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ABSTRACT Anomaly detection in power systems is crucial for operational reliability and safety, often
addressed through binary classification in existing research. However, a research gap exists in multiclass
classification for enhanced reliability. To bridge this gap, this study employs four machine learning (ML)
classifiers: Random Forest (RF), Decision Tree, Naive Bayes (NB), and Support Vector Machine (SVM)
using comprehensive testing on a dataset comprising sixteen indices and their pair combinations (totaling
136 pairs). These classifiers, trained on a dataset derived from simulating a test system with hybrid DGs,
exhibit superior anomaly detection, especially with the dv

dq&
dv
dp pair. Among them, RF and DT classifier

achieves precision, recall, and F score of unity and outperforming NB and SVM. The performance of the
proposed RF and DT classifiers with dv

dq&
dv
dp pair is compared with existing research papers in terms of

accuracy and data division. The comparison shows that the proposed RF and DT classifiers with dv
dq&

dv
dp

pair achieve 100% accuracy even with 50% data division, whereas other techniques fail to achieve it even at
20% for testing and 80% for training. The study underscores the critical role of pair selection and classifier
combinations in effective anomaly detection, facilitating the implementation of robust mitigating strategies
for power system stability.

INDEX TERMS Anomaly detection, islanding detection, machine learning classifiers, hybrid active
distribution network, PV.

I. INTRODUCTION
The amalgamation of Distributed Energy Resources (DER)
into distribution networks has marked a significant shift
towards sustainable power generation, diminishing reliance
on non-renewable sources [1], [2]. Among these DERs,
inverter-based DGs have gained prominence for their envi-
ronmental benefits. However, alongside their advantages,
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these systems pose challenges in terms of control, privacy,
stability, and the detection of faults and anomalies [3], [4].
The reliable operation of inverter-based DGs is crucial, given
their integration into the grid’s closest points to the load. The
detection and classification of anomalies such as faults and
islanding events in power infrastructure have garnered the
attention of researchers aiming for reliable and safe opera-
tions [5]. Detecting these faults and islanding events promptly
can prevent substantial financial losses, maintain uninter-
rupted power supply, and contribute to the economic stability
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TABLE 1. Comparative assessment of anomaly detection and classification in HADN.

of a country. In power systems, events are categorized as nor-
mal or abnormal, with normal occurrences including routine
actions like switching capacitor banks, DG power variations,
and sudden static and dynamic load changes. Abnormal
events encompass faults at various locations, islanding sce-
narios with active/reactive power mismatches, and other
deviations that can lead to voltage, frequency, and stability
issues [6].

Detecting and categorizing these events play a critical role
in preemptively addressing potential disruptions.

Various techniques are employed for anomaly detection,
ranging from statistical methods like principal component
analysis to signal processing techniques like the Fourier and
wavelet transform [16]. Signal processing techniques are
particularly useful in analyzing power system data to iden-
tify abnormal patterns. For instance, islanding events, which
can cause voltage fluctuations and power quality issues,
can be detected by examining voltage, current, or frequency
data using Fourier transform, wavelet transform, or ML
algorithms [34]. Early detection enables timely response
actions to maintain grid stability and reliability. Addition-
ally, ML algorithms complement these methods by modeling
normal system behavior and flagging deviations. These
approaches have demonstrated efficacy in detecting anoma-
lies like line outages, transformer failures, islanding events
and generator malfunctions [12], [14].

The existing literature reveals that most research on
anomaly detection in power systems focuses on binary
classification, distinguishing between the existence and
non-existence of faults or islanding events. However, this
approach overlooks several critical factors, such as the types
of anomaly events. Many studies have concentrated solely
on fault classification, merely identifying the presence or
absence of a fault, as referenced in [3], [4], [7], [8], [9], [10],
[11], [12], and [13] research studies.
These research papers are limited to binary classifica-

tion and do not address other significant events essential
to modern power systems, such as distributed generation
(DG) power variations, islanding events, capacitor switching,

load variations, and induction motor starting events. Con-
sequently, the findings of these papers are not entirely
applicable to contemporary power systems.

Additionally, the literature indicates that only a few studies
have explored multiclass classification of anomaly events
in power systems [5], [14], [15], [16], [17]. Even in these
cases, the focus has predominantly been on fault types
and islanding events, without a comprehensive approach to
classifying a wider range of anomaly events. The detailed
literature reviews for detecting anomalies in power systems
are elucidated in Table 1.

From Table 1, it is evident that various techniques have
been successfully implemented for detecting anomalies in
power systems. However, there is a notable gap in current
research, particularly in the area of multiclass classification
of anomalies. This classification is crucial for ensuring the
power system reliability in the presence of DGs, contributing
significantly to resource efficiency and overall system reli-
ability. Additionally, it has been observed that researchers
often use training and testing datasets that are insufficient
in size, falling below the 50% threshold. This situation
raises concerns regarding potential biases in performance
evaluations. To tackle this challenge, a practical approach
is proposed by splitting the datasets evenly at 50%. This
division aims to reduce the risk of overfitting, a common issue
when dealing with limited dataset sizes, thus enhancing the
robustness of performance evaluations.

A. OBJECTIVES OF THE RESEARCH
To address the existing gap in the literature, the primary aim
of this research is to apply aML approach tomulticlass classi-
fication of anomalies in Hybrid Active Distribution Networks
(HADN). The specific objectives of proposed approach are
presented as below:
1. To design and implement an innovative multiclass detec-

tion and classification system for anomaly events using
ML techniques.

2. To perform a comprehensive analysis of 16 fundamen-
tal indices and their combinations to identify the most
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TABLE 2. Types of indices employed for anomaly detection.

FIGURE 1. Hybrid active distribution network.

suitable ones that yield the highest precision, recall,
F-score, and accuracy.

3. To conduct a thorough comparative analysis of various
ML algorithms to determine the most effective classifier
for distinguishing between normal and anomaly events
in HADN, with a focus on achieving optimal precision,
recall, F-score, and overall accuracy.

4. To improve the reliability of the HADN system by
accurately detecting and classifying anomalies in the
system.
By achieving these goals, this study intends to make a

substantial contribution to the progression of anomaly detec-
tion techniques in HADN, ultimately enhancing their overall
reliability.
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B. RESEARCH CONTRIBUTIONS
This research paper makes several noteworthy contributions:
1. By individually examining 16 fundamental indices and

their pair wise combinations, totaling 136 combinations,
this study aimed to identify the most effective indices for
achieving high accuracy in anomaly detection. Notably,
among these combinations, the pairing of dvdq&

dv
dp emerged

as the most suitable.
2. The research introduces a robust detection and classi-

fication framework for anomalies in HADN, leveraging
four prominent ML classifiers (RF, DT, SVM, and NB).
Among these classifiers, RF and DT achieved impressive
accuracy rates of 100% for the dv

dq&
dv
dp , pair respectively.

3. A significant milestone achieved in this study is the suc-
cessful implementation of multiclass classification for
anomaly events, marking a substantial advancement in
ensuring the reliable operation of HADN systems.
Collectively, these contributions significantly enhance the

understanding and capability of detecting and classifying
anomalies in HADN systems. Subsequent sections of the
paper will delve into a detailed explanation of the method-
ology utilized in this research. The rest of the paper is
structured as follows: Section II presents the entire research
methodology of the proposed technique, including the mod-
eling of the test system in PSCAD software, the selection of
indices and their pair combinations, and the methodology for
the proposed machine learning (ML) classifiers. Section III
details the data generation methodology for classifier training
and evaluation. This section covers the generation of various
normal and anomaly events at different locations and types
within the test system, concluding with the data division
for training and testing. Section IV discusses the different
evaluation metrics used to assess the performance of the
ML classifiers. Section V presents the simulation results of
the ML classifiers for various training and testing scenarios
involving different indices and their pairs, identifying the
most suitable indices and ML classifier. Section VI compares
the proposed technique with existing classifiers in terms of
data division and accuracy, demonstrating its effectiveness.
Section VII provides the conclusion, summarizing the key
findings and suggesting directions for future research.

II. RESEARCH METHODOLOGY
A. MODELING HYBRID ACTIVE DISTRIBUTION NETWORK
(HADN) FOR ANALYSIS
To perform a comparative analysis of different indices and
validate the proposed method, an 11 kV HADN located in
Malaysia is chosen for study. This HADN includes a com-
bination of hybrid DG units, specifically three DGs (2 Mini
hydro DGs and a PV-based DG), in addition to an electric
grid. The system comprises 28 buses and 20 lumped loads,
as depicted in Figure 1. The connection between the trans-
mission grid and the HADN is facilitated by a transformer
rated at 132 kV/11 kV with a capacity of 30 MVA. Both Mini
hydro DGs having 2 MVA capacity, operates at 3.3 kV and
employs 2 MVA transformers to raise its voltage to 11 kV.

Similarly, the PV generation unit, with a capacity of 1 MW,
is linked to a 1 MVA transformer to increase the voltage from
0.23 kV to 11 kV. To design the models for the Mini hydro
DGs and PV generation units, standard models available in
the PSCAD/EMTDC library for exciter, governor, hydraulic
turbine, and PV modules are utilized. The entire line is struc-
tured following a nominal π form for accurate representation.
The specific parameters of the HADN DGs and load data are
taken from [35].

B. SELECTION OF INDICES
Extensive research has been dedicated to exploring a range
of indices for feature extraction within the anomaly detection
domain. Notably, in [35] conducted a focused investigation in
this field and identified 16 indices that were primarily utilized
for detecting islanding events. However, this current study
diverges by employing the same set of 16 indices for anomaly
detection in power systems, as outlined in Table 2.

The principal objective of this study is to ascertain the
minimum requisite number of indices for effective anomaly
detection within power systems. Initially, the study endeav-
ors to identify individual indices capable of autonomously
detecting all anomaly types. If a single parameter proves
insufficient, the study will then explore combinations of
two indices from the pool of 16, with the ultimate goal
of achieving comprehensive anomaly detection coverage
(100%). In pursuit of this goal, the study will systematically
assess all conceivable combinations of the 16 indices utilizing
the combination formula as given below:

C =
n!

k! × (n− k)!
(1)

This results in a total of 120 combinations when select-
ing 2 indices at a time. These combinations will undergo
comprehensive testing using various classifiers to deter-
mine the optimal combination of indices that maxi-
mizes anomaly detection capability in power systems.
Table 3 provides a comprehensive listing of all 120 com-
binations, offering a basis for in-depth analysis and
assessment.

C. ML CLASSIFIERS
Within this study, four widely recognized ML classifiers
are explored. The assessment of their effectiveness will
rely on various metrics including precision, recall, accuracy,
F-measure, and confusion matrix analysis. Through a com-
parative analysis, the performance differences among these
classifiers will be highlighted. Subsequent sections provide
concise descriptions of each classifier.

1) RANDOM FOREST (RF) CLASSIFIER
The RF classifier is a widely used technique in supervised
ML, suitable for classification challenges. Its approach is
based on ensemble learning, where multiple decision trees
are employed to different subsets of the data, enhancing
predictive accuracy. The performance and problem-solving
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TABLE 3. Index combinations for anomaly detection.

capabilities of Random Forest improve with the addition of
more trees, establishing it as a foundational principle in ML.
Mathematically, RF classifier is represented as below [4]:

∧

Y = RF (X) (2)

where Ŷ represents the predicted output or class label,
X denotes the input features or attributes used for
prediction and RF(X ) signifies the Random Forest
model applied to the input features X to predict the
output Ŷ .

2) DECISION TREE (DT) CLASSIFIER
DT classifier is a powerful and extensively employed ML
model that is popular for their interpretability and ease of
understanding. They are useful when dealing with complex
datasets. The mathematical equation for entropy in Decision

Trees is given by [10].

E (s) =

c∑
i=1

− pi × log2 (pi) (3)

where, E (s) represents the entropy at a specific node in the
decision tree, measuring the uncertainty or disorder in the
dataset, c denotes the number of classes or possible outcomes
in the dataset, pi indicates the probability of the dataset
belonging to class i, log2(pi) refers to the logarithm of pi
to the base 2. The entropy calculation quantifies the level
of disorder or randomness in the dataset at a given node.
Lower entropy values designate more purity in the dataset,
while higher entropy values suggest more diversity or mixed
classes.

Decision Trees use entropy as a key criterion to make
splitting decisions, aiming to reduce entropy and improve
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TABLE 4. Implementation of fault scenarios.

TABLE 5. Scenarios of solar power variability.

information gain at each node, leading to a more accurate and
reliable model.

3) NAÏVE BAYES (NB) CLASSIFIER
The NB classifier is a fundamental algorithm in ML, dat-
ing back to the 1950s. It has its roots in the principles
of Bayes Theorem and is known for its simplicity and
effectiveness in various fields, including statistics and com-
puter science. The NB algorithm is based on a probabilistic
approach, specifically Bayesian probability, which calculates
the probability of an event based on prior knowledge and
conditional probabilities. The mathematical equation for the
Naive Bayes Classifier is derived from Bayesian probability
and is expressed as [10]:

P (Ck |x ) =
pCk ×p (x |Ck )

p (x)
(4)

In this context, P (Ck |x ) represents the class Ck poste-
rior probability which is what the classifier predicts, p (Ck )
symbolizes the prior probability, which is the probability of
classCk occurring before observing the input x.p (Ck |x ) rep-
resents the likelihood, which is the probability of observing
input x for true class Ck p(x) denotes the evidence, which is
the probability of observing input x across all classes.

4) SUPPORT VECTOR MACHINE (SVM) CLASSIFIER
(SVM) is an extensively employed technique in the field
of ML, particularly in supervised learning tasks. It is used
for classification and regression tasks on datasets that can
be either discrete or continuous. SVM focuses on maximiz-
ing the margin between classes, aiming to achieve better
classification accuracy for new data points. The primary
optimization goal in SVM is to diminish the following cost
function [36], [37]:[

1
n

n∑
i=1

max
(
0, 1 − yi

(
wT xi −b

))]
+ λ ∥w∥

2 (5)

In this context, n represents the data points quantity, xi and
yi denotes the ith data point features and labels, w depicts
the weight vector, b symbolizes the bias term, and λ is
the regularization parameter, max(0, 1 − yi(wT xi −b)) is the

hinge loss function, penalizing misclassifications, ∥w∥
2 is

the regularization term that helps in controlling over fitting.
SVM can handle various problem types by using differ-
ent types of kernels such as linear, polynomial, Gaussian,
and radial basis function (RBF). These algorithms empower
SVM to grasp intricate data relationships, making it a versa-
tile and powerful algorithm for classification and regression
tasks. This research employs polynomial kernel for better
results.

III. DATA GENERATION METHODOLOGY FOR CLASSIFIER
TRAINING AND EVALUATION
To generate the dataset for training and testing purposes,
simulations of the HADN system were conducted using
PSCAD/EMTDC software. These simulations aimed to repli-
cate a wide range of anomaly events as well as normal oper-
ational events. For each case, all 16 parameters were metic-
ulously measured, covering various scenarios such as sym-
metrical and unsymmetrical faults, load variations, capacitor
switching events, effects of induction motor starting, fluctua-
tions in solar power output, and occurrences of islanding. This
thorough methodology guarantees that the ML classifier is
fully capable of effectively detecting a wide variety of anoma-
lies. The detailedmethodology for data collection and catego-
rization for each event type is elaborated upon in subsequent
sections.

A. FAULT SCENARIOS
Within this classification, there are 248 distinct fault sce-
narios, encompassing both symmetrical and unsymmetrical
faults. These scenarios were generated by implementing var-
ious fault types across different buses, as outlined in Table 4.

B. SOLAR POWER VARIATION SCENARIOS
For fluctuations in solar power, 256 scenarios incorporat-
ing alterations in irradiance and temperature are exam-
ined, as detailed in Table 5. It’s important to emphasize
that solar energy is variable and influenced by atmo-
spheric factors, posing challenges for the ML classi-
fier in accurately identifying anomalies within the power
system.
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FIGURE 2. Scenarios distribution for each category.

C. LOAD VARIATION SCENARIOS
Within this classification, a total of 3094 load variation
scenarios encompassing load increases and decreases are
derived by connecting and disconnecting loads spanning from
0.01 MW to 0.7 MW at different buses.

D. CAPACITOR SWITCHING SCENARIOS
Within this classification, 640 instances of capacitor switch-
ing scenarios are derived by implementing the capacitor
switching effect, spanning from 0.01 Mvar to 0.3 Mvar at
different buses.

E. INDUCTION MOTOR STARTING EFFECT SCENARIOS
In this categorization, data is synthesized to evaluate the
classifier’s effectiveness in detecting anomalies amidst the
initial transients of an induction motor. The induction motor
exhibits a notably diminished power factor during its initial
startup phase, posing a potential challenge to the anomaly
detection technique. To address this, the startup impact of
various induction motors with capacities ranging from 50 kW
to 500 kW, incremented in steps of 50 kW, is simulated across
different buses.

Consequently, 228 scenarios are generated to simulate the
startup effects of induction motors on diverse buses, aiming
to comprehensively evaluate their impact on the anomaly
detection method.

F. ISLANDING EVENTS SCENARIOS
Within this classification, a collection of 280 islanding cases
is generated through simulating grid disconnections under
various power mismatches, spanning from 0.01 to 1 MW and
0.01 to 1 Mvar. This wide range of scenarios enhances the
classifier’s effectiveness in distinguishing anomalies within
power system detection. A total of 4746 instances are ana-
lyzed for the ML classifier. The breakdown of different
scenarios is illustrated in Figure 2 accordingly.

FIGURE 3. 50% division for training and testing cases of each category.

The subsequent stage entails partitioning the data into
training and testing sets. This study employs a 50% split, with
half of the cases randomly allocated for training and the other
half for testing. Specifically, 2373 cases are randomly chosen
for training. The allocation of cases from each category for
both training and testing is depicted in Figure 3. The testing
dataset is withheld from the classifier to ensure impartial
evaluation.

IV. COMPARARTIVE PERFORMANCE ASSESSMENT OF
CLASSIFIERS
This research paper will assess the performance of the
machine learning classifiers using diverse metrics, including
the confusion matrix, precision, recall, F score, and accuracy,
to gauge their efficacy in anomaly detection. The respec-
tive mathematical equations of the various indices are given
below [38].

Accuracy =
TP+ TN

TP+ FP+ FN + TN
× 100 (6)

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FP
(8)

VOLUME 12, 2024 120137



S. Chandio et al.: ML-Based Multiclass Anomaly Detection and Classification in HADN

FIGURE 4. Flowchart illustrating ML approach to anomaly detection.

FIGURE 5. SVM classifier confusion matrix for dv
dq & dv

dp indices pair.

Fscore =
2 × Precision× Recall
Precision+ Recall

(9)

In this context, True Positive (TP) refers to the count of
accurately predicted positive instances, True Negative (TN )
refers to the count of accurately predicted negative instances,
False Positive (FP) refers to the count of erroneously pre-
dicted positive instances, and False Negative (FN ) refers to
the count of erroneously predicted negative instances. The

FIGURE 6. NB classifier confusion matrix for dv
dq & dv

dp indices pair.

flow chart illustrating the ML-based classifier designed for
anomaly detection is depicted in Figure 4.

V. SIMULATION RESULTS
This research employs four prominent ML classifiers: RF,
DT, NB, and SVM. Following successful training, these clas-
sifiers undergo rigorous evaluation with previously unseen
testing data. The study focuses on 16 indices and their pair
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combinations, resulting in a total of 136 combinations to find
the most suitable pair for achieving the highest accuracy.
Among these combinations, it has been found that the dv

dq&
dv
dp

pair provides the best results among all other pairs. The
confusion matrix for SVM and NB classifiers is presented
in Figure 5-6, respectively, while the confusion matrix for
the RF and DT classifiers, which exhibit similar responses,
is shown in Figure 7.

Figures 5-7 demonstrate that RF and DT classifiers suc-
cessfully and accurately detect all anomalies and normal
events, achieving an accuracy of 100%. They exhibit the
ability to distinguish between anomalies effectively.

In contrast, NB shows comparatively better performance
than the SVMclassifier across all evaluationmetrics. Figure 8
presents the precision, recall, F score, and accuracy of all four
classifiers for the dv

dq&
dv
dp pair.

FIGURE 7. DT and RF classifier confusion matrix for dv
dq & dv

dp indices pair.

FIGURE 8. Comparison of classifier performance for dv
dq & dv

dp indices pair.

It is observed that both RF and DT classifiers demonstrate
precision, recall, F score, and accuracy unity, showcasing
superior performance compared to NB. SVM exhibits the
poorest performance among all four classifiers. In conclu-
sion, the proposed RF and DT classifiers with the dv

dq&
dv
dp pair

demonstrate the ability to detect and classify all anomalies in
the power system, leading to enhanced reliability of power
system operations by proposing suitable mitigating strategies
for various anomalies.

VI. COMPARISON
Table 6 provides a comparative assessment of accuracy
between the proposed RF and DT classifier and existing
researchmethods. The results highlight the significance of the
proposed ML algorithms (RF and DT), which have achieved
100% accuracy for all types of anomaly events. It is notewor-
thy that none of the existing techniques discussed in previous
research papers have achieved 100% accuracy.

TABLE 6. Comparative assessment of accuracy among different methods.

For instance, the highest accuracy obtained by [16]
is 99.9%. However, it is important to mention that [16]
employed a data division of 20% for testing and 80% for
training, whereas the proposed research utilized a 50% data
division for both training and testing. This approach provides
more robust and challenging scenarios for evaluating clas-
sifier performance, especially for complex and real power
system anomalies. The comparison underscores the superi-
ority of the proposed research in accurately detecting and
classifying all types of anomaly events with 100% accuracy,
showcasing an advantage over existing techniques.

VII. CONCLUSION
This study introduces amulticlass detection and classification
approach for identifying anomaly events in power systems
with hybrid DGs. The research systematically investigates
16 indices and their pair combinations, totaling 136 com-
binations, to determine the most suitable pair for precise
anomaly detection and classification. The study employs four
well-known classifiers—RF,DT, NB, and SVM. Training and
testing data are collected from simulating a test system with
4746 cases of various normal and anomaly events, with 50%
allocated for training and an equivalent portion for evaluating
classifier performance. Notably, the results demonstrate that
the dv

dq&
dv
dp pair exhibits superior efficiency in detecting and

classifying anomalies across all classifiers, with RF and DT
achieving perfect precision, recall, and F-measure scores of
unity for this pair. Furthermore, a comparative analysis with
existing techniques validates the efficacy of the proposed
RF and DT classifier, achieving 100% accuracy even with
50% data division. This positions them as robust solutions
for multiclass anomaly detection and classification in power
systems featuring hybrid DGs. The study emphasizes the
crucial role of pair selection and classifier combinations in
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enhancing anomaly detection effectiveness and implementing
mitigating strategies for power system stability.
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