing, including
the raw vibration signal, and the corresponding 1-D FFT data
and 2-D WTF image, are presented in Figure 12. In con-
trast to what was observed in Figure 6, the results presented
in Figure 12(b) and (c) clearly demonstrate that the signal
includes a sizeable level of field noise disturbance.

TABLE 4. Set ratios and sample imbalance ratios Rim of the four SRs
employing different proportions of training, validation, and testing
samples in Case II.

2) IMPACT OF SET RATIO ON PREDICTION PERFORMANCE
The confusion matrixes pertaining to the classification results
obtained by the trained DPMAM model under the four
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FIGURE 14. Visualizations of two-dimension feature distributions obtained with the four SRs in Case II: (a) SR1; (b) SR2; (c) SR3; (d) SR4.

SRs extracted from the XJTU-VSQ dataset in Case II are
presented in Figure 13. As can be seen, the different fault con-
ditions are identified with an accuracy greater than 99.90%.
In particular, all normal samples (Class 4) were well recog-
nized. As shown in Figure 14, the 2-D feature distributions
demonstrate that the DPMAM model provides satisfactory
fault classification performance.

3) PERFORMANCE COMPARISONS WITH OTHER METHODS
The classification accuracies obtained by the variousmethods
considered under the four SRs extracted from the XJTU-VSQ
dataset in Case II are listed in Table 5. Note that the classi-
fication accuracies generally increase with decreasing Rim.
Moreover, the proposed DPMAMmethod again outperforms
all other methods considered, particularly at high Rim. The
results also demonstrate that the accuracy of the two fault
diagnosis methods using 2-D WTF images as inputs were
much greater than those applying 1-D signals as inputs.
This differed markedly from the results obtained in Case I
(Table 3 ), which can be attributed to the particular benefit
of employing WTF images under conditions of high signal
noise. Accordingly, the results demonstrate that the proposed

DPMAMmethod provides particularly superior classification
performance under variable speeds and high signal noise
conditions compared to the other methods considered.

TABLE 5. Classification accuracies of the various methods compared in
Case II.

V. CONCLUSION
The present work addressed current limitations in the ability
of deep learning methods to make full use of the inherent
characteristics of small vibration datasets by proposing a
dual-path model based on multiple attention mechanisms.
The proposed model combines 1-D frequency signals with
2-D time-frequency images to enrich the features of small
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datasets. Then, the classification task is focused on sensitive
frequency information by applying a 1-D attention mecha-
nism in the 1-D frequency extraction path, while a global
attention mechanism is incorporated into to the 2-D feature
extraction path to refine the key features and reduce inter-
ference due to noise in the image data. Moreover, leaky
ReLu and Acon-C activation functions are introduced in
the model to further enhance the generalization and robust-
ness of the classification process. The excellent classification
performance of the proposed method was demonstrated in
conjunction with two different public fault diagnosis datasets
based on comparisons with the performances of 1DCNN,
MK-ResCNN, Letnet-5, and ResNet-18 fault diagnosis meth-
ods. The results clearly demonstrated that the proposed
method provides more accurate classification performance
than the other methods considered when subject to a small
training dataset.

NOMENCLATURE
ACRONYMS
ANN Artificial neural network.
RF Random forest.
SVM Support vector machine.
CNN Convolutional neural network.
GNN Generative adversarial network.
DPMAM Multiple attention mechanism.
FFT Fast Fourier transform.
WT Wavelet transform.
WTF Wavelet time-frequency.
GAM Global attention mechanism.
GHM Gradient harmonizing mechanism.
LSR Label smoothing regularization.
FC Fully connected.
IGAM Improved global attention mechanism.
CBAM Convolutional block attention module.
SR Set ratio.
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