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ABSTRACT Recurrent Neural Networks (RNNs), including the distinguished Long Short-Term Memory
Networks (LSTMs), have been shown to be effective in a wide range of sequential data problems. However,
their ability to model very long-term dependencies still poses challenges, indicating that this remains an
active area of research. We propose a new methodology for gradient propagation in LSTM networks that
addresses the limitations of traditional approaches. This methodology employs Chrono Initialization (CI)
and Layer Normalization (LN) techniques for LSTM networks. CI ensures that the gradients are neither
too small nor too large, preventing gradient vanishing or exploding, while LN enhances the stability of
hidden state dynamics by aligning the data distribution, mitigating gradient-related issues, and facilitating
faster learning. The proposed approach consistently outperformed baseline models in our comparative
analyses, achieving average accuracy improvements across classification tasks, with improvements of up
to 5% and notable performance increases exceeding 30% in certain scenarios. Significant reductions in
Mean Squared Error (MSE) were persistently achieved across regression tasks, averaging 35% lower to
several orders of magnitude lower MSE, especially when the baseline models underperformed. Moreover,
the method significantly improved performance in sequence generation tasks, consistently yielding much
lower negative log-likelihoods relative to the reference counterparts, often by several orders of magnitude.
Faster convergence to the optimal minimumwas also repeatedly confirmed, even when final results were not
significantly divergent. Overall, this newmethodology improves the performance of LSTMnetworks and has
been evaluated across various sequential learning tasks. A formal analysis provides a deeper understanding
of the mechanisms behind these improvements.

INDEX TERMS Chrono initialization, gradient propagation, layer normalization, long short-term memory
networks.

I. INTRODUCTION
Recurrent Neural Networks (RNNs) extend feed-forward
neural networks by incorporating an internal memory mech-
anism, making them particularly effective for sequential
problems. At each timestep t , the simplest RNN architecture
updates its hidden state ht using the input xt according to the
rule

ht = φ(Wh · [ht−1, xt ] + bh), (1)

whereW and b are the model parameters with their respective
layer denotations, and φ is the nonlinear activation function.

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

Efficient gradient propagation is essential for training RNNs
but remains a challenge due to issues such as vanishing
or exploding gradients, which can impede the model’s
ability to capture long-term dependencies. To address these
issues, the Long Short-Term Memory (LSTM) architecture
was introduced. The LSTM, a specialized RNN variant,
includes memory cells and gating mechanisms that allow
selective retention and updating of information over time.
This architecture, proposed by Sepp Hochreiter and Jürgen
Schmidhuber [1], mitigates the vanishing gradient problem
and improves the handling of long-term dependencies.
However, it is not immune to the challenges of vanishing
and additionally, exploding gradients, which can hinder its
performance. Over the years, numerous studies have explored
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various components and extensions of the LSTM, as seen
in works such as [2], [3], [4], [5], and [6]. This paper
revisits the widely used LSTM variant [7], which includes the
forget gate, a component whose critical importance was only
recognized after many years [2], [8]. We aim to demonstrate
the mathematical and empirical improvements in LSTM
networks using two techniques: Chrono Initialization (CI)
and Layer Normalization (LN). These methods are integrated
into the LSTM architecture to enhance performance and
efficacy. By incorporating both the CI and LN techniques,
a combination not previously explored, we aim to further
improve the LSTM architecture. CI [9] positively impacts
memory retention and gradient propagation in LSTM net-
works by alleviating the vanishing gradient problem, enabling
better capture of long-term dependencies. CI has already been
applied within the LSTM, but only on the forget and input
gate biases, as discussed in [9], and it was also utilized in the
paper [10], where the issue of hindered gradient propagation
was initially identified, albeit without presenting a successful
solution. LN addresses internal covariate shift by normalizing
inputs to each network layer, ensuring stable training,
smoother gradient flow, and faster convergence. We formally
analyze the functionality of the augmented networks to
provide theoretical insights into the improvements achieved
by incorporating CI and LN. Additionally, we conducted
a series of experiments on various benchmark datasets,
demonstrating the significant advantages of using CI and
LN in the LSTM. Our results show consistent improvements
in evaluation metrics and convergence speed, validating the
efficacy of these techniques. Overall, this study contributes
to the advancement of LSTM networks by providing
mathematical and empirical evidence of the benefits of CI
and LN. These methods can be seamlessly integrated into
LSTM architectures, enhancing their capabilities in modeling
sequential data across various domains such as natural
language processing, speech recognition, time series analysis,
and more.

In this research, we start with a survey of related works,
followed by a fundamental analysis of LSTM networks.
We then delve into the concept of gradient flow in CI-
LSTM networks, examining its crucial role in efficient
neural network training and potential improvements. Next,
we highlight the benefits of LN, a technique that stabilizes
and speeds up deep neural network training by addressing
internal covariate shift issues. We then introduce a hybrid
model combining CI-LSTM with LN, demonstrating how
this approach enhances training dynamics by leveraging
CI-LSTM’s ability to capture sequential patterns and the
gradient propagation improvements from LN. Our exper-
imental section provides practical applications of these
concepts with real-world examples and results. Additionally,
we discuss the conclusions of an ablation analysis and outline
potential directions for future work. Finally, our conclusion
summarizes the key insights, underscoring the significance
of these enhancements.

II. RELATED WORK
One of the main challenges of RNNs is the issue of
vanishing and exploding gradients. This problem has a
crucial impact on the ability of RNNs to effectively learn
and maintain dependencies from previous time steps during
training, as detailed in [14]. An LSTM is a specific type
of RNN designed to address these challenges. Research has
proposed a variety of simpler yet competitive architectures,
such as [10], [15], and [16], along with more intricate
designs like [6], [17], [18], designed to optimize sequential
data processing. Furthermore, numerous research studies
have also directly addressed the issues of the vanishing and
exploding gradient problems in existing LSTM models, with
the hope of improvement, as documented, for example, in [3],
[5], [8], [9], [10], [11]. Our research was influenced by the
papers [9], and [10]. Although LSTMs have been extensively
studied over the past few decades, and their in-depth analysis
and research have led to many significant discoveries in
the field of sequential data processing, our mathematical
exploration revealed the potential for their advancement
by utilizing the initialization method introduced in [9].
However, newly encountered challenges led us into the field
of data normalization. Normalization has become crucial for
accelerating the training of deep networks and improving
training stability. There are several normalization techniques.
We found the concept of LN particularly intriguing as a
possible solution to tackle the newly encountered challenges.
While our paper is mathematically related to [12] and [13],
thewaywe’ve incorporated LN into the LSTMdiffers slightly
from the approach presented in the referenced paper.

III. LSTM OVERVIEW
When the first LSTM architecture was initially introduced
in 1997, it marked a significant breakthrough in the realm
of RNNs. As mentioned, traditional RNNs often encoun-
tered challenges with the vanishing or exploding gradient
problems, impeding their ability to retain and propagate
information across lengthy sequences. This limitation posed
a considerable obstacle for tasks that required memory
retention and a deep contextual understanding. The LSTM
architecture [7] incorporates a set of equations that govern
the flow of information within the network. Specifically, the
forget gate equation employs a sigmoid activation function
and plays a crucial role in deciding which information
should be forgotten or discarded from the memory cell.
This selective forgetting mechanism allows the network to
prioritize and remember specific information while filtering
out less important details. The forget gate equation can be
expressed as (σ represents the sigmoid activation function)

f t = σ (W f · [ht−1, xt ] + bf). (2)

Similarly, the input gate equation, also employing a
sigmoid activation function, controls the flow of new input
information into the memory cell. This gate selectively
determines the relevance and significance of the input,
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ensuring that only valuable information is stored while
preventing irrelevant or noisy inputs from interfering with the
stored memory. The input gate equation can be expressed as

it = σ (W i · [ht−1, xt ] + bi). (3)

Moreover, the output gate equation, using a sigmoid
activation function likewise, controls the flow of information
from the memory cell to the subsequent layers or the
final output of the network. It determines the amount of
information to be revealed based on the current state of the
memory cell. The output gate equation can be expressed as

ot = σ (Wo · [ht−1, xt ] + bo). (4)

To update the content of the memory cell, the LSTM utilize
the memory cell equation, which combines the forget gate,
input gate, and a hyperbolic tangent activation function. This
equation facilitates the selective update of the memory cell,
allowing it to store relevant information while discarding
irrelevant details (⊙ is the symbol for the element-wise or
pointwise product, also known as the Hadamard product),
as can be observed from the following expressions

c̃t = tanh(W c̃ · [ht−1, xt ] + b̃c),

ct = f t ⊙ ct−1 + it ⊙ c̃t ,

ht = ot ⊙ tanh(ct ). (5)

The linear layer is typically utilized for outcome prediction
or insight extraction through a linear transformation applied
to the hidden state ht , in the following manner

yt = Wy · ht + by. (6)

In the provided equations of the LSTM, W and b are
model parameters with their respective layer denotations.
These equations define the LSTM architecture, which
enables the capture and retention of long-term dependencies,
thereby addressing the challenges faced by traditional RNNs.
By effectively managing the flow of information, the LSTM
preserves crucial contextual information over extended
sequences, resulting in more accurate predictions and a
deeper understanding of complex patterns.

A. GATE INITIALIZATION
One crucial component of an LSTM cell is the gating
mechanism, which allows the network to selectively update
and access information over time. Gate initialization is an
important aspect of the LSTM training, as it sets the initial
values for the gate activations. Proper initialization of these
gates is crucial for ensuring effective information flow and
preventing vanishing or exploding gradients during training.
One common approach to gate initialization is using a
technique called Xavier initialization [19]. It sets the initial
weights of neural network layers to have a mean close to zero
and a variance adjusted based on the number of input and
output neurons, helping prevent the vanishing or exploding
gradient problem. This technique reduces the likelihood of
gradients becoming too small or too large and facilitates the

training of deep networks. Regarding the initialization of
biases for gates, the common practice is to initialize themwith
0 or set them to some small random values. However, in [8],
it is suggested to initialize the forget gate bias to a value of
1 or 2 to enable gradient flow. Furthermore, in 2018, a new
initialization scheme was proposed for the LSTM, named
chrono initialization [9]. CI initializes the forget gate bias bf
by sampling from a log uniform distribution ranging from 1 to
Tmax − 1

bf ∼ log(U[1,Tmax − 1]), (7)

and sets bi = −bf, where Tmax represents the expected range
of long-term dependencies, essentially the input sequence
length. It is important to notice that these initializations rep-
resent just the starting values, and as the training progresses,
the gate biases will adjust independently. Emphasis should
also be placed on the broader context of CI theory, which
leads to the visual simplification of certain expressions for
clarity, as seen, for instance, in [10]. This approach is applied
throughout the paper, leading to some expressions resurfacing
in equations to highlight specific auxiliary facts.

IV. GRADIENT FLOW IN CI-LSTM NETWORKS
In this section, we will delve into the analysis of the
gradient of the objective function J with respect to some
arbitrary memory ct , specifically focusing on the gradient
flow defined by the CI-LSTM architecture. The cell state is
a crucial component of an LSTM, as it helps the network
to retain and accumulate information over multiple time
steps, allowing for the modeling of long-term dependencies
in sequential data. Understanding the behavior and properties
of the objective function J with respect to memory ct is
essential for gaining insights into how information flows
and is updated within the LSTM network during the process
of backpropagation. Analyzing the gradient can provide
valuable information about the impact of different input
sequences on the learning process, identify potential issues
such as vanishing or exploding gradients, and guide the
design of more efficient and effective LSTM models. To find

∂J
∂ct−1

, we express it as

∂J
∂ct−1

=
∂J

∂ht−1

∂ht−1

∂ct−1
+

∂J
∂ct

∂ct
∂ct−1

. (8)

Now let’s explicitly write out ∂ct
∂ct−1

derivatives

∂ct
∂ct−1

= tanh′(ct−1) · ct−1 ⊙ f t · (1 − f t ) ·W f · ot−1

+ f t
+ tanh′(ct−1) · c̃t ⊙ it · (1 − it ) ·W i · ot−1

+ tanh′(ct−1) · it ⊙ (1 − c̃t2) ·W c̃ · ot−1. (9)

If we initialize bf and bi using the CI technique and assume
that the input and hidden layers are zero-centered over time,
with Tmax being a sufficiently large value representing the
expected range of long-term dependencies, the preceding
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expression (9), corresponding to this value (the same applies
to later expressions analogously), simplifies to the following

∂ct
∂ct−1

≈ f t = σ (log(Tmax − 1)). (10)

It has been indicated that Tmax should be assumed to be
a sufficiently large value. In other words, a higher Tmax
value implies that the sigmoid activation values of the forget
gate tend closer to 1. However, this assumption is readily
met, as evidenced by the graph in Figure 1, where even
shorter sequences yield activations close to 1. Nonetheless,
the emphasis should still be on longer sequences, as the
general point of long-term dependencies may otherwise be
diminished. Consequently, the equation (10) is approximated

FIGURE 1. The graph depicts sigmoid activation with the bias of the
pre-activation vector initialized using the CI technique under the
assumptions that the input and hidden layers are zero-centered over time.

to 1. To substantiate the reduction from the equation (9) to the
equation (10) in its entirety, it is essential to emphasize that
the remaining terms in the equation (9) become negligible as
1 − f t = 1 − σ (log(Tmax − 1)) and it = σ (− log(Tmax −

1)) are approximated to 0, due to CI. Furthermore, in the
paper [10], an example was demonstrated using the MNIST
dataset, in which its images were transformed into sequences
of Tmax = 784 (28 × 28) individual pixels. Each pixel
was regarded as a moment in time, and it was observed that
Tmax −1 = 783 implies σ (log(783)) = 0.99872448979. As a
result, it was shown that the gradients of memory cells ct are
almost unaffected by the sequence length, as the values of
the forget gate are close to 1. However, there is a potential
disruption in the gradient flow within the calculation details.
If we revisit the equation (8) and conduct a more detailed
analysis of the expression ∂J

∂ct−1
, we will obtain the following

∂J
∂ct−1

=
∂J
∂ht

∂ht
∂ht−1

· ot−1 ⊙ tanh′(ct−1)

+
∂J
∂ht

∂ht
∂ct

∂ct
∂ht−1

· ot−1 ⊙ tanh′(ct−1)

+
∂J
∂ct

· f t . (11)

The term ∂J
∂ht

∂ht
∂ct

∂ct
∂ht−1

can be neglected because of the fact
that the expression

∂ct
∂ht−1

= f t · (1 − f t ) ·
∂(W f · [ht−1, xt ] + bf)

∂ht−1
⊙ ct−1

+ it · (1 − it ) ·
∂(W i · [ht−1, xt ] + bi)

∂ht−1
⊙ c̃t

+ it ⊙ (1 − c̃t2) ·
∂(W c̃ · [ht−1, xt ] + b̃c)

∂ht−1

≈ 0 (12)

since both 1− f t and it tend to be values close to 0, due to CI.
Therefore, the term (12) nullifies the entire expression in (11)
that it multiplies. Consequently, we obtain the next expression

∂J
∂ct−1

≈
∂J
∂ht

∂ht
∂ht−1

· ot−1 ⊙ tanh′(ct−1)

+
∂J
∂ct

· f t . (13)

Now, if we revisit the assumption that the input and hidden
layers are zero-centered over time with CI and a sufficient
Tmax as the expected range of long-term dependencies,
we will recall that f t ≈ 1. With f t ≈ 1, it is evident that
the expression

∂J
∂ht

∂ht
∂ht−1

· ot−1 ⊙ tanh′(ct−1), (14)

within the equation (13) could theoretically present an
obstacle or a hidden impediment. The question arises whether
the expression (14) can be somehow eliminated from (13),
for instance, by nullifying it (since the term (14) is likely
not equal to 0 and can assume any real value), as this would
lead to a Markov-like simplification of the partial derivatives,
which has the potential to enhance the training dynamics of
LSTM networks. To see this, let’s revisit the expression (14)
and express the expression ∂ht

∂ht−1
.

∂ht
∂ht−1

= ot · (1 − ot ) ·
∂(Wo · [ht−1, xt ] + bo)

∂ht−1
⊙ tanh(ct )

+ ot ⊙ tanh′(ct ) ·
∂ct

∂ht−1
. (15)

Here we can observe the following. The term ot (the output
gate) appears ‘‘very frequently’’ (observing the expres-
sions (14) and (15) jointly, including the time propagation
steps), in fact, it multiplies all the other terms. Therefore,
if the ot term were 0, then the expression (14) would be
nullified. A theoretical approach to ensure that the output
values of the output gate are close to 0 might involve
initializing its bias to significantly negative figures. This
strategy can be inspired by examining the practice utilized for
the input gate and its bias, applying a similar methodology.
For instance, if we were to initialize the bias of the output
gate with large negative values by leveraging the principles
of CI, then for sufficiently long sequences, the value of
σ (− log(Tmax−1)) would be close to 0, as shown by the graph
in Figure 1, and this is the desired outcome we are striving to
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achieve. If we return to the example with the MNIST dataset
and a sequence length of Tmax −1 = 783, taking into account
the negativity of the initialization, the obtained result will be
σ (−log(783)) = 0.0012755102. Therefore, with the same
assumptions as before, the output gate would be centered
around 0. This is crucial because the bias of the output gate
is commonly initialized to 0, and assuming that the input and
hidden layers are zero-centered over time, the output gate will
be centered around 0.5 in this case. Hence, with the output
gate centered around 0, the resulting expression will take the
following form

∂ht
∂ht−1

= σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈0

·(1 − σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈1

)

·
∂(Wo · [ht−1, xt ] + bo)

∂ht−1
⊙ tanh(ct )

+ σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈0

⊙ tanh′(ct ) ·
∂ct

∂ht−1︸ ︷︷ ︸
≈0

≈ 0. (16)

By substituting expression (16) into (13), wherein we also
notice that there is one additional and very important term that
assists in nullifying the expression, the result is as follows

∂J
∂ct−1

≈
∂J
∂ht

· 0 · σ (− log(Tmax − 1))t−1︸ ︷︷ ︸
≈0

⊙ tanh′(ct−1)

+
∂J
∂ct

· 1. (17)

This leads to the expression (18), which showcases the
promised improvement

∂J
∂ct−1

≈
∂J
∂ct

· 1. (18)

This approach brings another benefit when compared to the
classical initialization approach. The idea was to nullify the
expression (14) because it can pose an obstacle in gradient
propagation. However, as mentioned earlier, this expression
can take on any real number, thus potentially causing issues
in the context of the exploding gradients problem. The partial
derivative shown in (15) is calculated for a single time
step, but as the number of steps increases, there will be
consecutivemultiplication of terms because the hidden state h
is also present in the expression being partially differentiated.
Therefore, having the value of the output gate close to 0 will
more effectively neutralize large values during multiplication
(small values multiply large ones) compared to the classical
initialization, as can be observed in (16).

Upon exploring the theoretical potential to arrange the
concept for unhindered gradient propagation, it becomes
evident that the concept itself is insufficient. The construction
implementing unhindered gradient propagation imposes
limitations on hidden training dynamics. To clarify, updating
the hidden state can generate data with small values, which is
potentially expected, but also with a very low variance. This

phenomenon is further detailed later in the ablation study.
When the data exhibit such low variance, this may suggest
that they are almost constant, with minimal fluctuations.
LSTM networks rely on the ability to detect patterns and
features across a sequence of data. If all the data points
are nearly the same, an LSTM may struggle to differentiate
relevant information and learn features that can generalize
across different situations. However, when addressing the
newly emerged challenge, certain elegant techniques, such
as LN, are emerging as a viable option. Applying LN to
data with values close to zero and low variance assists
in aligning the data distribution, thereby improving the
network’s capacity to adapt and learn pertinent features.More
precisely, LN centers the data, bringing the mean value closer
to zero. Additionally, it normalizes the data. This process
maintains the relative order and distance between data points
while also altering the variance, potentially ensuring that the
variances of different features approach 1. This alignment
of value ranges among various features can be advantageous
for optimization and aids in stabilizing the learning process,
even when the data initially exhibits low mean values and
variances.

V. LAYER NORMALIZATION
LN is a technique introduced by [12] to address the issue of
internal covariate shift in deep neural networks. It aims to
normalize the inputs to each layer, ensuring a more stable
distribution and facilitating smoother gradient flow during
training, which helps in maintaining stability and improving
the performance of the neural network.

Consider a mini-batch of m training examples and a layer
with n neurons. LetX ∈ Rm×n represent the input to the layer.
LN can be mathematically defined as follows

µi =
1
n

n∑
j=1

xij, i = 1, 2, . . . ,m, (19)

where µi is the mean of the inputs across the neurons for the
i-th training example. The variance σ 2

i is calculated as

σ 2
i =

1
n

n∑
j=1

(xij − µi)2, i = 1, 2, . . . ,m, (20)

quantifying the spread of the inputs across the neurons for the
i-th training example. Next, the inputs are normalized using
the mean and variance

x̂ij = γj ·
xij − µi√
σ 2
i + ϵ

+ βj, (21)

where ϵ is a small constant added for numerical stability. The
LN process also involves learning two additional parameters:
a scale parameter γ ∈ Rn and a shift parameter β ∈ Rn.
These parameters allow the normalized inputs to be scaled
and shifted, providing the networkwith the flexibility to adapt
to different data distributions. LN has been shown [12] to
improve the training of deep neural networks by reducing the
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dependence of the network on the scale of the inputs. It helps
alleviate the internal covariate shift problem and provides a
more consistent and stable learning process, ensuring that
a neural network can train more effectively and produce
reliable results.

VI. CI-LSTM WITH LAYER NORMALIZATION
LN is a technique that is also commonly employed in LSTM
networks to enhance their performance and stability. In [13]
the authors explored different approaches to implementing
LN in the LSTM and performed a comparative analysis of
their effectiveness. In this paper, the focus is placed on the
variant named Global Joined Norm (GJN) [13] framed as
follows

LN


W f · [ht−1, xt ]
W i · [ht−1, xt ]
W c̃ · [ht−1, xt ]
Wo · [ht−1, xt ]

 . (22)

In this particular variant, which will be adapted afterwards,
instead of applying LN separately to both the forward and
recurrent inputs in the LSTM, it is applied jointly after
combining them. The same learned normalization parameters
are used for both inputs, resulting in one global normalized
distribution. It is worth noting that the bias term is removed,
as its impact is nullified by the normalization process. While
this form of normalization is of interest to us, we will not
rigorously adhere to the previouslymentioned theory. In other
words, we will restore the bias term but eliminate the shift
parameter β ∈ Rn. Having both the shift parameter β ∈ Rn

and bias is redundant, therefore, the shift parameter β ∈

Rn will be ignored. LN will then be applied jointly to the
combined forward and recurrent inputs, after which the bias
will be incorporated through addition. Therefore, the bias is
not included in LN. The LSTM gate biases are now initialized
as

bf ∼ log(U[1,Tmax − 1]),

bi = −bf,

b̃c = 0,

bo ∼ − log(U[1,Tmax − 1]), (23)

and after applying LN in the described manner, the resulting
equations are

LN


W f · [ht−1, xt ]
W i · [ht−1, xt ]
W c̃ · [ht−1, xt ]
Wo · [ht−1, xt ]

 +


bf
bi
b̃c
bo

 . (24)

Upon conducting a detailed examination of the model’s
operation, especially in the context of LN, applying LN to the
output of a time step in the LSTM (which serves as the input
to the linear layer) proved to be crucial for stabilization. This
adjustment significantly impacts the model’s performance,
and it aligns with the reasons for applying LN mentioned
earlier. In accordance with the highlighted, the outcome is

yt = Wy · LN(ht ) + by. (25)

Observe that the hidden state is not layer normalized; it is only
layer normalized in the context of the output (the input to the
linear layer). Finally, the LSTM architecture that utilizes the
techniques of CI and LN is abbreviated as CILN-LSTM.

A. GRADIENT FLOW IN CILN-LSTM NETWORKS
Introducing LN into the LSTM architecture can generally
affect gradient propagation, but in our specific context,
we can conclude that LN will have no effect. The output
values of the gate activations, along with CI, still control
the gradient flow and play a pivotal role in gradient
propagationmanagement. For instance, the equation (16) will
be formulated thusly

∂ht
∂ht−1

= σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈0

·(1 − σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈1

)

·
∂(LN(Wo · [ht−1, xt ]) + bo)

∂ht−1
⊙ tanh(ct )

+ σ (− log(Tmax − 1))t︸ ︷︷ ︸
≈0

⊙ tanh′(ct ) ·
∂ct

∂ht−1︸ ︷︷ ︸
≈0

≈ 0. (26)

Analogously, this same principle applies to the remaining
equations as well.

In theory, without LN, the input values of the activation
functions are typically assumed to be zero-centered, as seen,
for example, in [10]. This assumption implies that if it
doesn’t hold, there’s a likelihood that these input values
could interfere with chrono initialized bias values, thus
affecting gradient propagation. With LN, we formalize this
assumption.

VII. EMPIRICAL VALIDATION THROUGH EXPERIMENTAL
EXPLORATION
In this section, we conducted empirical validation to compare
the performance of three different LSTM-based models:
LSTM, Chrono Initialized LSTM (CI-LSTM), and Chrono
Initialized LSTM with Layer Normalization (CILN-LSTM).
In this context, it was logical to also explore the use of LSTM
with Layer Normalization but without Chrono Initialization
(LN-LSTM). However, most experiments did not conclude
successfully, thereby reducing the need for an in-depth
analysis of this variant. Our objective was to ascertain and
evaluate the convergence efficiency of the models towards
the optimal minimum, while also evaluating their ability
to efficiently capture long-term dependencies by observ-
ing performance metrics. We employed well-established
benchmark datasets as the foundation of our study, and
strategically introduced a range of modifications to heighten
the complexity and rigor of our experimental methodology.
All models were trained using the Adam optimizer with a
learning rate of 0.001, where the number of passes over the
entire training dataset (epochs) was fixed at 100. Additional
hyperparameterization is specified within the experiment
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itself. In each experiment, a defined set of hyperparameters
is applied to all the observed models to ensure fairness and
enable meaningful comparisons. To ensure robustness and
reliability, each experiment is conducted independently three
times, and the average outcomes are calculated. The final
model is selected based on the best validation loss, ensuring
the most reliable performance on unseen data.

A. PERMUTED MNIST CLASSIFICATION
The MNIST dataset is a widely recognized and frequently
used benchmark in the field of machine learning. It plays
a crucial role in the development and testing of algorithms
designed to recognize handwritten digits. Despite its popular-
ity and utility, we chose not to employ the MNIST dataset for
evaluating the performance of the models discussed. Instead,
our focus was directed towards a more complex variant
known as the Permuted MNIST (pMNIST) dataset [20]. The
pMNIST dataset is a transformation of the MNIST dataset,
primarily used for evaluating the robustness and general-
ization capabilities of machine learning models, especially
neural networks. The pixels in every image of the MNIST
dataset have been permuted in the same random order, which
makes the problem of the classification of handwritten digits
even harder. The labels are kept. Furthermore, each image in
the pMNIST dataset is transformed into a sequence of 784
(28 × 28) individual pixels that are presented to the network
sequentially, one pixel at a time. The dataset is divided into a
training set of 60,000 images and a test set of 10,000 images.
For the validation set, 10% of the training data was used.
The models were tested, considering hidden layer units (L)
of 128 and 256, employing a mini-batch size of 200. An L2
regularization factor was set to 1e-4, and the gradient norm
was clipped at a value of 5. The performance of these models
was assessed primarily using accuracy as a key performance
metric.

TABLE 1. The mean accuracies obtained by evaluating the models on the
pMNIST test set during three independent training runs are listed in the
table. The best accuracies from the experiments are presented in bold.

The CILN-LSTM model has exhibited improved perfor-
mance compared to the other models across multiple aspects,
thereby establishing its efficacy in predictive tasks. Notably,
when the hidden layer comprised either 128 or 256 units,
as shown in Figure 2, the CILN-LSTM model outperformed
its counterparts in terms of validation accuracy. This suggests
a more robust generalization capability when dealing with
unseen data. Additionally, it is important to emphasize that
the CILN-LSTMmodel demonstrated a faster convergence to
the optimal minimum on the validation dataset, as evidenced
in Figure 2, indicating its efficiency in optimization. This
characteristic is particularly valuable in complex scenarios

FIGURE 2. The mean accuracies obtained by evaluating the models on
the pMNIST validation set across three independent training runs, using
hidden layer sizes of 128 and 256 units.

where computational resources and time are limited. The
rapid convergence reduces the computational overhead and
accelerates the training process, making the model highly
suitable for practical applications where efficiency is crucial.
Moreover, the generalization potential of the CILN-LSTM
model is further supported by its empirical performance on
the test set, as detailed in Table 1. The consistent performance
across both validation and test datasets highlights the model’s
ability to maintain high accuracy and reliability when applied
to new data.

B. FASHION MNIST
The Fashion MNIST dataset [21], gathered from Zalando’s
collection of article images, has emerged as a significant
benchmark in the realm of machine learning. Serving as an
alternative to the traditional MNIST dataset, Fashion MNIST
presents numerous advantages and complexities that are
essential for contemporary machine learning models. Unlike
the original MNIST dataset, which has been criticized for its
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simplistic nature in today’s context, Fashion MNIST offers
a more intricate and diverse set of images, thus providing
a tougher challenge for classification tasks. This increased
complexity better mirrors real-world image classification and
allows for thorough examination of algorithm robustness and
generalization. Models trained on Fashion MNIST handle
diverse textures, shapes, and subtle details, making it suitable
for evaluating generalization from training to unseen data.
This diversity helps identify model weaknesses, guiding
improvements. Furthermore, this dataset maintains the same
image size, data format, and split structure for training,
validation, and testing as the original MNIST. However,
instead of handwritten digits, it comprises grayscale images
with dimensions of 28 × 28 pixels, each depicting various
types of clothing items. These images are annotated with
labels indicating the correct garment category. Furthermore,
each image in the dataset is transformed into a sequence
of 784 (28 × 28) individual pixels that are presented to
the network sequentially, one pixel at a time. The dataset is
divided into a training set of 60,000 images and a test set of
10,000 images. For the validation set, 10% of the training data
was used. The models were evaluated, considering hidden
layer units (L) of 128 and 256, employing a mini-batch size
of 200. An L2 regularization factor was set to 1e-4, and the
gradient norm was clipped at a value of 5. The performance
of these models was assessed primarily using accuracy as a
key performance metric.

TABLE 2. The mean accuracies obtained by evaluating the models on the
Fashion MNIST test set during three independent training runs are listed
in the table. The best accuracies from the experiments are presented in
bold.

TheCILN-LSTMmodel has shown improved performance
compared to the other models in terms of validation accuracy,
and it has also achieved faster convergence towards the
optimal minimum compared to its counterparts on the
validation dataset, as can be seen cumulatively in Figure 3.
Furthermore, when examining Figure 3, it is evident that the
LSTM model encountered significant challenges during its
learning process. It is relevant to highlight that the LSTM
model encountered significant challenges during its learning
process. Evaluation on the test dataset also favors the CILN-
LSTM model, as shown in Table 2. It should be mentioned
that in experiments involving 256 units, the LSTM model
showed an improvement in its performance when considering
differences in results on the test dataset compared to the other
models, as can also be observed in Table 2.

C. TIME SERIES ANALYSIS
Time series analysis is a specialized analytical technique
employed to investigate and derive insights from a sequence
of data points collected over a defined time span [22],

FIGURE 3. The mean accuracies obtained by evaluating the models on
the Fashion MNIST validation set across three independent training runs,
while employing hidden layer units (L) of both 128 and 256.

[23]. In this particular experiment, our objective was to
assess the models’ capability to efficiently detect and analyze
patterns in time series datasets. To do so, we chose two
comprehensive time series datasets for evaluation. These
datasets could provide a rough estimate of the models’
behavior in forecasting trends and patterns in similar time
series data. Through this analysis, we aimed to enhance our
understanding of how these models perform in real-world
scenarios, thereby contributing to more accurate forecasting
and decision-making processes. Here are the abbreviations
and their respective explanations:

• HG=F (Copper Futures): This dataset represents the
trading activity of standardized agreements to buy or sell
copper at a predetermined price and date. These finan-
cial instruments are traded on commodities exchanges
and are used by investors to hedge against price
fluctuations or to speculate on future price movements
of copper. Copper futures contracts are an important
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indicator of economic health, as copper is widely used
in construction, manufacturing, and electronics.

• GSPTSE (S&P/TSX Composite Index): This dataset
represents the S&P/TSX Composite Index, a capital-
ization weighted equity index designed to monitor the
performance of the largest companies listed on Canada’s
primary stock exchange, the Toronto Stock Exchange
(TSX). It operates as the Canadian equivalent of the
S&P 500 index in the United States, providing a crucial
gauge for assessing the Canadian stock market’s status
and trends.

The datasets used in this study comprised data accumulated
over the past four years up to the time of writing this paper,
with observations recorded daily. The primary objective
was to forecast closing prices by leveraging historical data.
To achieve this, sequences of length 30 were established,
with the focus on predicting the subsequent element in
the sequence. The evaluation of model performance was
conducted using Mean Squared Error (MSE) as the primary
metric. After the datasets were formed, the training set con-
sisted of 770 samples and the test set included 170 samples.
For the validation set, 15% of the training data was utilized.
The models were tested with hidden layer units (L) set
at 16 and 32, along with a mini-batch size of 32. An L2
regularization factor was set to 1e-4, and the gradient norm
was clipped at a value of 5. This approach facilitated a
comprehensive evaluation of the overall effectiveness and
suitability for forecasting scenarios, thus emphasizing their
practical utility.

TABLE 3. The mean MSE results obtained by evaluating the models on
the HG=F test set during three independent training runs are listed in the
table. The best MSE results from the experiments are presented in bold.

The CILN-LSTM model accomplished a lower MSE and
faster convergence to the optimal minimum in contrast to
the LSTM and CI-LSTM models on the HG=F validation
dataset, as shown in Figure 4 and supported by HG=F
test dataset evaluations in Table 3. It reached its target
performance more promptly when observing the validation
dataset and performed better in a shorter timeframe. This
distinction underscores the CILN-LSTM model’s efficiency
and effectiveness in achieving enhanced results in a relatively
shorter timeframe.

Continuing the experimentation with a different dataset,
we obtained similar results suggesting that the CILN-LSTM
model achieves a lower MSE and faster convergence to the
optimal minimum compared to the LSTM and CI-LSTM
models on the GSPTSE validation dataset, as shown in
Figure 5, whereas the evaluation on the GSPTSE test dataset

FIGURE 4. The mean MSE results obtained by evaluating the models on
the HG=F validation set across three independent training runs, while
employing hidden layer units (L) of both 16 and 32.

TABLE 4. The mean MSE results obtained by evaluating the models on
the GSPTSE test set during three independent training runs are listed in
the table. The best MSE results of the experiments are presented in bold.

shows significant advantages favoring the CILN-LSTM
model, as confirmed by the results in Table 4. Overall, the
CILN-LSTM model performed better than the other models
in both time series experiments.

D. THE ADDING PROBLEM
The adding problem task, introduced as a benchmark in
neural network research [1], is a synthetic task specifically
crafted to evaluate the capabilities of neural networks in
handling complex sequence processing tasks. This challenge
requires the model to focus on and accurately process
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FIGURE 5. The mean MSE results obtained by evaluating the models on
the GSPTSE validation set across three independent training runs, while
employing hidden layer units (L) of both 16 and 32.

specific, crucial pieces of information embedded within long
data sequences. It is meticulously structured to examine
various aspects of a neural network’s functionality, including
its ability to maintain attention over important data points
spread across a sequence, identify the relevant information
necessary for solving a given problem, and perform precise
manipulations on this information to reach a correct solution.
Specifically, the inputs to the network consist of a series
of K pairs (xk , yk ), with 0 ≤ k ≤ K . The first element xk
is a real-valued number between 0 and 1, and yk is the
corresponding marker that can take exactly two values:
0 and 1. Within the entire sequence, a distinctive feature
is that only two markers are deliberately set to the binary
value of 1, effectively acting as key indicators, while the
remaining elements are set to 0. The goal of the network
is to compute the sum of the two numbers from the first
sequence that have corresponding marker values equal to 1 in
the second sequence. This requirement places a demand on
the network to not only recognize and locate the relevant
numbers but also to execute the addition operation with

precision. We conducted experiments with sequence lengths
(T) of 100, 200, and 500 to assess model performance. The
training set size was 105000 instances, the validation set size
was 15000 instances and the test set was 30000 instances.
All models were evaluated using a fixed number of hidden
layer units (L) set at 128, with a mini-batch size of 50. It was
established through a series of evaluations that additional
hyperparameter tuning did not contribute to the effectiveness
of the models. The performance of these models was assessed
primarily using MSE as a key performance metric.

Visually observing the graph in Figure 6, where the
obtained MSE on the validation dataset for the given
models is displayed, it’s evident that the CILN-LSTM
model attains the highest level of performance, particularly
when considering the speed of convergence towards the
optimal minimum. However, regardless of the performance
of the CILN-LSTM model, the other models also performed
excellently on the task as well, but with a bit more time
required.We need to emphasize that despite the training being
carried out for a total of 100 epochs, not all of them are
necessary to display, as the significant learning differences
are visible only in the initial stages. Therefore, the graph is
deliberately simplified to highlight the epochs that illustrate
the most substantial changes in performance, allowing for
a clearer comparison of the learning efficiency between the
models over the crucial early epochs. Furthermore, a table
displaying the test dataset evaluation results is omitted for
simplicity, as all models achieved results around 10−6 with
minimal fluctuations, regardless of input sequence length.

E. THE COPYING PROBLEM
The copying memory task, introduced in [1], assesses how
RNNs manage long-term memory and recall information
from the distant past. It highlights the challenge of training
neural networks to copy and reproduce sequences of varying
lengths, serving as a benchmark for a recurrent model’s abil-
ity to learn and handle complex long-term dependencies [24].
The same setup as in [3] was followed, with a brief overview
provided here.A = {ai}Ki=1 is a set ofK symbols and S,T ∈ N
are randomly chosen. The input encompasses a T + 2S
length sequence of categories, where the initial S entries are
to be remembered, all the while being sampled uniformly
and independently and with replacement from {ai}Ki=1. The
subsequent T − 1 inputs are set to aK+1 and they indicate a
placeholder or empty category. Furthermore, the next input
aK+2 suggests that the network should predict the initial S
entries of the input, and it may be viewed as a delimiter.
The rest of the S inputs are set to aK+1. The anticipated
output sequence consists of the T + S repeated entries of
aK+1, succeeded by the initial S categories of the input
sequence retained exactly in the same order. The experiments
systematically explored model performance across different
sequence lengths (T) at values of 100, 200, and 500. The
training set size was 100000 instances, the validation set size
was 10000 instances, and the test set was 40000 instances.
All models were tested, considering hidden layer units (L)
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FIGURE 6. The mean MSE results obtained by evaluating the models on
the validation set across three independent training runs for the adding
task, while considering sequences of lengths (T) 100, 200, and 500. The
displayed 40 epochs are representative.

128, with a mini-batch size of 50. It was established through
a series of evaluations that additional hyperparameter tuning
did not contribute to the effectiveness of the models. The
performance of these models was assessed primarily using
the negative log-likelihood as a key performance metric.

FIGURE 7. The mean negative log-likelihood results obtained by
evaluating the models on the validation set across three independent
training runs for the copying memory task, while considering sequences
of lengths (T) 100, 200, and 500.

Upon visual inspection of the graph in Figure 7, it’s
evident that the CILN-LSTM model outperforms the other
models, showing faster convergence and generally reaching a
more favorable optimum on the validation dataset. It should
be highlighted that the conventionally initialized LSTM
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TABLE 5. The mean negative log-likelihood results obtained by
evaluating the models on the test set during three independent training
runs are listed in the table. The best negative log-likelihood results from
the copy memory experiments are presented in bold.

encounters significant challenges in solving the copymemory
problem, particularly for sequences longer than roughly
100, as stated in prior studies [3], [10], [24]. However, the
introduction of CI leads to convergence. Finally, as evident
from the results presented in Table 5, CILN-LSTM most
often delivered better results on the test data set, notably in
scenarios where the sequence length was shorter, specifically
when T was set to 100 and 200. When T was set to 500,
the performance of CILN-LSTM aligns closely with that of
CI-LSTM.

F. SYMMETRIC PATTERN LEARNING
This paper introduces a synthetic task to evaluate RNN
models’ ability to recognize, retain, and recall widely
spaced symmetrical patterns. It assesses the models’ memory
capabilities in capturing unique patterns during sequence
processing, focusing on storing information from both ends
and identifying palindromic patterns. Palindromic sequences
vary in length, capped at 10 characters in one version and
limited to 50 characters in a more challenging version.
Each element of the sequence contains any English alphabet
letter except for x, which is used for padding to ensure
uniform sequence lengths. The training set comprised 10,000
instances, the test set 2,000 instances, and 10% of the training
data served as the validation set. The models were tested with
hidden layer units of 64 and 128, using a mini-batch size
of 32. An L2 regularization factor was set to 1e-5, and the
gradient normwas clipped at a value of 5. The performance of
the models was assessed using accuracy as a key performance
metric.

TABLE 6. The mean accuracies obtained by evaluating the models on the
test set during three independent training runs are listed in the table. The
best accuracies from the symmetric pattern learning experiments are
presented in bold. The maximum length of the palindrome was limited
to 10.

In this newly introduced task, where the maximum
palindrome length is set to 10, it has once again been demon-
strated that the CILN-LSTM model achieves significantly
better performance compared to the other models. Visually
observing the graph in Figure 8, it can easily be concluded

that the CILN-LSTMmodel, in addition to faster convergence
towards the optimal minimum, also achieves better accuracy
on the validation dataset. The evaluation results on the test
dataset presented in Table 6 confirm that the CILN-LSTM
model outperformed its counterparts.

FIGURE 8. The mean accuracies obtained by evaluating the models on
the validation set for the symmetric pattern learning task across three
independent training runs, while employing hidden layer units (L) of both
64 and 128.

TABLE 7. The mean accuracies obtained by evaluating the models on the
test set during three independent training runs are listed in the table. The
best accuracies from the symmetric pattern learning experiments are
presented in bold. The maximum length of the palindrome was limited
to 50.

In the more complex variation of the experiment, where
the maximum palindrome length is set to 50, the CILN-
LSTM model continues to exhibit better performance when
compared to its counterparts. It consistently demonstrates a
faster convergence towards the optimal minimum, resulting
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FIGURE 9. The mean accuracies obtained by evaluating the models on
the validation set for the symmetric pattern learning task across three
independent training runs, while employing hidden layer units (L) of
both 64 and 128.

in significantly higher accuracy rates, which can be visually
confirmed in Figure 9 obtained from the evaluation of the
models on the validation dataset. The LSTM and CI-LSTM
models, while having their strengths, faced significant chal-
lenges in the endeavor to uncover concealed patterns within
the data. These difficulties reveal their limitations in this
specific context, as they struggled to identify the underlying
structures that the CILN-LSTM model could more readily
detect. The evaluation results of the models on the test
dataset, specifically highlighted in Table 7, significantly
favor the CILN-LSTM model. These results highlight its
ability to achieve higher accuracy and efficiency, showcasing
its capacity to understand the complex patterns hidden
within the test dataset. This underscores the adaptability and
effectiveness of the CILN-LSTM model in handling various
data complexities.

G. RESISTANT SEQUENTIAL FUSION
This paper introduces a task designed to evaluate models’
abilities to handle irrelevant information, maintain relation-
ships between distant elements in sequences, and accumulate

information over extended time intervals. The models must
selectively focus on relevant information while filtering out
what is not important. Additionally, they need to manage
long-range dependencies, ensuring that relationships between
distant elements within a sequence are accurately maintained.
This comprehensive evaluation helps in understanding the
models’ proficiency in processing complex sequences, mak-
ing them more robust and effective in real-world applications
where data often contains a mix of important and irrelevant
information. The concept involves sequences of length n,
where the elements are aggregated up until the k-th element,
while disregarding the remaining n − k elements. In the
second variation of this experiment, we expand thementioned
concept by additionally summing elements up to the n-th
element, starting from the (n − k)-th element. Essentially,
the first variation involves summing the first k elements
and disregarding the rest, whereas in the second variation,
it encompasses summing the first k elements and the last k
elements while excluding the elements in between. In the
first variation of the experiment, sequence lengths were set
at 50, whereas in the second variation, they were set at 100.
In both cases, k was set to 20. The training set size was
10000 instances and the test set was 2000 instances. As the
validation set, 10% of the training data was used. The models
were tested, considering hidden layer units (L) of 64 and
128, employing a mini-batch size of 32. An L2 regularization
factor was set to 1e-5, and the gradient norm was clipped at
a value of 5. The performance of these models was assessed
primarily using MSE as a key performance metric.

TABLE 8. The mean MSE results obtained by evaluating the models on
the test set during three independent training runs are listed in the table.
The best MSE results from the resistant sequential fusion experiments are
presented in bold. The sequence length (T) was set to 50.

TABLE 9. The mean MSE results obtained by evaluating the models on
the test set during three independent training runs are listed in the table.
The best MSE results from the resistant sequential fusion experiments are
presented in bold. The sequence length (T) was set to 100.

Considering sequences of length 50, the CILN-LSTM and
CI-LSTM models achieved satisfactory results on the valida-
tion dataset in terms of convergence. However, compared to
the CI-LSTM, the CILN-LSTMexhibited faster convergence,
as shown in Figure 10. Evaluation on the test dataset showed
negligible differences between the CILN-LSTM and CI-
LSTM models in cases of a hidden layer with 64 units. This
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FIGURE 10. The mean MSE results obtained by evaluating the models on
the validation set across three independent training runs for the resistant
sequential fusion task, while employing hidden layer units (L) of both 64
and 128, are listed in the table.

indicates that both models are capable of handling the task
with smaller network sizes effectively. However, increasing
the units in the hidden layer to 128 led to test set results
differing by an order of magnitude, as seen in Table 8, in favor
of CILN-LSTM. This analysis also highlighted that LSTM
models might encounter challenges when dealing with this
type of task. Specifically, the LSTM models, while generally
robust and versatile for many sequence processing tasks,
showed limitations in handling long-range dependencies and
effectively ignoring irrelevant information.

In the next variation of the experiment, Figure 11 clearly
shows that CILN-LSTM once again achieved the best
performance on the validation set. The evaluation results
on the test set, as indicated in Table 9, strongly favor the
CILN-LSTM model. A notable observation is the significant
improvement in the performance of the CILN-LSTM model
after increasing the number of units in the hidden layer. This
enhancement underscores the model’s capacity to leverage
additional computational power effectively, leading to better
learning and performance outcomes. In contrast, the other
models in the experiment showed only minor enhancements,

FIGURE 11. The mean MSE results obtained by evaluating the models on
the validation set across three independent training runs for the resistant
sequential fusion task, while employing hidden layer units (L) of both 64
and 128, are listed in the table.

despite similar adjustments, and their performance remained
within the same order of magnitude. Additionally, it is
important to notice that both the LSTM andCI-LSTMmodels
exhibited significantly more fluctuations during training
compared to the CILN-LSTM model, as can be seen from
Figure 11.

H. GENDER CLASSIFICATION BY NAMES
This experiment addresses the challenge of predicting an
individual’s gender based solely on their first name. The
task of gender prediction from names is particularly complex
due to the significant diversity in naming conventions
across various cultures and languages. A name that is
common and distinctly gendered in one culture may be
rare or unisex in another. Moreover, the evolving nature of
names over time adds another dimension of difficulty. Some
names that were traditionally associated with a particular
gender may now be used for multiple genders, reflecting
changing social norms and trends, while others are inherently
ambiguous and can be associated with multiple genders,
adding another layer of complexity to this task. These cultural

115232 VOLUME 12, 2024



A. Tolic et al.: Chrono Initialized LSTM Networks With Layer Normalization

TABLE 10. The mean accuracies obtained by evaluating the models on
the test set during three independent training runs are listed in the table.
The best accuracies from the gender classification by names experiments
are presented in bold.

and linguistic variations necessitate the development of a
robust and adaptable model capable of accurately predicting
gender from names. The dataset contains names and their
associated genders. Within it, the training set comprises
41,300 instances, the test set 10,320 instances, and 10%
of the training data served as the validation set. To handle
ambiguous and inconsistent entries, the data underwent a
cleaning process before being utilized in the model training.
This step was crucial to ensure the quality and reliability
of the dataset, as inconsistent data could adversely affect
the model’s performance. Experimentation began with an
embedding layer set to a dimension of 64, while the hidden

FIGURE 12. The mean accuracies obtained by evaluating the models on
the validation set across three independent training runs for the gender
classification by names task, while employing hidden layer units (L) of
both 64 and 128.

units of the components were set to 32. In the second variant,
these values were doubled. Training was conducted with a
mini-batch size of 128. A dropout value of 0.5 was applied
to the output of the recurrent layers. Additionally, An L2
regularization factor was set to 1e-2, and the gradient norm
was clipped at a value of 5. The performance of the models
was assessed using accuracy as the key performance metric.

The experiment results indicate that the CILN-LSTM
model performs better in gender classification from names
compared to the LSTM and CI-LSTM models. As shown in
Figure 12 and Table 10, the CILN-LSTM model achieved
higher accuracy for both configurations of hidden layer units,
and the convergence speed towards the optimal minimum
favors the CILN-LSTM model. Notably, the LSTM and CI-
LSTMmodels produced nearly identical results, demonstrat-
ing similar performance levels. Furthermore, increasing the
number of hidden layer units did not significantly improve
performance in any of the models. Additionally, the LSTM
and CI-LSTMmodels quickly reached a plateau in validation
accuracy after only a few training epochs, highlighting certain
limitations in their learning capacity compared to the CILN-
LSTM model. To address one of these potential limitations,
specifically the risk of overfitting, we applied regularization
techniques.While these techniques helped reduce overfitting,
they did not lead to a significant improvement in the overall
generalization of these models.

I. SMART HOME EVENT FORECASTING
In this experiment, we utilize data from the PEEVES dataset
(Physical Event Verification in Smart Homes) [25] to train
models aimed at predicting future events. The dataset is
a comprehensive collection of data gathered from various
sensors installed within a home environment. These sensors
continuously record a wide range of activities, providing
a rich source of information for analysis. The dataset
encompasses events from 12 different event sources, captured
through 48 sensors deployed in an office environment over
twelve days. These sensors monitor a variety of activities,
including door openings and closings, light switching,
window shade movements, fridge door openings, coffee
machine usage, PC power status changes, screen status
changes, fan operation, radiator status changes, doorbell
usage, window openings and closings, and smart camera
status changes. Each sensor logs events with precise times-
tamps, offering detailed tracking of when specific events
occur. The data is loaded and processed to generate event
sequences, representing a series of activities over a given time
period. We train the models to learn patterns in these event
sequences, enabling them to predict future events based on
past data. The prediction process begins with an initial event,
referred to as the seed event. Based on this starting point, the
models generate sequences of future events. These predicted
sequences can then be evaluated by comparing them against
actual recorded events. This comparison helps identify any
discrepancies, which can indicate irregularities or potential
false reports. After constructing the dataset, we divided
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TABLE 11. The mean accuracies obtained by evaluating the models on
the PEEVES test set during three independent training runs are listed in
the table. The best accuracies from the experiments are presented in bold.

it into training, test, and validation sets. The training set
comprised 5,870 entries, while the test set contained 1,580
entries. Additionally, 10% of the training data served as
the validation set. We conducted our experiments beginning
with an embedding layer set to a dimension of 64, while
the hidden units of the components were initially set to 32.
In the second variant of our experiments, these values were
doubled. Training was conducted with a mini-batch size of
50, and a dropout value of 0.5 was applied to the output of the
recurrent layers to prevent overfitting. Additionally, An L2
regularization factor was set to 1e-3, and the gradient norm
was clipped at a value of 5 to stabilize the training process.

FIGURE 13. The mean accuracies obtained by evaluating the models on
the PEEVES validation set across three independent training runs, while
employing hidden layer units (L) of both 64 and 128.

Evaluation results on the test dataset, as shown in
Table 11, indicate that the final accuracies of the models
are similar, with the CI-LSTM model performing slightly
worse compared to the others when fewer hidden layer units
were used. However, a significant difference in favor of the
CILN-LSTM model lies in the speed of convergence to the
optimal minimum, as depicted in the graph in Figure 13,
indicating its training efficiency. These results suggest that,
although the final accuracies are similar, the CILN-LSTM
model offers advantages in training speed, which can be very
important in real-world smart home applications that require
rapid adaptation and accurate predictions.

VIII. ABLATION ANALYSIS
In our experimentation, we explored various negative bias
values for the output gate to better understand their impact on
the CILN-LSTM network’s behavior. Intuitively, during the
initial phase, the output gate should exhibit behavior similar
to the input gate. This similarity in behavior is attributed
to the fact that both gates have identical components in
their construction, and their activation values are generally
similar, typically hovering around 0. With (7) taken into
consideration, it made sense to experiment with initializing
the output gate bias using the CI technique. Furthermore,
when examining the CILN-LSTM architecture and its
utilization of sigmoid activation functions, LN is applied
jointly to the combined forward and recurrent inputs, after
which the bias is incorporated through addition. In this
context, a scale parameter γ is learned. This could imply
that if the input gate and output gate have biases that deviate
significantly from each other, it may be expected that the scale
parameter γ is more challenging to learn. In the end, through
experimentation, we concluded that it was most effective to
apply the CI technique to the output gate bias because it
consistently produced the best results.

As mentioned earlier, in certain cases, it was also observed
that the omission of LN from the hidden layers resulted in a
significant decrease in the model’s performance. The afore-
mentioned phenomenon can be attributed to the fact that with-
out LN, the variance of input components passing through the
activation functions can become exceptionally low, especially
the values that are forwarded to the linear layer. This
substantial reduction in variance significantly impedes the
learning process, making it much more challenging for
the network to adapt and improve its performance during
training. When LNwas applied to the hidden layers, a change
in input component variance occurred due to the alteration
in the distribution. This, in turn, closely correlated with
improved model performance, as visualized in Figure 14.
The figure clearly illustrates a positive trend, where the

introduction of LN leads to higher model performance.
This underscores the crucial role of LN in maintaining an
appropriate level of variance in the input components, which,
in turn, facilitates more effective learning and contributes
to the overall enhanced performance of the model. In this
context, we are not discussing how incremental increases
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FIGURE 14. The data points for this plot were collected during the
processing of the MNIST test dataset. Variance values of the hidden layer
were recorded for each time step of every instance, and then the average
variance value was calculated. The figure includes informative accuracy
values on the test dataset, where these values were observed with
respect to two different numbers of epochs, both with and without LN.
The gate biases were initialized according to the CILN-LSTM architecture.

in variance automatically lead to incrementally improved
model performance. Instead, we are focusing on the impact
of LN on the variance of input components passing through
activation functions and its connection to the learning
process. In our case, the change in variance will manifest as
an increase in variance, while enabling the network to adapt
and learn relevant features. Furthermore, extending LN to all
components within our formalized architecture yielded even
more promising results. This comprehensive application of
LN further elevated the overall performance of the neural
network, highlighting its importance as a stabilizing and
performance-boosting architectural component.

IX. FUTURE WORK
In future work, the goal is to explore additional approaches
to enhance the performance and stability of the CILN-
LSTM model through innovative methods in initialization
and layer normalization. One of the main objectives will be to
investigate alternative initialization methods that can provide
better initial conditions for training, thereby further reducing
the problems of exploding and vanishing gradients. The focus
will be on methods that can ensure more stable initial values
and enable faster and more efficient model convergence.
For example, the potential of Uniform Gate Initialization
(UGI) [5] will be investigated to enhance the model. UGI
ensures that all timescales are covered, with units having very
high forget activations capable of remembering information
nearly indefinitely, while those with low activations focus
solely on the incoming input. Notably, this technique does not
require additional parameters. Additionally, advanced layer
normalization techniques will be explored to further enhance
training stability and the model’s adaptability to various data
distributions. Methods that refine the normalization process
to better suit the dynamic nature of sequential data will
be investigated. This includes evaluating the effectiveness
of normalization techniques that can adapt more rapidly to
shifts in data patterns. Exploring these advanced techniques

will help understand their potential in reducing training
times and improving model performance. Specific advanced
layer normalization methods mentioned in [26] will also
be examined to identify the most promising approaches.
Furthermore, detailed experimental studies will be conducted
to assess the impact of these new techniques on various tasks,
including prediction, classification, and sequential learning
tasks. Different datasets will be used to ensure comprehensive
evaluation and identify the best approaches for specific
problems. The objective is to contribute to the further
development of the CILN-LSTM model, making it more
robust and efficient for a wide range of applications. These
findings are also expected to provide valuable guidelines
for future researchers in the field of neural networks and
deeplearning.

X. CONCLUSION
In this research, we compared three different models of
RNNs: LSTM, CI-LSTM, and CILN-LSTM. Our goal was
to examine their capabilities and performance in a specific
task or application. Through our evaluation and analysis,
we have drawn the following conclusions: The LSTM has
gained prominence in the field of deep learning due to its
notable performances in various tasks. Its ability to mitigate
the vanishing gradient problem and effectively capture long-
term dependencies has made it a popular choice for sequence
modeling, machine translation, speech recognition, and
sentiment analysis, among other applications. The LSTM’s
success in these domains has established it as a reliable
and powerful tool in the realm of RNNs. It exhibited solid
performance in handling sequential data, demonstrating its
effectiveness in capturing long-term dependencies. It showed
competitive results and provided a strong baseline for
comparison. The CI-LSTM, a variation of LSTM in which
the forget and input gate biases are initialized using the
CI technique, demonstrated enhanced performance in tasks
reliant on sequential data. On occasion, it achieves better
predictive accuracy when compared to the LSTM model and
successfully demonstrates enhanced modeling capabilities
in various tasks. The CILN-LSTM, an enhanced version of
the LSTM and CI-LSTM that incorporates the CI and LN
techniques, demonstrated commendable performance. The
new architecture utilizes the CI technique to initialize the
biases not only for the forget and input gates but also for the
output gate. In this context, CI addressed the challenges of
both vanishing and exploding gradients, while LN technique
enhanced the stability of the training process. Therefore,
by utilizing these techniques, we successfully achieved an
unhindered gradient flow. Moreover, the synergistic effect
of these two methods resulted in enhanced stability in the
training dynamics, notably augmenting the performance of
the recurrent neural network, thereby implying significant
enhancements in overall outcomes.

In summary, our findings indicate that the CILN-LSTM
model exceeds the performance of both the LSTM and CI-
LSTM in capturing long-term dependencies and effectively
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utilizing sequential information. While the LSTM and CI-
LSTM continue to be widely used, the CILN-LSTM model
holds the potential to outperform both on a wide variety of
tasks.

During this research, the programming language Python
was utilized in conjunction with the Keras functional
API and TensorFlow to construct and train the models.
The experiments were conducted within the Google Colab
environment.
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