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ABSTRACT In this study, we applied deep learning to improve the control of a KUKA LBR4 7 Degrees of
Freedom (DOF) robotic arm. We developed a dynamic model using a comprehensive dataset of joint angles
and actuator torques obtained from pick-and-place operations. This model was incorporated into a Model
Predictive Control (MPC) framework, enabling precise trajectory tracking without the need for traditional
analytical dynamic models. By integrating specific constraints within the MPC, we ensured adherence to
operational and safety standards. Experimental results demonstrate that deep learning models significantly
enhance robotic control, achieving precise trajectory tracking. This approach not only surpasses traditional
control methods in terms of accuracy and efficiency but also opens new avenues for research in robotics,
showcasing the potential of deep learning models in predictive control techniques.

INDEX TERMS Deep learning, model predictive control (MPC), robotic arm, trajectory tracking.

I. INTRODUCTION

Robotic manipulation and movement describe how robotic
systems engage with and transform their surroundings
through meticulous control over their mechanical compo-
nents [1]. Robotic manipulators are versatile mechanical
devices used extensively in various industrial, medical,
and research applications due to their precision, efficiency,
and adaptability. In manufacturing, they are employed for
tasks such as assembly, welding, and material handling,
significantly enhancing productivity and safety by perform-
ing repetitive and hazardous tasks with high accuracy [2].
In the medical field, robotic manipulators are integral
to minimally invasive surgeries, providing surgeons with
enhanced precision and control, which leads to reduced
patient recovery times and improved surgical outcomes [3].
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Additionally, these manipulators play a crucial role in space
exploration, where they perform tasks like satellite servicing
and assembly of large structures in the harsh environment
of space [4]. The versatility and reliability of robotic
manipulators make them indispensable tools across various
domains.

Feedback control at the joint level of robotic manip-
ulators is essential for ensuring precision, stability, and
responsiveness during various tasks [5]. By continuously
monitoring and adjusting the joint positions, velocities, and
torques based on sensor feedback, feedback control systems
can correct errors in real-time and maintain the desired
trajectory [6]. This is crucial in applications requiring high
accuracy, such as in assembly lines or surgical procedures,
where even minor deviations can lead to significant errors
or safety hazards. One of the key benefits of joint-level
feedback control is its ability to compensate for uncertainties
and disturbances. These can include variations in payload,
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external forces, or changes in the robot’s dynamic parameters
over time. By providing immediate corrections, feedback
control enhances the robustness and reliability of robotic
operations [7]. Furthermore, feedback control allows for
improved performance in dynamic environments. In tasks
where the robot interacts with varying objects or operates
in unstructured settings, feedback control ensures that the
manipulator can adapt to changes and maintain performance
without requiring manual recalibration or intervention [8].

Model-based control of robotic manipulators involves
developing mathematical models that represent the robot’s
dynamics and kinematics, which are then used to predict
and optimize the robot’s behavior in real-time [9], [10], [11].
By incorporating detailed models, controllers can anticipate
the effects of control actions, compensate for nonlinearities,
and account for interactions between different joints, leading
to enhanced performance [12]. This level of control is
critical in industries such as aerospace, where precision and
reliability are paramount. Moreover, model-based approaches
enable the implementation of advanced control strategies,
such as Model Predictive Control (MPC), which optimizes
control inputs over a future time horizon to achieve desired
performance while respecting constraints [13], [14].

However, implementing model-based control presents sev-
eral challenges. One of the primary difficulties is accurately
identifying and modeling the robot’s dynamics, which can be
highly nonlinear and subject to various uncertainties, such as
friction, backlash, and external disturbances [15]. Addition-
ally, real-time computation requirements for complex models
can be demanding, necessitating powerful computational
resources and efficient algorithms [16]. Another challenge
is ensuring robustness to model inaccuracies and parameter
variations, which requires sophisticated adaptive or robust
control techniques to maintain performance in the presence
of uncertainties.

Data-driven methods, particularly neural networks, have
shown potential in accurately modeling these nonlinear
dynamical effects without relying on exhaustive mathemati-
cal modeling [17], [18]. Integrating such models as surrogates
in MPC systems could facilitate meeting the real-time control
requirements for robotic manipulators. Previous studies uti-
lizing predictive controllers have typically employed one of
two approaches: using linear predictive models by linearizing
the system around a fixed point [19], or implementing
gain scheduling to establish a multi-level controller where
each level handles a specific operational mode [20]. While
these methods can facilitate real-time operation, they tend
to provide limited accuracy in predicting system responses.
To improve prediction accuracy, some research has intro-
duced nonlinear predictive models, such as in [21]. However,
these models often fail to support real-time operation because
solving the nonlinear equations involved requires extensive
computation [22]. Meanwhile, alternative control strategies
to MPC were employed. These strategies are character-
ized either by their non-predictive nature, as discussed
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FIGURE 1. A block diagram depicting the proposed data-driven model
predictive control (MPC) strategy used to control the KUKA LBR4 robotic
manipulator.

in [23], or by their avoidance of online optimization, as seen
in the works by [24] and [25].

In this study, we present a data-driven dynamic model for
a seven Degrees-of-Freedom (DOF) KUKA LBR4 robotic
manipulator utilizing deep learning techniques. This model
is integrated into the Model Predictive Control (MPC)
framework to enhance trajectory tracking, eliminating the
need for traditional analytical dynamic models. We developed
and validated the deep learning dynamic model using
an extensive dataset of joint angles and actuator torques.
Furthermore, we performed a theoretical analysis to ensure
the stability and feasibility of the deep learning-based MPC.
The model was successfully incorporated into the MPC
framework with additional constraints to improve operational
safety and efficiency. Experimental results demonstrated
improved trajectory tracking capabilities, and we discussed
the potential implications for future advancements in robotic
control systems.

The structure of this paper is as follows: Section II
describes the development of the data-driven Model Pre-
dictive Control (MPC) system. It covers the construction
of the data-driven dynamic model for the 7 DOF robotic
manipulator, sets forth the control objectives for the MPC,
and includes an analysis of the system’s stability. Section III
provides experimental results that demonstrate the proposed
data-driven MPC'’s ability to control the robotic manipulator
to accurately follow predefined joint values and trajectories
while adhering to specific constraints. Finally, Section IV
concludes the paper and suggests potential directions for
future research.

Il. DATA-DRIVEN MODEL PREDICTIVE CONTROL

A. BACKGROUND

Model Predictive Control (MPC) is a multivariable control
technique that uses a mathematical or data-driven model
to predict the future state of the system being controlled.
It then calculates a series of optimal control inputs within
defined constraints. MPC fundamentally consists of three
main components: the predictive model, the target trajectory,
and the controller, which optimizes the outcomes in a rolling
manner. The structure of a closed-loop MPC system is
depicted in Figure 1. In this figure, x, represents the desired
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state trajectory of the robot, t indicates the manipulated
torque variables, x, represents the robot’s state predicted from
the data-driven model, x denotes the controlled joint state,
and T refers to the sequence of optimized torques.

The model of the 7-DOF robotic manipulator can be
described in discrete terms as follows:

x(k+1) = f (x(k), (k) ey

where x = |[gq, ('I]T e R" represents the joint state,
encompassing both joint positions and velocities, T € R’
denotes the joint torques, and f(-) is the system’s unknown
dynamic function. Given the nonlinear nature of the system,
accurately identifying the precise function f(-) that mirrors
the robotic behavior is challenging. Additionally, using the
nonlinear system dynamics as the MPC prediction model to
anticipate the robot’s future states based on the sequence
of actuation can be computationally exhaustive, making
real-time control of the robot difficult. Therefore, the primary
objective of this approach is to accurately predict the system’s
behavior under control and derive optimal control actions.
In this research, we employ a data-driven dynamics model
as the prediction model in the proposed MPC strategy.

B. DATA-DRIVEN DYNAMIC MODEL

The primary goal of developing a Deep Neural Network
(DNN) model is to create a surrogate model that can
effectively serve as a predictive model within the proposed
MPC strategy for regulating the joint state of the robotic
manipulator. Specifically, this effort aims to approximate the
joint state x(k + 1) at the next time step k + 1, based on the
current joint state x(k) and the applied input torque (k) at
the current time step k. Thus, the DNN is trained to directly
approximate the solution in Eq. (1),

f k), T(k); 0) ~ f (x(k), T(k)) @)

where @ represents the free parameters of the DNN. This
enhances the predictive capability and control precision
within robotic manipulator systems by using the DNN model
as the MPC prediction model, facilitating real-time decision-
making.

A feed-forward shallow neural network, illustrated in
Figure 2, functions as the dynamic predictive model for the
robotic manipulator. This network includes an input layer that
takes in the current joint state x(k ), comprising joint positions,
velocities, and input torques t. It has two hidden layers: the
first with 128 neurons and the second with 32 neurons, both
utilizing the rectified linear unit (RELU) activation function.
The architecture is finalized with an output layer that uses a
linear activation function to predict the subsequent joint state
x(k + 1). In the experiment section, we evaluated different
network architectures to assess their impact on prediction
performance. Future work could explore using Recurrent
Neural Networks (RNN) and Long Short-Term Memory
(LSTM) networks to handle time-series data in building the
deep learning model.
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FIGURE 2. Structure of the DNN feed-forward neural network employed
for predicting the joint state in the 7-DOF KUKA LBR4 robotic manipulator.

The dataset from [26] was utilized, consisting of ten
trajectories generated during pick and place tasks executed
by the KUKA LBR4 robot. The pick and place locations
were randomly selected from two non-overlapping areas,
each measuring 50 x 50 cm. The robots were considered to
have successfully completed a task if they started and finished
at the same location. The dataset includes approximately
18,000 samples, containing current joint positions, current
joint velocities, applied torques, next joint positions, and next
joint velocities. The data was split into 70% for training and
30% for validation.

In developing our deep learning-based MPC, it was
essential to seamlessly integrate and efficiently execute the
predictive model across varied computational requirements.
To achieve this, we used the Open Neural Network Exchange
(ONNX) framework [27] for model conversion and interop-
erability. The initial predictive model, designed and trained
using the TensorFlow API, showed promising performance
in preliminary experiments. Converting this model from
TensorFlow to ONNX involved using the tf2onnx tool
to transform the TensorFlow computational graph into
an ONNX model file. This streamlined process generally
involves specifying the input and output nodes of the model
to maintain the integrity of its predictive capabilities after
conversion.

C. CONTROL OBJECTIVE

The main objective of the proposed data-driven non-
linear MPC is to stabilize the robotic manipulator
by ensuring it follows a predefined reference joint
trajectory x, = [qlr,qZ,,...,q7,]T in joint space.
This goal includes accounting for physical constraints,
such as joint and actuation limits, when determining
the optimal control actions, specifically the applied joint
torques. Therefore, the cost function J is formulated
to evaluate both tracking performance and the effective-
ness of control actions over a prediction horizon N,
defined as:

N
Ty ="l ) Wiewr)
j=1
N

+ Z A‘L'(T;H_j_l) W, AT(k+j_1) 3)
=1
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Here, ¢ = x — x, denotes the tracking error, while At
signifies the predicted change in control input. The matrices
Wi =wil; > 0and W, = wyl; > 0 are positive weighting
matrices, which are assumed to stay constant throughout the
prediction horizon N.

The optimal control problem minimizing Eq. (3) is
constrained by the physical and actuator limits. The
robot’s joint values and torques are restricted within the
lower and upper bounds [q,,,, §mar] a0d [Tmin, Timaxl,
respectively, as determined from the movement dataset.
Additionally, nonlinear constraints function g(.) related
to the robot’s state, actuation, or system parameters can
be incorporated when searching for the optimal control
action:

gx, 1) <0 4

From the perspective of supervised learning, the task
of determining the optimal control law can be viewed
as a nonlinear mapping executed by a single-layer neu-
ral network [28]. As a result, Gradient Descent (GD)
proves to be a suitable algorithm for this task. There-
fore, the sequence of control laws, 7(k), is updated as
follows:

Tk+1)=1k)+ Atk) )
oJ (k

AT = 1 (-%) ©)
T

where n > 0 denotes the learning rate for the control
sequence. According to [29], the control increment At (k) is

defined as:
PN
nwi g\, 7
1+ nwo \ 0T

In summary, Algorithm 1 delineates the procedure for two
primary tasks: First, it details the construction of the surrogate
(DNN) dynamic model for the 7-DOF robotic manipulator,
as outlined from lines 1 to 5. Second, it describes the
implementation of the data-driven model predictive control
(MPC) for precise tracking of the reference joint positions,
covered from lines 6 to 12.

At(k) =

D. LYAPUNOV STABILITY ANALYSIS

To illustrate the stability of the system, a quadratic Lyapunov
function expressed in terms of the tracking error is chosen as
follows:

Vie) = %eTe 8)

where e = x, — x. To ensure the global asymptotic stability
of the system, the first derivative of V(e) with respect to time
must be negative definite, which implies that e converges
exponentially to zero.

The first time derivative of V(e) is calculated as
follows:

Vie)=elé )]
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Algorithm 1 Data-Driven MPC

Require:
(qx> Tk qr11), Yk =[0,M]: DNN training data
q,: Desired joint values (reference trajectory)
4o, To: Initial joints and torque
Uy, U:: Bounds of joints and torques
2(q, 7): Nonlinear constrain function
W1, W,: Weighting matrices for the cost function
N': Prediction Horizon

Ensure:
7: Optimal sequence of control inputs (torques) over the
prediction horizon

I: O =6y > initialize DNN model with random weights
2: For k=0toM — 1:

3: Gi+1 = fo(qk, T) > Predict the next state
4: L = MSE(Gk+1, gr+1) > Compute the loss
5: O+ gk — aﬁ > Update DNN parameters
6: gk = qo > initial robot’s joints
7: For k=0toM — 1:

8: ex = |lgm — qk||%v1 > Compute the error
o: Ji = Zjl-vzle—i— ||Ar||%v2 > Compute cost
10: T < IPOPT(Jk, fo, 8. e, Uy, Ur) > Solve the

optimization problem

11: T} < 7[0] > Apply the first control input
12: Gk+1 < folak. 1) > Get the next state

Substituting the value of e into Eq. (9) yields:

Vie)=e! (x, —x)
_r (P )
B ar ot ) ot
_ _r (%)
at ] dt

—e! (a_x) At (k) (10)
ot

By substituting At (k) in Eq. (7) into Eq. (10):
. 3 ax\"
V(e) — _eT _x & _x e
T 14+ nwy \ 0T

ax\' (a
= (ZE) () ee (11)
14+ nwy \ 0T ot

Given that V(e) < 0, following the principles of Lyapunoy
stability theory, we can conclude that the proposed control
strategy is stable.

12

I1l. RESULTS AND DISCUSSION

A. PERFORMANCE OF THE DNN PREDICTION MODEL

In our initial experiments, we investigated how well our
DNN-based model perform over predicting the movements of
the 7 DOF robotic manipulator, as part of the MPC system.
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FIGURE 3. Training and validation loss of the DNN regression model over
100 epochs. The training loss decreases steadily, while the validation loss
shows a similar downward trend, suggesting good generalization.

We conducted both training and prediction tasks with the
TensorFlow 2.x API on a standard desktop computer. The
choice of computer hardware, especially the CPU’s clock
speed of 2.8 GHz, significantly affected how long it took to
train our model.

To evaluate the performance of the proposed DNN
regression model, we monitored the training and validation
loss over the course of 100 epochs. The training process
aimed to minimize the Mean Squared Error (MSE) between
the predicted and actual future joint states. Figure 3 shows the
training and validation loss curves. The x-axis represents the
number of epochs, and the y-axis represents the loss (MSE)
value. The training loss (blue curve) and the validation loss
(red curve) both exhibit a decreasing trend, indicating that
the model is learning effectively and generalizing well to the
validation data.

The training curve indicates that the model achieves a
lower error rate as the number of epochs increases, with
both the training and validation losses converging towards
lower values. This convergence suggests that the model is
not overfitting, as there is no significant divergence between
the training and validation losses. Further, the model’s
performance on the validation set is critical for assessing its
ability to generalize to unseen data. The consistent decrease
in validation loss confirms that the DNN model is capable
of effectively learning the underlying patterns in the robot’s
dynamics, thereby making accurate predictions on new data.

To assess the performance of our DNN model, we tested
it on a dataset containing 1800 samples. Figure 4 illustrates
the comparison between the model’s predictions and the
actual values. For brevity, we present results only for the
first joint, displaying the predicted next joint positions and
velocities. The close alignment between the predicted outputs
and the actual data demonstrates the minimal discrepancy,
highlighting the model’s accuracy. However, the noise present
in the velocity data, particularly during position transitions,
can adversely impact the system behavior predictions and
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FIGURE 4. Comparison between actual next joint states x(k + 1) and
estimated joint states x(k + 1) using the proposed DNN-based prediction
model, showing the first joint values on the left and the joint velocities
on the right.

consequently the control performance. This indicates that
pre-processing the dataset should be considered in the future
before using it to build the DNN regression model.

B. POINT STABILIZATION PREDICTIVE CONTROL

In this study, we aim to evaluate the performance of the
proposed data-driven MPC controller in point stabilization
tasks for the KUKA LBR4 robotic manipulator. This MPC
controller was developed using the do-mpc framework [30].
The goal is to command the robot to reach fixed targets in
joint space ¢, € R, with these targets being updated every
500 samples. The experiment was conducted with a sampling
time of T = 0.05 seconds and a prediction horizon of
N = 10. For the optimization cost function, we used diagonal
state and input weighting matrices, with W; = 100I7 to
emphasize the importance of accurately reaching the target
joint positions and W, = 0.0117 to slightly penalize the input
torques needed to achieve these positions.

This setup provides a rigorous test of the controller’s
ability to adapt to changing targets and maintain stability
in the joint positions. The MPC controller is using the
data-driven model to predict future states and optimize
control inputs accordingly. The model was trained on a
dataset encompassing a wide range of joint configurations
and corresponding torques to ensure robust performance
across various scenarios. To assess the controller’s effec-
tiveness, we used the tracking error performance metrics.
Tracking error was measured as the difference between the
desired and actual joint positions that is visualized through
plots showing joint positions over time for multiple cycles
of 500 samples each. These plots, illustrated in Figure 35,
highlight the transitions between different targets and the
controller’s ability to follow the desired trajectories closely
accompanied with the applied joints torques.

The results indicate that the data-driven MPC controller
effectively tracks the desired joint trajectories with minimal
error. The use of a data-driven model in the MPC framework
proved beneficial, offering accurate predictions and efficient
control. Meanwhile, the data-driven controller provides
nonlinear control approach while maintain the real-time
capability of the controller. Extending the approach to more
dynamic goals could also provide valuable insights.
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Joint Values and Applied Torques for KUKA LBR4 Robot
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FIGURE 5. Results of point stabilization scenarios to evaluate the the
proposed deep learning-based MPC for reaching predefined joints
references.

C. TRAJECTORY TRACKING PREDICTIVE CONTROL

To assess the performance of the proposed data-driven MPC
controller in trajectory tracking, we utilized a reference
trajectory. This trajectory is particularly useful in scenarios
where the robotic manipulator must follow a specific
sequence of goals, such as in pick-and-place applications.
Specifically, the reference trajectory, denoted as g, € R/,
consists of a series of desired joint values.

The robot starts with initial joint values g, = [0.26,
0.24, —0.34, 1.76, —0.07, —1.61, —1.666]" (rad). The con-
troller’s time step is set to + = 0.01 seconds, with a
prediction horizon of N = 12, and the total simulation
time is 18 seconds. The weighting matrices are chosen
as Wi = 100 and W, = 0.01. The performance
of the MPC is depicted in Figure 6, demonstrating the
MPC’s effectiveness in minimizing the difference between
the measured and reference trajectories. The Mean Squared
Error (MSE) between the reference trajectory and the actual
robot trajectory is calculated to be 2 x 10~ (in radians
squared).

Furthermore, Figure 7 illustrates the performance of
the data-driven MPC in tracking a reference joint and
the corresponding applied torque, considering a nonlinear
inequality constraint on the robot’s joint (g; — 1)> < 0. This
constraint acts as a limitation on the first joint within the joint
space. While this constraint does not significantly impact the

VOLUME 12, 2024

Joint Values and Applied Torques for KUKA LBR4 Robot
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FIGURE 6. Results of trajectory tracking scenarios evaluating the
proposed deep learning-based MPC in following reference joint
trajectories.

overall system, it has been included to test the algorithm’s
robustness. The results demonstrate that the proposed MPC
achieves satisfactory tracking performance while adhering to
this constraint and effectively managing constraints on the
other joints.

D. COMPARISON WITH PID CONTROL

In this simulation experiment, we compare the performance
of our data-driven MPC controller with a PID independent
joint control approach. The PID control loops were applied
to the robot model obtained using a deep learning model
trained from data. The PID gains were determined through
trial and error. To evaluate the controller, we used tracking
error, measuring the difference between the desired and actual
joint positions. Within this PID controller, the torque t; for
each joint is determined individually in the following manner:

‘L’,’:Kp Ei—}—Kd% —G—Ki/eidt (12)

In contrast, the PID independent joint control approach
yielded poor results. Despite the effort to tune the PID
gains, the controller struggled to maintain stability. The
tracking error was significantly higher than that of the MPC.
More concerningly, the applied torques exhibited signs of
instability, with significant amplifications when the reference
joints changed.
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FIGURE 7. The results of the trajectory following experiment, highlighting
the joint constraint on q; in the red area.

Figure 8 shows the tracking performance and applied
torques for the PID controller. The plots reveal substantial
deviations from the desired trajectories and unstable torque
values, indicating that the PID control was not effective for
this application.

The comparison highlights the advantages of the data-
driven MPC approach over PID independent joint control for
the KUKA LBR4 robotic manipulator. The MPC controller’s
ability to predict and optimize future states based on the
data-driven model provided superior tracking accuracy and
stability. In contrast, the PID controller, even with carefully
tuned gains, could not achieve the same level of performance
and exhibited instability in the applied torques.

The superior performance of the data-driven MPC can
be attributed to its predictive capabilities and optimization
framework, which allow it to handle the nonlinear dynamics
of the robotic system more effectively. The PID controller’s
poor performance underscores the challenges of tuning PID
gains for complex, nonlinear systems and highlights the
limitations of relying solely on feedback control without
predictive modeling.

E. DNN MODEL SELECTION

We conducted a thorough evaluation of the proposed DNN
model for the robotic manipulator using the K-Fold Cross-
Validation technique, as outlined by Anguita et al. [31].
This approach is crucial for rigorously assessing the model’s
predictive capability under various architectural designs,
ensuring its effectiveness and reliability. The dataset was
divided into five distinct subsets, enabling a cyclic process
of training and evaluation. This comprehensive evaluation
provides valuable insights into the model’s performance
across different conditions, helping to identify the most
effective architectural design and demonstrating the model’s
ability to generalize to real-world scenarios.
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Joint Values and Applied Torques for KUKA LBR4 Robot with PID
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FIGURE 8. Performance of the PID tracking controller in following the
reference joint trajectories.

In this study, we developed a set of five deep neural net-
work (DNN) models, all utilizing feed-forward architectures.
These models vary in complexity, with trainable parameters
ranging from 594 to 47,694. Each model consists of three
fully connected layers, differentiated by the number of hidden
units, as detailed in Table 1. The layers are denoted with
an ‘F’ and a subscript indicating the number of neurons in
each. The primary activation function used is the hyperbolic
tangent (tanh), except for the output layer, which employs a
linear activation function.

These models were trained over 100 epochs using the
Adam optimizer with mean squared error (MSE) as the
primary loss metric. To ensure comprehensive evaluation and
validation, a 5-fold cross-validation method was employed.
The convergence trends of the learning algorithm, encom-
passing all network configurations and validation folds, are
depicted in Figure 9-a. Additionally, Figure 9-b provides a
detailed analysis of the average MSE losses and their standard
deviations across different model architectures. Notably,
networks with a higher parameter count are highlighted in
dark red, indicating that larger networks tend to converge
more effectively towards lower MSE values. To simplify
the selection process, we chose a neural network that
performed well during both training and testing phases.
Exploring architectures that are both compact and capable of
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FIGURE 9. (a) Training losses expressed as mean squared error (MSE) for
five deep neural network (DNN) models during 5-fold cross-validation,
and (b) mean and standard deviations.

TABLE 1. Chosen architectures for the 5-fold cross-validation experiment.

Model | Hidden Layers Units | Avg. MSE x10~2
1 Fi6,Fs,Fy4 594 7.85 £1.54
2 F32,Fi6,Fs 1494 2.74 +£0.10
3 Fea,F32,F16 4254 1.95 +0.14
4 Fi28,Fea,F32 13614 1.61 £0.22
5 Fas6, F128,Fea | 47694 1.61 £0.23

rapid learning could potentially enhance the overall system’s
robustness.

IV. CONCLUSION

To address the challenges of constrained nonlinear joint
control for a seven Degrees of Freedoms (DoF) robotic
manipulator, this study introduces a new approach through
the implementation of a data-driven-enhanced nonlinear
Model Predictive Control (MPC) method. Initially, a data-
driven predictive model was developed, capable of forecast-
ing future joint positions based on current joint values and
applied torques. This model was then integrated within an
MPC framework, employing an online optimization problem
with process constraints to determine the optimal control
torques for accurate point stabilization and joint trajectory
tracking of the KUKA LBR4 robotic manipulator.

In conclusion, the data-driven MPC controller exhibited
strong performance in terms of tracking accuracy, handling
of joint and actuators constraints, and effectively adapting
to changing targets. The data-driven MPC outperformed
the PID independent joint control in tracking reference
joint trajectories for the KUKA LBR4 robotic manipulator.
The MPC approach provided better tracking accuracy,
consistent stabilization times, and stable control efforts,
demonstrating its effectiveness and reliability for robotic
control applications.

Furthermore, a K-fold cross-validation was conducted
to select the optimal model architecture, ensuring robust
performance and generalization across different data splits.
A promising avenue for future research is the development of
data-driven Moving Horizon Estimation (MHE) [32] along
with the MPC, potentially mitigating the current assumption
of full state observability that this work presupposes.
Such advancements promise to further refine the precision
and applicability of MPC in robotic manipulator control,
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contributing valuable insights into the integration of deep
learning techniques within complex control systems.
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