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ABSTRACT Long-distance detection of maritime ships is pivotal for the development of intelligent collision
avoidance systems. Despite significant advancements in target detection achieved through deep learning,
the identification of long-distance ships poses a substantial challenge due to their small pixel size in
images. Consequently, the recognition of long-distance ships essentially amounts to small object detection.
In response to these challenges in small object detection, this paper proposes Ship-YOLOv8, a modified
architecture derived from You Only Look Once version 8 (YOLOv8). First, we developed the C-Bottleneck
Transformer neural network (C-BoTNet), which is integrated at the end of the backbone, to enhance the
global receptive field and facilitate feature fusion. Additionally, we incorporated shallow features with deep
features and introduced a dedicated detection layer for small objects into the original structure. Furthermore,
we optimized the C2f in the neck using the cross stage partial network (VoVGSCSP) based on GSConv.
Finally, we conducted optimization using the Wise-IoU loss function. Extensive experiments conducted
on a self-created dataset of long-distance ships demonstrate the remarkable capabilities of Ship-YOLOv8.
The proposed method achieves an AP0.5 of 91.8%, significantly outperforming YOLOv8’s AP0.5 of 70.6%.
Moreover, our method attains a detection speed of 4.8 ms per image during inference, showcasing its
efficiency in real-time applications. To validate the algorithm’s broad applicability, comparative experiments
were conducted on a public maritime dataset SeaShips. Ship-YOLOv8 achieved an AP0.5 score of 99.3%,
surpassing YOLOv8’s 98.6%. Code is available at https://github.com/zihaohao123/Ship-YOLOv8.

INDEX TERMS Long-distance ship, small object detection, deep learning, YOLOv8.

I. INTRODUCTION
Human activities in the maritime domain have become
increasingly diverse, including maritime traffic, trade, fish-
eries, and military operations [1]. Given that ships serve
as primary facilitators of these activities, their regulation
is imperative. With advancements in autonomous vehicle
technology, autonomous ships, especially those cargo trans-
portation and high-risk military operations, have garnered
significant attention [2]. Ship detection holds significant
implications for applications, including automated fisheries
oversight, port emergency response operations, and the opti-
mization of maritime traffic [3], [4], [5]. Accurate ship

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan-Li Sun .

detection directly impacts the safety and real-time operations
of both military and civilian applications.

The utilization of electro-optical images for ship detection
is a current research focus. Visual images are intuitive and
easily understandable for human vision [6]. Moreover, their
rich spectral content caters to various imaging needs across
diverse scenarios. Visible-light spectral imaging offers high
resolution, enabling the acquisition of abundant color and
texture information [7]. Ship detection methods using image
processing can be divided into two categories: traditional and
deep-learning methods.

Traditional ship detection in visual images typically
involves two primary steps: candidate area extraction and
classification [8], [9]. Initially, the candidate area for the ship
target is determined based on factors such as scale, shape, and
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other inherent characteristics, or by using a visual attention
mechanism [10]. Features corresponding to the candidate
area are then extracted for training. However, conventional
methods often lack high-dimensional semantic information,
leading to low accuracy [2].

In recent years, deep learning has showcased its ver-
satility and marked progress in the realm of ship object
detection [11], [12], [13]. Presently, prevailing method-
ologies are predominantly classified into two categories:
CNN-based and Transformer-based architectures. Within the
CNN-based paradigm, methodologies are further subcate-
gorized into anchor-based and anchor-free approaches [14].
The anchor-based algorithms are subdivided into two distinct
types: single-stage and two-stage methods. One-stage algo-
rithms employ a direct regression approach to concurrently
obtain bounding box coordinates and class probabilities [15].
Notable examples of such neural network architectures
include the You Only Look Once (YOLO) series [16], [17],
[18], [19], SSD [20], and RetinaNet [21]. Generally, the fore-
most advantage of single-stage detection algorithms is their
swift detection speed. However, this advantage is offset by
their relatively lower accuracy.While single-stage algorithms
prioritize speed, two-stage algorithms excel in terms of accu-
racy, albeit at the expense of real-time performance. These
two-stage algorithms begin by generating region proposal
boundaries, which are then followed by the classification of
these boundaries. Employing a methodical approach, they
interpretively select sliding target windows, creating multi-
ple windows that potentially contain detected objects. These
windows are then identified, and any redundant ones are
eliminated. Noteworthy examples of two-stage algorithms
include RCNN [22], Fast RCNN [23], Faster RCNN [24],
Mask RCNN [25], and Cascade R-CNN [26]. In the realm
of anchor-free structures, notable algorithms include Center-
Net [27] and Soft Anchor-Point Object Detection (SAPD)
[28]. The primary advantage of anchor-free architectures lies
in their ability to reduce the network’s parameter count,
streamlining the model. On the Transformer side, network
architecture can be divided into two categories. One type
directly employs Transformer as a detector, with DETR [29]
being a principal example. DETR operates as an end-to-
end, direct prediction model, distinguishing itself in the
field. The other category utilizes transformer as a backbone
for detection, exemplified by the Vision Transformer (ViT)
model. This approach leverages the Transformer’s capac-
ity to process global dependencies, thereby enhancing the
model’s overall detection capabilities. The ViT has been
extensively adopted in computer vision, where the attention
mechanism establishes global relationships between image
pixels, employing serialization and positional embeddings to
describe spatial relationships and preserve spatial information
in images [30]. Because of these advantages, ViT technology
has found widespread application in semantic segmentation,
object detection [29], and various cross-modal tasks [32],
[33], [34]. However, all transformer-based models, including

ViT, share a common drawback: they are computationally
intensive, requiring significant hardware resources and often
suffering from reduced real-time performance [35].
In the field of intelligent navigation, the primary goal of

long-distance detection is to improve the performance of
detecting small targets. To achieve this, several advanced
functional modules have been integrated into the detec-
tion systems. Among these, the path aggregation network
(PANet) [36] and the channels and spatial attention module
(CSAM) [37] are instrumental in enhancing the accuracy and
efficiency of target recognition, which is critical for nav-
igating through complex maritime environments. Notably,
PANet remains crucial for addressingmulti-scale small-target
detection [15]. The transformer model, initially prevalent in
natural language processing, gained popularity for handling
long sequence data [38]. Zhu et al. [33] have introduced
Deformable DETR, which represents an enhanced network
architecture based on the original DETR framework. This
modification effectively augments its capability in detecting
small targets. Dosovitskiy et al. [30] proposed a multilevel
detection network based on the ViT specifically designed for
the detection of small ships.

Despite the various methods currently available to enhance
the accuracy of detecting long-distance ships, accurate detec-
tion remains challenging. Firstly, during convolution, pool-
ing, and other operations within the backbone network, the
image experiences a reduction in pixel count, leading to
decreased resolution and a blurring of target details. Dur-
ing the downsampling process, multiple pixel values are
merged into one, causing the features of the target to be
confounded with those of other objects. This often results
in an uneven integration of global and local information,
thereby compromising the clarity and distinctiveness of the
target features. Secondly, the deep feature maps generated by
the backbone lack the detailed information of small targets.
Furthermore, the complexity of the network structure affects
the real-time of the detection neural network architecture.
Lastly, the imbalance in the quality of data samples affects the
model’s learning of small targets. Therefore, this paper will
focus on optimizing the model based on the aforementioned
four aspects.

This study encompasses the following primary
contributions:

• To augment the receptive field of the backbone net-
work and enhance the extraction of detailed features by
deep feature maps, we propose the integration of the
C-Bottleneck Transformer Neural network (C-BoTNet)
based on YOLOv8. This integration effectively com-
bines local and global information.

• To address the issue of missing detailed information in
the higher-layer feature maps, a large feature map of
160×160 is integrated into the neck, thereby enhancing
the network’s performance in detecting small targets.

• In order to improve the real-time of the model, the origi-
nal C2f of YOLOv8 is optimized through the cross stage
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partial network (VoVGSCSP). This module not only
reduces the model’s parameter size but also enhances the
accuracy of detecting targets.

• In an effort to mitigate the influence of samples of
varying qualities in the dataset, we have adopted Wise-
IoU (W-IoU) to optimize the Complete IoU (C-IoU)
loss function. This optimization accelerates algorithm
convergence and effectively enhances the overall perfor-
mance of the detector.

• Images were collected by team members on the sea
surface, and a self-made dataset of long-distance ship
images was created, encompassing various weather
conditions.

The following sections in this study are structured as out-
lined below: Section II outlines the foundational work in this
study, which encompasses an introduction to YOLOv8 as
well as a detailed description. In Section III, we delve into
the structure and principles of Ship-YOLOv8, encompassing
the C-BoTNet module, the VoVGSCSP module, the added
micro-target detection layer, and the principles of the W-IoU
loss function. Section IV details the conducted experiments to
substantiate the efficacy of the architecture proposed in this
paper. Finally, Section V summarizes our study, providing an
overview of our research content and contributions.

II. RELATED WORK
A. SHIP DETECTION
Before deep learning became popular, ship detection mainly
focused on traditional image processing methods. Krüger
and Orlov [39] developed a ship target detection method,
which utilizes various filters and edge-detection algorithms
to improve-accuracy in detecting ships within blurry images,
Liang and Liang [40] proposed a neural network architec-
ture based on probability distribution, building upon the
Canny edge detector. Yet, this method exhibits reduced accu-
racy in images with significant occlusions. Li et al. [41]
introduced a superpixel-level based detector that effectively
identifies densely populated ships near coastlines. However,
it falls short in multi-scale detection. Liu et al. [42] intro-
duced a method combining the Laplacian of Gaussian with
Kalman filtering, addressing some challenges of detecting
ships under low light and substantial occlusion. However,
it still struggles with accurately identifying smaller ships.
Addressing the impact of environmental factors like clouds
and sea waves on ship detection in optical images, Wang
et al. [43] integrated a maximum symmetric surround model
and non-subsampled contourlet transform for enhancing low-
frequency signals. Despite these advancements, traditional
ship detection methods, requiring manual feature extraction,
are not only time-consuming but also lack robustness, mak-
ing them unsuitable for effectively detecting small ships in
complex scenarios [35].
With the development of neural networks, deep-learning-

based methods have attracted increasing attention in ship
detection. Among these methods, object-detection neural net-
work architectures, especially the YOLO framework, shine

with its remarkable equilibrium between speed and accu-
racy, facilitating the swift and dependable identification of
objects within images. Over the years, the YOLO series has
undergone multiple iterations, with each successive version
building upon its predecessor to overcome limitations and
enhance performance. For instance, to address the challenge
of low accuracy in the identification of small boats at sea,
Chen et al. [44] proposed a novel approach that utilizes
Gaussian Mixture Wasserstein Generative Adversarial Net-
works (GAN) for generating samples of small ships, thereby
enhancing the precision of the algorithm. To mitigate the
impact of noise interference on ship detection, Li et al. [45]
proposed a minimal pooling detection method that effectively
suppresses noise without introducing excessive parameters.
However, during the feature fusion stage, some information
loss occurs. Zhou et al. [46] optimized the performance
of small-ship detection based on YOLOv5, enabling the
application of the object-detection neural network architec-
ture on maritime equipment. Tang et al. [47] introduced an
attention mechanism for multi-scale receptive fields convo-
lution block to enhance the lightweight and high-precision
detection of ships at various scales. This module efficiently
captures inter-channel relationships within feature maps,
thereby improving the learning of ship-background relation-
ships. Wang et al. [48] introduced a Small Proposal Detection
Convolution (SPD-Conv) method aimed at improving the
detection accuracy of small targets and low-resolution ship
images. However, the model’s excessive parameterization has
led to suboptimal real-time performance. Addressing chal-
lenges such as limited feature information for small ships
in maritime images and low detection accuracy, Chen et al.
[49] introduced a dual-channel attention mechanism aimed at
enhancing small object-detection capabilities. However, the
recognition performance of this method is still inadequate in
complex environments. Furthermore, Wang et al. [50] lever-
aged a multi-path aggregation network to reuse shallow-level
features during the feature fusion stage, thereby optimiz-
ing small-ship detection in complex water environments.
However, the effectiveness of this approach in identifying
small ships at long distances remains suboptimal, and the
real-time detection speed is relatively slow. To mitigate the
impact of preset anchor box sizes and imbalanced ship sam-
ples in their dataset, Zhang and Hou [51] reinforced small
object feature information in deep feature aggregation and
devised a lightweight convolutional module. Li et al. [52]
proposed a feature fusion model incorporating the Swin
Transformer, which effectively integrates various detailed
features of small vessels. However, the extended inference
time of the neural network architecture limits its suitability
for real-time detection. To enhance the capability of real-time
detection, Zhang et al. [53] introduced an architecture that
integrates a coordinate attention mechanism into the base of
YOLOv5. While this approach maintains real-time perfor-
mance, it notably improves accuracy. However, the neural
network architecture still demonstrates limited accuracy in
identifying targets at long distances or in environments with
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FIGURE 1. The structure of the YOLOv8 model.

significant interference. In recent years, numerous scholars
have explored how to integrate traditional target detection
methods with deep learning techniques. Among these efforts,
Li et al. [52] developed a multi-level detection method that
achieves high accuracy in detecting distant ships at sea. How-
ever, this method has its limitations: it can only detect ships
near the sea horizon and is significantly affected by weather
conditions.

B. REVIEW OF YOLOv8
Among the YOLO series methods, YOLOv8 has high accu-
racy, fast speed while maintaining a relatively small model
size, making it suitable for deployment on edge devices.
FIGURE 1 illustrates the specific structure of YOLOv8,
which comprises three sections: the backbone, neck, and
head. The primary function of the backbone is to extract fea-
tures. The neck integrates extracted features to generate fea-
ture maps at various scales, while the head is responsible for
target detection output. The core of the back-bone is the Cross
Stage Partial Darknet (CSPDarkNet) structure, including the
Conv-BN-SILU (CBS), C2f, and spatial pyramid pooling fast
(SPPF) modules. The CBS module integrates convolution,
batch normalization, and the SiLU activation function. The
C2f module, inspired by the structure of Densely Connected
Convolutional Networks (Densenet), includes more skip con-
nections, removes convolution operations within branches,

and introduces additional split operations. These enhance-
ments aim to enrich features while reducing computational
complexity. The SPPF module conducts three consecutive
pooling operations, reducing computational demands and
combining the output of each layer to achieve multi-scale
fusion while enlarging the receptive field. In the neck, a path
aggregation feature pyramid network (PAFPN) is imple-
mented, significantly enhancing the detection capabilities for
objects of various scales. The head employs decoupled struc-
tures and incorporates the CIoU loss function and distribution
focal loss (DFL) function for bounding box loss, along with
binary cross-entropy for classification loss.

C. SELF-ATTENTION MECHANISM
In traditional neural networks, each neuron relies solely on
outputs from the preceding layer, potentially overlooking spe-
cific image details. However, attention mechanisms enable
neurons to not only consider outputs from the previous layer,
but also to selectively weigh different parts of the input
data. This selective weighting allows the model to prioritize
important information within the input sequence, enhancing
accuracy and efficiency [54].
Dot-product attention is a commonly used attention

mechanism widely applied in natural language process-
ing. In recent years, it has also demonstrated excellent
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performance in various tasks of image processing. The prin-
ciple of dot-product attention is as follows:

If there are two vectorsQ and K , respectively, Dot-product
attention measures the similarity between Q and K by taking
their dot product, and then normalizes the weight of each K
using the softmax function, as follows:

Attention(Q,K ,V ) = softmax(QKT )V (1)

where Q represents the query vector, K represents the key
vector, and V represents the value vector. The advantage
of dot-product attention is effectiveness in capturing local
relationships within input sequences. However, there is a
drawback in handling scale differences between query and
key vectors, which may lead to numerical stability issues
in the output results. Thus, dot-product attention is typi-
cally scaled by dividing the dot product by

√
dk , where dk

represents the dimensionality of the key vectors. This nor-
malization helps stabilize the variance of attention weights,
thereby enhancing the robustness and accuracy of the model.
Consequently, the commonly used formula for dot-product
attention is as follows:

softmax(QKT /(
√
dk )V (2)

The self-attention mechanism, widely employed currently,
establishes global dependencies by associating different posi-
tions within a single sequence to compute the attention
mechanism of the same sequence. This expands the receptive
field of the image, enabling the acquisition ofmore contextual
information.

The fundamental principle of the self-attention mechanism
is to compute attention weights based on the relationship
between queries, keys, and values. These weights are then
multiplied with the values to obtain a weighted sum at each
time step, thereby yielding the final output result.

The basic principle of the self-attention mechanism
involves a sequence X = [x1, x2, . . . , xn], where xi denotes
the ith element of the sequence. For each element xi, its query,
key, and value are computed individually:

Qi = xiWQ (3)

Ki = xiWK (4)

Vi = xiWv (5)

whereWQ,WK andWv are the weight matrices for query, key,
and value linear transformations, respectively. Their dimen-
sions are dQ × dX , dK × dX , and dv × dX respectively, where
dX represents the dimensionality of the input sequence, and
dQ, dK , and dv represent the dimensions of query, key, and
value, respectively.

III. METHODS
In this section, we first briefly introduce the basic structure
of Ship-YOLOv8. Subsequently, we provide detailed expla-
nations for each improvement, including the C-BoTNet, the
VoVGSCP module based on GSConv [58], the integration of
an additional small-target detection head, and the optimiza-
tion of the W-IoU loss function [59].

A. SHIP-YOLOv8
FIGURE 2 shows the overall schematic of Ship-YOLOv8.
The modules within the colored solid-line boxes repre-
sent improvements to the original model; the rest remain
unchanged. The model comprises three main components:
the backbone network, the feature enhancement part, and the
prediction part.

(1) We integrated C-BoTNet into the backbone, merg-
ing local and global object features, enriching the detection
process, and improving the identification of long-distance
maritime ships [60]. (2) In the neck, we replaced the C2f with
the VoVGSCSP [58]. Depthwise separable convolution was
applied to the feature maps, facilitating interaction between
channels. This optimization not only reduces model complex-
ity but also enhances the neural network architecture’s ability
to detect small ships. (3) In the neck network, we performed
resampling and merged the generated 160× 160 feature map
with the feature map of the same size from the backbone
network, adding an additional layer for small object detec-
tion. The added detection layer improves the architecture’s
accuracy significantly in detecting long-distance maritime
ships. (4) The W-IoU loss function was employed for opti-
mization, effectively balancing samples of varying quality in
the dataset, and further enhancing the overall accuracy of the
neural network architecture [59].

B. C-BOTTLENECK TRANSFORMER
The original Bottleneck Transformer (BoT) [60] is a simple
but powerful backbone. It merely replaces the 3× 3 convolu-
tions in ResNet with a multi-head self-attention mechanism
(MHSA). This modification enhances network performance
significantly for tasks such as instance segmentation and
object detection. The structures of the original ResNet and
the BoT are illustrated in FIGURE 3 [61]. The ⊕ symbol
indicates element-wise addition across each channel.

The C-BoTNet and C-Bottleneck Transformer (C-BoT)
structures designed in this paper are illustrated in FIGURE 4.
As depicted in FIGURE 4(b), our newly proposed residual
connection structure, C-BoT, is based on the BoT. This struc-
ture merges the CBS module with the MHSA. C-BoT is
outlined as follows. Initially, a 1 × 1 convolutional kernel is
employed to adjust the channel count, facilitating the aggre-
gation of features from distinct small ships. Subsequently, the
MHSA mechanism is adeptly utilized to integrate both local
and global features from the feature maps, specifically focus-
ing on amalgamating distinct characteristics of small ships.
This strategic fusion significantly enhances the system’s
ability to detect small maritime targets at long distances. Ulti-
mately, a residual structure is integrated to enable the network
to discern variations in distinct ship features. This facilitates
effective gradient propagation, mitigates the vanishing gradi-
ent issue, and ensures the successful aggregation of diverse
ship characteristics. The symbol ⊕ indicates element-wise
addition across each channel. Taking inspiration from the C2f
module, we introduce the C-BoTNet design, building upon
the foundation of C-BoT.
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FIGURE 2. The structure of Ship-YOLOv8. The modules within the solid-line boxes are improvements to the original model.

FIGURE 3. (a) ResNet Bottleneck block; (b) BoT block.

The structure of C-BoTNet is depicted in FIGURE 4(a).
The input featuremapF ∈ Rh×w×C1 undergoes processing by
the CBSmodule, where the number of channels. is adjusted to

0.5 · C2 using a 1 × 1 convolution. Following this, computa-
tions are performed using the C-BoT module, an operation
that leaves the size of the feature map unchanged. Subse-
quently, the input feature map undergoes operations through
the CBS module, concatenating via a residual connection
to adjust the channel number to C2. Finally, a CBS module
operation is used to reshape the feature map to h × w × C1.
C-BoTNet merges local and global object features, enriching
the detection process and improving the identification of
small maritime ships.

The integration of C-BoTNet enhances the process of
detecting small maritime ships by combining local and
global object features, leading to improved long-distance
identification.

This integration takes place in the concluding phase of the
backbone, a determination derived from experiments identi-
fying optimal accuracy in small ship recognition. Detailed
experiments pertaining to this aspect are expounded in
Section F.

In FIGURE 4, the core of C-BoTNet is Multi-Head Self-
Attention (MHSA), as depicted in FIGURE 5. Here, q, k, v,
and r respectively represent query, key, value, and positional
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FIGURE 4. (a) The structure of C-BoTNet; (b) The structure of the C-BoT.

encoding. The symbol ⊕ denotes element-wise sum, ⊗ sig-
nifies matrix multiplication, and 1 × 1 denotes a pointwise
convolution.

FIGURE 5. Multi-head self-attention mechanism.

C. ADDIYIONAL DETECTION LAYER
In YOLOv8, small-target detection effectiveness is hampered
by the diminutive sizes of target samples and the relatively
high downsampling factor. The latter poses challenges for
deeper feature maps in capturing the intricate details of
these smaller targets. Therefore, we added an extra detection
layer to the three original detection heads. In our enhanced

backbone, downsampling was employed to generate fea-
ture maps of five distinct sizes. In the neck, concatenation
fusion began with the up-sampling of large feature maps of
160 × 160, 80 × 80, and 40 × 40 pixels generated by the
backbone. Subsequently, concatenation fusion was carried
out with the 20 × 20-pixel feature map after downsam-
pling. This process resulted in the creation of four feature
maps that integrated diverse semantic information. Finally,
four detection layers were output separately, with the addi-
tional detection layer integrating the 160 × 160-pixel feature
maps from the fusion backbone. This integration specifically
enhances the detection of small targets, thereby enabling
more effective long-distance recognition.

D. VoVGSCSP
The introduction of a new detection layer, specifi-
cally designed for small-target recognition, has inevitably
increased the model’s parameter count, posing challenges for
real-time detection. To address this, GSConv [58], represent-
ing a novel convolution mode, has been employed. GSConv
merges the lightweight characteristics of depth-separable
convolution (DSC) with the accuracy of standard convolution
(SC). It initially performs a DSC operation on the information
obtained from the SC, and then reorganizes this information
across various channels to produce the final output. This
strategy not only facilitates the efficient reutilization of fea-
ture information but also significantly reduces computational
complexity. Consequently, it achieves a notable improvement
in the model’s balance between accuracy and speed, main-
taining high detection accuracy while catering to real-time
processing requirements. FIGURE 6 illustrates the structural
design of GSConv.

FIGURE 6. The structure of GSConv.

Based on GSConv, Hu et al. make an improvement by
introducing GSbottleneck, as illustrated in FIGURE 7 (a).
Subsequently, as illustrated in FIGURE 7 (b), a one-time
aggregation approach was employed to design the inter-level
subnetwork VoVGSCSP module [58].

VoVGSCSP enhances GSConv by splitting the input fea-
ture map into two segments. In this architecture, the feature
map is bifurcated: one path processes features through the
hybrid Conv and GSConv structure, and a parallel path
applies a solitary Conv layer, acting as a residual connection.
Subsequently, the two segments are merged and linked to
the output via Conv convolution. The unique architecture
of VoVGSCSP enables easy dimensionality manipulation
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FIGURE 7. (a) Structure of GS bottleneck module; (b) Structure of
VoVGSCSP module.

and reductions in feature dimensions, decreasing computa-
tional load. Typically, the time complexity of a convolutional
computation is quantified in terms of giga-floating-point
operations (GFLOPs).Table 1 compares the different levels of
VoVGSCSP module optimizations applied to YOLOv8, with
parameters and GFLOPs listed.

TABLE 1. Parameter and GFLOP comparison: YOLOv8 with different
VoVGSCSP optimizations.

In Table 1 ‘‘base’’ refers to the model without
VoVGSCSP optimization. ‘‘VoVGSCSP×1’’ represents the
model optimized with one C2f layer using VoVGSCSP,
and ‘‘VoVGSCSP×4’’ represents the model optimized with
four C2f layers using VoVGSCSP. The data show that
incorporating the VoVGSCSP module for neck optimization
significantly reduces the model’s parameters. The degree of
optimization with VoVGSCSP is directly correlated with the
model’s lightweight design. Subsequent experiments con-
firm that VoVGSCSP not only streamlines the model but
also enhances its detection performance for long-distance
ships.

In our neural network architecture, the C2f component
within the neck is optimized using the VoVGSCSP module.
This refinement not only reduces the model’s complexity
but also significantly enhances the algorithm’s precision in
long-distance detection of small targets. It is important to note
that the GSConv is exclusively utilized in the neck, where
it processes feature maps characterized by maximal channel
numbers and minimal spatial dimensions. At this juncture,
these feature maps exhibit minimal redundancy, obviating the
need for compression and thus allowing themodule to operate
more effectively.

E. LOSS FUNCTION
The total loss of Ship-YOLOv8 comprises two components:
classification loss and regression box loss:

Loss = k1 ∗ lossrect + k2 ∗ losscls (6)

where lossrect represents the regression box loss and losscls
represents the classification loss. The coefficients k1 and k2
weigh the two losses and are typically set to 0.5. The variable
losscls is calculated as follows:

losscls =
1
N

N∑
i

[
−yi · log(pi) + (1 − yi) · log(1 − pi)

]
(7)

Distribution focal loss (DFL) and W-IoU are used to com-
pute lossrect . DFL is calculated as follows:

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y− yi) log(Si+1))

(8)

where Si and Si+1 denote the probabilities corresponding to
the predicted values yi and yi+1 in the vicinity of the label y.

In line with the characteristics of the LDSD, the determina-
tion of the bounding box loss in our approach is governed by
the W-IoU loss function [59]. This methodology is crafted to
achieve equilibrium in the detection of model training images
with diverse qualities, ultimately elevating the precision of
detection results.

W-IoU introduces a dynamic focusing mechanism (FM)
designed to estimate the extent of outliers within the anchor
box. The FM enhances anchor box regression by assigning
small gradient gains to precision ship bounding anchors,
directing the focus towards regular-quality ship bounding
anchors. Simultaneously, it allocates limited gradient gains to
inferior anchor boxes, effectively channeling the loss function
towards regular-quality ship instances.

The W-IoU formula is shown in Equations (9) – (12):

LWIoU = r × exp

(
x − xgt

)2
+

(
y−ygt

)2(
W 2
g +H2

g

)∗

 (1 − IoU ) (9)

β =
L∗
IoU

LIoU
∈ [0, +∞) (10)

r =
β

δαβ−δ
(11)

LIoU = 1 − IoU (12)

In this context, W-IoU introduces an outlier parameter,
denoted as β, for assessing anchor box quality and estab-
lishes a non-monotonic focusing factor, denoted as r. A lower
outlier value indicates higher precision for ship bounding
anchors. Consequently, we allocate a smaller gradient gain to
such anchors, directing the bounding box regression towards
those of standard quality. Due to the intricate character-
istics of LDSD, there are instances with relatively high
outlier values representing imprecise ship bounding anchors.
We similarly assign a smaller gain to these anchors, prevent-
ing the neural network architecture from overfitting to such
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specific instances and thereby improving its generalization
performance. In addition, In the formula, δ and α are hyper-
parameters that can be tuned to suit various models. Terms
Wg and Hg correspond to the width and height, respectively,
of the smallest encompassing box. The superscript ∗ denotes
detachment from the computational graph, aiming to reduce
computational burden, enhance algorithmic robustness, and
expedite convergence. W-IoU is depicted in FIGURE 8,
A denotes the predicted box, and B represents the real box.

FIGURE 8. Schematic representation of formula parameters.

Owing to the intricate nature of the environment and the
diminutive pixel size of the ships, LDSD comprises anchor
boxes of lower quality. To address this issue, we incorporate
W-IoU into the object-bounding box regression loss. This
enhancement enables the model to focus more on learning
anchor boxes of average quality, thereby improving its object
localization capabilities.

IV. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of our proposed object-detection
model, we conducted extensive experiments on the LDSD.

This section is organized as follows: Initially, we outline
the experimental setting and training specifics. Then, the
efficacy of each enhanced structure is confirmed through
multiple ablation experiments, followed by the verification
of Ship-YOLOv8’s efficiency in comparative experiments.
Finally, we present a visual analysis of the detection perfor-
mances of both YOLOv8 and Ship-YOLOv8 on the LDSD to
validate our methodology.

A. EXPERIMENTAL PLATFORM
The experimental setup employed for this study is detailed in
Table 2. In these experiments, we used the stochastic gradient
descent with a weight decay of 0.0005 and a momentum of
0.937 to train for 300 epochs on the LDSD.

B. METRICS
A set of evaluation criteria has been selected to more effec-
tively compare the performance among various algorithms.
This study primarily employs accuracy and speed as key
metrics for measurement. The specific details are outlined
below.

TABLE 2. Configuration parameters for the experiment.

Precision (P) is the most intuitive performance evaluation
metric, which is defined as the number of correctly predicted
positive instances divided by the total number of identified
objects. It can be expressed as:

P =
TP

TP+ FP
(13)

where TP is the number of ships recognized as ships and FP
is the number of backgrounds recognized as ships. However,
dependence solely on accuracy proves insufficient. In object
detection, the imbalance in positive and negative sample dis-
tribution impacts the detection accuracy of the neural network
architecture significantly. This study also employed recall R
to evaluate the neural network architecture:

R =
TP

TP+ FN
(14)

where FN is the number of ships detected as backgrounds.
The Precision-Recall (PR) curve delineates the precision

and recall values computed across various confidence thresh-
olds. Average Precision (AP) quantifies the area under this
curve, signifying the average accuracy at distinct recall
points. For neural network architectures.

That detect multiple categories simultaneously, the mean
average precision (mAP) is used to measure their overall
performance. This work comprised only one category, so AP
was used, described in the following manner:

AP =

∫ 1

0
P(R) · d(R) (15)

Given the potential bias of relying on a single metric, the
F1 score, encompassing both precision P and recall R, served
as a comprehensive measure to reflect the detection accuracy
and recall performance of the algorithm:

F1 =
2 × R× P
R+ P

(16)

C. DATASET
Currently, there are few publicly available datasets for mar-
itime ships in visible light images, with notable examples

116094 VOLUME 12, 2024



Y. Gong et al.: Real-Time Long-Distance Ship Detection Architecture Based on YOLOv8

being the Sea Ships dataset [55] and the Singapore Maritime
dataset. The Sea Ships dataset comprises 31,455 images and
covers a wide range, making it a comprehensive collection for
maritime ship studies. The Singapore Maritime dataset [56],
consisting of images captured in the waters near Singapore,
includes a variety of complex scenarios and is also an exten-
sive dataset. However, these public datasets feature a limited
number of long-distance ship instances. The reliability of a
dataset is crucial for the neural network architecture’s detec-
tion performance. In response to this limitation, we developed
the Long-Distance SmallMaritime Ship Dataset (LDSD), uti-
lizing high-definition cameras mounted on a ship to capture
images, specifically focusing on small and distant maritime
ships.We labeled images manually to identify small maritime
ships and converted them into the COCO [57] format. This
resulting dataset comprises 1871 images and 4348 ships, and
we randomly partitioned it at a 9:1 ratio for training and
validation. In other words, 90% of the data were allocated
for training, while the remaining 10% were reserved for val-
idation. Images of small ships within the LDSD are depicted
in FIGURE 9.

As depicted in FIGURE 9, the example images from our
collected dataset of long-distance ships include various chal-
lenging scenarios. These scenarios encompass images with
few pixels, ships obscured by waves, and ships easily con-
fused with the sea–sky background. The diverse and complex
images under different conditions pose significant challenges
for the algorithm’s recognition capabilities.

We conducted a statistical analysis of the target count in
each image of the LDSD. FIGURE 10 illustrates the dis-
tribution of number of ships in each image. The horizontal
axis represents the number of ships per image, while the
vertical axis indicates the corresponding number of images.
Our analysis revealed that each image contains between 1 and
14 ships. Specifically, the first cylinder cluster has 958 images
comprising only one ship, resulting in a total number of ships
equal to 1 × 958 = 958. Additionally, in the last cylinder
cluster, the four images have 14 ships each, containing a total
of 4 × 14 = 56 ships. FIGURE 11 displays a pie chart to
depict the proportions of images with different ship counts.
The statistical chart shows that the distribution of ship counts
varies across the images in the dataset, with the majority
having four or fewer targets per image.

As illustrated in FIGURE 11 and FIGURE 12, we con-
ducted a pixel size analysis of all targets within the LDSD.
The minimum pixel value in the dataset was 4 (2 × 2), with
the majority falling below 150. The definition of small targets
was 9 established based on the absolute pixel sizes of the
targets, with the most widely accepted criteria derived from
the commonly used MS COCO dataset for object detection.
Targets with dimensions below 32 × 32(1024) pixels were
considered small. The average pixel value for the targets in
the LDSD was 229, significantly below the defined threshold
for small-target pixels. The statistical analysis indicated that
an overwhelming majority of ship targets in LDSD qualified

FIGURE 9. Samples from the LDSD.

as extremely small, presenting a significant challenge for
detection.

D. ABLATION EXPERIMENTS
To gauge the efficacy of the improved modules in Ship-
YOLOv8, we conducted ablation experiments to analyze the
impacts of different modules on the detection performance.
The results of the experiments are presented in Table 3, where
√

indicates the use of the improved strategy, ADL indicates
an additional detection layer and AP0.5 represents the AP at
an IoU threshold of 0.5.

The ablation experiments demonstrate that integrating
C-BoTNet, VoVGSCSP, additional detection layers, and the
W-IoU loss function into the baselineYOLOv8 algorithm sig-
nificantly enhances the detection accuracy of long-distance
maritime ships in the LDSD. These enhancements are primar-
ily evidenced by the improved AP0.5 scores on the validation
set, indicating a notable rise in the model’s precision for ship
detection tasks.

The primary reason for the baseline model’s low AP0.5 in
detecting ships on the LDSD is the small pixel represen-
tation of distant ships and smaller targets. This results in
a loss of detailed features after downsampling through the
backbone network. The integration of the C-BoTNet module
effectively merges local and global features, improving the
AP0.5 by 0.2 percentage points. The introduction of additional
detection layers significantly enhanced the model’s accuracy
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FIGURE 10. Ship count distribution in images.

TABLE 3. Ablation experiments on the LDSD.

FIGURE 11. Proportional distribution of ship numbers in images.

on the LDSD, achieving an AP0.5 of 87.50. This indicates
that incorporating the 160 × 160 large feature maps from
the backbone network into the neck network effectively sup-
plement the detailed information of the images. In essence,
the baseline model’s insufficiency in recognizing smaller
targets is primarily due to the loss of detailed information
of the target objects, leading to an inability to correctly

FIGURE 12. Distribution of ship pixel sizes in the LDSD.

identify distant ships. The inclusion of both the C-BoTNet
and additional detection layers increases the model’s param-
eter count and complexity. To address this, we integrated the
VoVGSCSPmodule in the neck network to lighten the overall
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FIGURE 13. Distribution of ship pixel sizes and positions in the LDSD.

model and reduce complexity. Notably, the VoVGSCSP opti-
mization not only reduced the model’s complexity but also
improved the AP0.5 by two percentage points. Additionally,
employing the W-IoU loss function resulted in a 2.3 percent-
age point improvement in AP0.5 compared to the baseline
model. This indicates that theW-IoU loss function effectively
balances the quality of different samples in the LDSD, miti-
gating the impact of poor-quality samples on the algorithm’s
performance.

Notably, the detection model incorporating all four
optimizations—C-BoTNet, VoVGSCSP, additional detection
layers, and the W-IoU loss function—achieved the highest
overall detection accuracy with an AP0.5 score of 91.8. This
result demonstrates that the proposed approach of enhancing
target detection and balancing the dataset’s sample quality
from two perspectives is effective.

In summary, the effectiveness of the four optimization
schemes has been demonstrated through eight sets of ablation
experiments. It has been shown that utilizing any single opti-
mization or combining multiple optimizations can effectively
enhance the performance of the algorithm.

E. COMPARATIVE EXPERIMENTS
This study compared the proposed Ship-YOLOv8 with
several prominent object detection algorithms, including one-
stage algorithms, such as YOLO and the SSD series [20],
and representative two-stage algorithms, such as Faster
R-CNN [24]. Furthermore, our comparison included both
anchor-based and anchor-free models.

Table 4 presents a comparison of Ship-YOLOv8 with
other mainstream algorithms based on three metrics: AP0.5,
Recall, and F1. Our proposed algorithm achieved an AP0.5 of
91.8%, surpassing YOLOv8 by 21.2 percentage points, and
exceeding the well-known small object detection algorithm
TPH-YOLOv5 [62] by 14.6 percentage points. In compar-
ison with numerous state-of-the-art algorithms, our model
demonstrated a distinct advantage. Our algorithm achieved
the highest recall of 85.2%, surpassing YOLOv8 by 33.4 per-
centage points. Specifically, it outperformed Centernet and
YOLO-Fastestv2 by 12.26 and 0.5 points, respectively, and
significantly outperformed algorithms such as Faster-RCNN
and SSD. For the F1 score, our algorithm also achieved the
highest F1 of 88.37%, surpassing the YOLOv8 algorithm by

22.93% points. Considering these three metrics, our method
performs better in the long-distance ship detection, providing
assurance for effective remote obstacle avoidance in intelli-
gent vessels.

TABLE 4. Comprehensive detection performance comparison of different
algorithms on the LDSD.

To further demonstrate the enhanced performance of our
optimized model, we created a visualization of the detection
results. In FIGURE 14, the first column displays the original
images, the second column presents the recognition results
obtained using YOLOv8, and the last column shows the
results of our proposed Ship-YOLOv8.

FIGURE 14 also shows that our proposed algorithm
demonstrated higher accuracy and lower error rates in testing
on the LDSD compared to the original YOLOv8. In the (a)
group comparison, the original image had a target of 17 ×

3 pixels. YOLOv8 failed to detect it, while our algorithm cor-
rectly identified it. In the (b) group comparison, two targets
were in the original image, but in the evening environment,
where the color of the ships was close to that of the water
surface, YOLOv8 detected only one target. In contrast, our
algorithm identified both targets accurately. In the (c) group
comparison, a target in the original image had dimensions of
18× 3 pixels, which YOLOv8 failed to recognize. However,
our detection algorithm could correctly identify it. In the (d)
group comparison, three targets were in the original image,
and the smallest target was 4 × 3 pixels. YOLOv8 could not
recognize the smallest target, while our detection algorithm
could accurately identify all three targets. The (e) group
comparison had seven targets in the original image, with the
smallest being 7 × 7 pixels. Additionally, multiple targets
had short spacing, making recognition challenging. YOLOv8
recognized only five targets, whereas our detection algorithm
correctly identified all seven targets. Through visualized
image presentations, our proposed method performs better in
long-distance ship detection in various scenarios, indicating
its potential advantages in intelligent ship autonomous obsta-
cle avoidance.

F. COMPARISON EXPERIMENT FOR C-BoTNet POSITION
OPTIMIZATION
In our optimized backbone, we introduce the C-BoTNet mod-
ule in the final feature stage for enhanced feature recognition
and extraction..
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FIGURE 14. Comparison of detection results.

TABLE 5. Comparative experiments with different positions for C-BoTNet.

Table 5 compares the performance metrics between plac-
ing C-BoTNet in the middle (C-BoTNet-1) and at the final
stage of the backbone (C-BoTNeT-2). The results indicate
that C-BoTNet-2 outperformed C-BoTNet-1 in terms of AP,
recall, and F1-score metrics. The results clearly indicate
that positioning C-BoTNet at the end of the main back-
bone is the optimal choice for enhancing model detection
accuracy.

G. COMPARISON OF INFERENCE TIME
Detection speed is a key indicator to evaluate the real-time
performance of the algorithm. Therefore, experiments were
conducted on Ship-YOLOv8 and other algorithms, with
results summarized in Table 6. Our proposed algorithm
achieved a detection speed of 208 FPS and an inference time
of 4.8 ms, meeting the requirements for real-time detection
and supporting rapid obstacle avoidance in intelligent ships.
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TABLE 6. Comparison of inference times of different methods in LDSD.

H. MODEL VISUALIZATION AND ANALYSIS
FIGURE 15 displays the confusionmatrices for YOLOv8 and
Ship-YOLOv8. The x-axis of the confusion matrix represents
true outcomes, while the y-axis represents predicted results.
Examination of these matrices indicates that the enhanced
Ship-YOLOv8 achieves superior precision and comprehen-
sive recognition compared to the original YOLOv8.

FIGURE 15. Confusion matrix comparison chart. (a) Confusion matrix
chart for the original YOLOv8; (b) Confusion matrix chart for Ship-YOLOv8.

To evaluate the overall detection performance of Ship-
YOLOv8 in LDSD, we con ducted a PR curve analysis for
both YOLOv8 and Ship-YOLOv8. The results are depicted
in FIGURE 16.

FIGURE 16. Comparison of PR curves for the algorithms in LDSD. (a) PR
curve for YOLOv8. (b) PR curve for Ship-YOLOv8.

The PR curve represents the relationship between pre-
cision and recall. The comparison with YOLOv8 indicates
that the PR curve for our proposed Ship-YOLOv8 is notably
smoother. The curve encompasses a larger area under the
precision–recall space, indicating superior performance. The
improved algorithm achieves a better balance between preci-
sion and recall across various thresholds.

FIGURE 17 presents a comparative analysis of met-
rics between Ship-YOLOv8 and YOLOv8. The first three
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FIGURE 17. (a) Comprehensive Performance Curve for YOLOv8; (b) Comprehensive Performance Curve for Ship-YOLOv8.

columns show the model’s box loss, cls loss, and dfl loss,
with the x-axis representing training epochs and the y-axis
representing the total loss. From the comparison results in (a)
and (b), it can be observed that the Ship-YOLOv8, which
incorporates the W-IoU loss function, exhibits faster reduc-
tion in box loss and smoother loss curves, indicating rapid
convergence. The last two columns display the precision,
recall, and AP0.5 curves, with the x-axis representing training
epochs and the y-axis representing their respective values.
The experiment results demonstrate the superiority of our
method.

FIGURE 18 comprehensively reflects the performances of
different algorithms on the LDSD. Our proposed algorithm
achieved the highest AP, sur-passing two small-target
detection algorithms, TPH-YOLOv5 and YOLO-Fastestv2,

and significantly outperforming a series of well-known
algorithms, like Faster-RCNN. In terms of detection speed,
our proposed algorithm reached 208 FPS, surpassing all
algorithms except YOLOv8. This speed far exceeded the
requirements for real-time detection. Considering both pre-
cision and speed, our proposed algorithm demonstrated
superiority, meeting the demands for real-time detection of
long-distance small maritime targets on the sea surface.

I. COMPARATIVE EXPERIMENTS ON SeaShips DATASET
In order to comprehensively validate the applicability of
our method, experiments were conducted on the public
dataset SeaShips, which comprises 7000 images. This dataset
encompasses various types of vessels, such as ore carriers
(OC), bulk cargo carriers (BCC), general cargo ships (GCS),
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FIGURE 18. Comparative analysis of comprehensive performances on LDSD.

container ships (CS), fishing boats (FB), and passenger ships
(PS). The distribution of the dataset is presented in Table 7,
wherein ‘‘Mixed’’ denotes instances where different cate-
gories of ships occlude each other within the images.

TABLE 7. Distribution of categories in the SeaShips dataset.

TABLE 8. Comparative experiment on the SeaShips dataset.

Under consistent training conditions and parameters,
130 training epochs were conducted using YOLOv8 and

FIGURE 19. Comparison of PR curves for the algorithms in SeaShips.
(a) PR curve for YOLOv8. (b) PR curve for Ship-YOLOv8.

Ship-YOLOv8. The results are shown in Table 8. The Ship-
YOLOv8 continues to demonstrate excellent performance on
the SeaShips dataset, achieving an average AP0.5 of 99.3%.
Moreover, it surpasses the AP0.5 of the original YOLOv8
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in each detection category. During single-image inference,
the model achieves a processing time of 4.0 milliseconds,
resulting in a frame rate of 250 FPS,meeting the requirements
for real-time detection.

The PR curves for the two algorithms are as illustrated
in FIGURE 19. Compared to the original YOLOv8, the
Ship-YOLOv8 performs better for various categories of ship
targets. Moreover, the curves of Ship-YOLOv8 are smoother,
indicating the effectiveness of the proposed algorithm.

V. CONCLUSION
This study explored methods to tackle the significant chal-
lenge of detecting long-distance ships at sea. To address
this issue, we developed a novel algorithm, namely Ship-
YOLOv8. The algorithmwas applied to our self-made LDSD,
and we conducted experiments to verify an AP0.5 of 91.8%,
representing a 21.2-point improvement over YOLOv8. Our
proposed algorithm utilizes various techniques to improve
the detection accuracy for long-distance ships at sea. First,
we created the LDSD, a dataset for sea surface long-distance
ship detection. Second, we added the combination module
C-BoTNet, with a CNN and a transformer, to the backbone
of YOLOv8, which could enhance the extraction of local
information and global information at the same time. Then,
we used the VoVGSCSP structure to optimize the extraction
when performing feature fusion in the neck, which reduced
the network’s complexity and enhanced the recognition abil-
ity for small targets. We added a new small-target detection
layer to the backbone, which fuses large featuremaps, thereby
enhancing the recognition accuracy for small targets and
bolstering the capability for long-distance detection. Finally,
due to the unique characteristics of the LDSD, W-IoU was
incorporated into ship-YOLOv8. This strategic integration
serves to effectively alleviate the challenges posed by varying
quality levels of long-distance ship samples, thereby enhanc-
ing the algorithm’s generalization capability.

Experimental results show that Ship-YOLOv8 can achieve
higher detection accuracy using the same dataset. Ourmethod
demonstrates robustness in scenarios involving object blur
and environmental confusion, providing effective sup-port
for the intelligent navigation of maritime ships. Additionally,
comparative experiments on the public dataset SeaShips show
that Ship-YOLOv8 outperforms the original YOLOv8 in
multiple metrics. This comprehensive demonstration show-
cases the good performance of our proposed method across
different environments, laying the foundation for obstacle
avoidance and autonomous navigation in long-distance ships.
Nevertheless, there is still potential for enhancement in our
algorithm, as it may erroneously classify birds in the sky or
other objects on the sea surface as ships. Addressing this issue
constitutes our next research endeavor.

In our forthcoming research endeavors, our primary focal
points will encompass three key areas: refining the detec-
tion algorithm to further boost target identification accuracy
and minimize false detections; enriching the LDSD with
techniques such as data augmentation to strengthen the

algorithm’s capability in intricate scenarios involving small
targets; and deploying our algorithm on embedded devices
for real-world testing, particularly on custom-built uncrewed
ships for detection and obstacle avoidance experiments.
These efforts aim to significantly advance the field of object
detection in maritime environments, contributing to safer and
more efficient maritime navigation.
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