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ABSTRACT 3D human pose estimation (HPE) has become increasingly important in baseball analytic,
but there are several difficulties pertaining to pose estimation in real-world baseball pitching. First, in-
the-wild baseball pitching lacks related 3D pose datasets and contains lots of joints occluded by other
body parts. Second, baseball pitching contains dramatic velocity changes during arm acceleration phases.
Due to these properties of pitching, it is difficult to use common filters to remove random noises while
preserving high-frequency critical joint movements in pitching. To solve these problems, we propose joint-
wise volumetric triangulation to reconstruct 3D human poses by utilizing the information of multi-view
2D joint heatmaps generated by 2D HPE methods. We also designed a baseball-customized filter system
to remove noisy signal from pose movement while preserving the high-frequency pitching motion. Our
proposed pose reconstruction scheme yields a 33.1 mm average position error and 0.35m/s (1.28 km/h)
average velocity error on baseball pitching motion. Our work can be directly applied to estimate human
poses either in indoor environment or real-world baseball field.

INDEX TERMS 3D human pose estimation, triangulation, heatmap, filtering, baseball.

I. INTRODUCTION
Human pose reconstruction has become increasingly impor-
tant in domains like sports analytic [1], [2], [3], action
recognition [4], human–computer interaction [5], [6], human
rehabilitation [7], [8], [9], etc. 3D human pose estimation
is especially important because it directly reflects the actual
state of the human body. In the field of baseball, pitching is
considered as one of the most significant actions in baseball

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Mucchi .

games and baseball player training phases. By analyzing
3D pitching poses, couches and audiences can directly track
the performance and physical state of the baseball pitcher.
Therefore, 3D pose estimation has vast potential for tracking
the baseball pitcher’s behavior because it can directly obtain
the joint positions of the baseball pitcher without extra
sensors and equipment applied to human parts.

In several types of 3D pose estimation methods, multi-
view 3D pose estimation is considered as the most feasible
method to utilize in baseball analytic. Although recent works
of pose estimation are focused on monocular 3D pose
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FIGURE 1. Self-occluded poses from baseball pitching.

FIGURE 2. Phases of baseball pitching [14].

estimation, by comparing their performance on 3D pose
datasets like Human3.6m [10], the accuracy of monocular 3D
pose estimation is still low compared to multi-view 3D pose
estimation [11]. Moreover, in epipolar geometry, because
different 3D points in the world can correspond to the same
2D point in the image, it is impossible to get the actual
3D pose coordinates from a single camera without extra
parameters like limb length. Due to such reason, most of
the obtained 3D results from monocular 3D HPE models
are relative coordinates with the hip centered at the origin,
hindering us from directly computing the velocity of specific
joints like shoulders andwrists from them. Since it is practical
to set a calibrated camera system around the pitcher’s circle
for multi-view 3D pose estimation, in this work we focus on
multi-view 3D HPE as a more suitable way to obtain the pose
of the pitcher with higher accuracy.

However, there are several difficulties pertaining to pose
estimation in baseball pitching. First, baseball pitching is an
action with specific sports movements, which is different
from normal daily motions in most of the 3D pose datasets
[10], [12], [13], and there is no in-the-wild 3D baseball
pose datasets yet to the best of our knowledge. Second,
baseball pitching also contains lots of joints occluded by
other body parts (Figure 1), which will further deteriorate the
performance of the model. Third, baseball pitching contains
dramatic velocity changes during arm acceleration phases.
Due to these properties of pitching, its difficult to use
common filters to remove random noises while preserving
high-frequency critical joint movements in pitching.

In this paper, we develop a 3D baseball pose reconstruction
system to solve the difficulties mentioned earlier. First, to fix
detection error of pose estimation models, we present a novel
joint-wise volumetric triangulation method to efficiently
reconstruct pitcher’s 3D pose. Unlike traditional triangulation
methods which only take 2D joint predictions as input,

our method can fully utilize the information of multi-
view 2D joint heatmaps which indicates the probability of
joint location without any extra training. More explicitly,
we aggregate multi-view 2D heatmap information of joints
to 3D heatmaps, which is used to calculate the final 3D
pose. Second, to filter high-speed baseball pitching motion,
we designed a baseball-customized filter system to remove
noisy signal from pose movement while preserving the high-
frequency pitching motion. More elaborately, we use filters
with different parameter settings on different joints based
on the characteristics of baseball pitching. Referring from
Table 10, our proposed pose reconstruction scheme yields
a 33.1 mm average position error and 0.35m/s (1.28 km/h)
average velocity error on baseball pitching motion, which
outperform other 3D reconstruction methods and filter
systems (cf. Table 6,7,8,10). Our system can be operated at
a reasonable computational speed of 25 fps. Our work can
be directly applied to estimate human poses in various fields
including indoor environment or real-world baseball field.

II. RELATED WORK
A. ML-BASED 3D HUMAN POSE ESTIMATION (HPE)
3D HPE is one of the most popular research topics in
computer vision that involves estimating 3D human poses
and bone orientations from 2D images or videos. Due to
the complexity of human body, different HPE methods will
give different human models. There are mainly three types
of human models: skeleton-based model focused on human
joints; skinned multi-person linear model (SMPL model)
focused on human shape and body proportions, and surface-
based model focused on dense correspondences of the human
image.

FIGURE 3. Three main kinds of human models.

With the growth of 3D human pose dataset like
Human3.6m [10], MPI-INF-3DHP [13], CMU Panoptic [12],
etc, machine learning (ML) based methods is now the
mainstream method for 3D HPE. 3D pose estimation
can be roughly divided into two categories based on the
number of cameras: multi-view 3D pose estimation and
monocular 3D pose estimation. With multiple cameras of
different perspectives that can reduce the ambiguity of
depth information, multi-view 3D HPE generally has better
accuracy than monocular 3D HPE. Typical multi-view 3D
HPE methods include multi-view 2D heatmaps fusing with
models [17], [18], triangulation [19], [20], [21], and multiple
view consistency [22]. Pavlakos et al. [17] uses 3D pictorial
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models to take 2D image features as input and return the
final 3D human pose. Tome et al. [18] designed a multi-
stage approach that refine the 3D estimation generated at
each stage. Iskakov et al. [19] uses triangulation to aggregate
the 2D image features for further training. Zhang et al. [20]
presented adaptive fusion weight to reflect the 2D feature
quality from each view and use it to reduce the responses
at incorrect joint locations before 3D triangulation to get
better results. Kocabas et al. [21] use the epipolar geometry
to recover the 3D pose from predicted 2D poses and uses it
as a supervision signal to train the 3D HPE model. Rhodin
et al. [22] proposed a semi-supervised method by trying to
make the 2D HPE models from each view to predict the same
3D pose. There are further some researches [23], [24] that
combine human localization module and feature volume to
estimate multiple people with multiple camera views. With
labeled 3D pose datasets, these ML-based multi-view 3D
HPE models can fully utilize the information of 2D features
or heatmaps and perform well on the datasets they trained
on, but they often require extra training on labeled datasets to
maintain the accuracy of the pose estimation model. Most of
the 3D human pose datasets [10], [25], [26] are collected in
indoor scenarios. Formost sports, despite some small datasets
like KTH Multiview Football Dataset [27], there is often
not enough in-the-wild multi-view 3D human pose datasets
for ML-based 3D HPE to be properly trained. Figure 4
shows that, with 3D-based HPE models trained on indoor
Human3.6m dataset, the reconstruction results for pitcher
videos taken in-the-wild is far from satisfactory. Figure 4 also
shows that our system yields more rational reconstruction
results compared with other 3D-based HPE models (here the
2D pose heatmaps are all extracted from Alphapose for fair
comparison).

Monocular 3D HPE recovers 3D human poses with single-
view images. The advantage of monocular 3D HPE is the
low hardware requirement and no need of the calibrated
camera system, but the pose ambiguity of the 3D pose
projection becomes a real problem, and because different
3D points in the world can correspond to the same 2D
point in the image, most of the monocular methods can only
obtain relative coordinates of human poses that do not give
the actual location of humans in the environment. Some
researches [31], [32], [33], [34] claim that they can recover
the absolute coordinates of human poses, but most of them
require extra parameters like limb length. Their performance
is also bad compared with multiview 3D HPE [19], [20].
Methods of monocular 3D HPE can be categorized into
several classes. Some methods [17], [35] directly predict a
volumetric heatmap of joint location and take the maximum
of the heatmap as final estimation. References [36], [37],
[38], and [39] treat HPE as a regression problem that
estimate the location of joints relative to the root joint. Many
researches [40], [41], [42], [43], [44] use 2D human pose
predictions as input and lift them to 3D spaces. References
[45], and [46] take a sequence of images as input and

try to solve the ambiguity problem of monocular 3D HPE
by considering the temporal consistency of the pose series
predicted by the model.

In several papers [17], [19], [21], [23], [24], [47],
volumetric heatmap which indicates the probability of the 3D
joint in the space is utilized to generate 3D human poses.
They define a volumetric heatmap with a range that covers
the entire body, then uses ML models or projection geometry
to aggregate the 2D joint heatmaps generated by the 2D HPE
or pose features to the volumetric heatmap. After heatmap
aggregation, 3D CNN and softmax function [48] is utilized to
generate the final human pose predictions. Compared to ML
based 3D HPE, where a large venue of volumetric heatmap
is needed to aggregate all the information around the whole
body for further training, our method considers only the
space around each joint, thereby achieving faster computation
speed.

B. MULTI-VIEW TRIANGULATION
Multi-view triangulation is an important topic in computer
vision that involves estimating a 3D point in the world
with its 2D projection points from multi-view images given.
There are roughly three traditional multi-view triangulation
methods [49], [50]: Direct linear transform (DLT) method
that expresses the relationship between 3D prediction and 2D
projections as linear equations and solves them; Midpoint
method that minimizes sum of the distances from the
3D prediction to all the epipolar lines generated by 2D
projections; Reprojection optimization method including
L2 method and L∞ method that tries to find the point
which has the minimum reprojection error between 2D image
points and 2D points reprojected from 3D prediction. These
traditional methods are considered to be fast and accurate
enough that recent related studies [51], [52], [53], [54], [55]
still use them to reconstruct 3D points, but these methods
are quite sensitive to outliers, so recently there are some new
triangulation methods [56], [57] that consider the robustness
of the triangulation algorithm to outliers.

All of these triangulation methods above takes 2D points
as input to reconstruct 3D joints. In 3D human pose
reconstruction, 2D HPE is often used to generate 2D human
joints. These joint predictions are actually generated by joint
heatmaps that indicates the probability of the joint position.
If we use these triangulation methods which only takes
2D joints as input, the rich information provided by the
joint heatmap will be wasted. In our work, we designed a
triangulation method that can fully utilize the information of
these 2D joint heatmaps efficiently.

C. HUMAN POSE FILTERING
After receiving 3D human poses from 3D HPE or motion
capture system like Vicon, due to the inaccuracy of the
observation, the estimated 3D joint trajectory often contains
noisy signal. Low-pass filters are often used for human
pose filtering. These methods refine human motion data
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FIGURE 4. Reconstruction results of multi-view 3DHPE methods on Tainan baseball dataset (cf. Section IV-C). 3DHPE models are selected
from the state-of-the-art multi-view 3DHPE on Human3.6m [10]. Reconstruction results with dagger (†) indicate that 2D pose heatmaps in
3D HPE are extracted from alphapose [30].

with parameters independent of input. There are several
related researches [58], [59] utilizing classic low-pass filters.
For example, Mathys et al. [60] filter human motions with
Gaussian filter [61], which modifies signal with a Gaussian
distribution as its kernel. As Butterworth filter [62] is a type
of signal processing filter that has stable and flat frequency
response in its passband, Crenna et al. [63] uses Butterworth
filter to filter out white Gaussian noise in human motions.
One Euro filter [64] is a first order low-pass filter with
an adaptive cutoff frequency, which reduces jitter while
preserving the high frequency motion signals. Zou et al. [65]
thereby utilize one Euro filter to reduce high-frequency noises
while reconstructing human dynamics. By using position,
velocity, or angular velocity of human joints to represent
the system state, Kalman filter [66] and its variants [67],
[68] are often used to refine human motion sequences [69],
[70], [71], [72]. These common filters work well on general
human motions, but when filtering high speed motions like
pitching, some parameter or structure adjustment must be
done to maintain the performance of the filter.

Recently, due to the popularity of machine learning, some
human pose filter based on temporal models [73], [74], [75]
have been proposed. However, these ML based filters often
require large annotated human pose datasets like Human3.6m
[10] or 3DPW [76]. This is often impractical in sports related
researches, where it is difficult to collect and annotate enough
in-the-wild data to train these ML based filters.

D. SPORTS ANALYSIS USING POSE ESTIMATION
By tracking human poses without extra sensors and equip-
ment, pose estimation facilitate performance monitoring in
sports analytic area. For easier implementation and faster
computation speed compared with 3D pose estimation, 2D

pose estimation is utilized in many sports-related researches.
Li et al. [1] performed a baseball evaluation system using
2D pose estimation model OpenPose [2] to estimate whether
a baseball hitter performs a good swing. Jiang et al. [77]
proposed a lightweight temporal-based 2D HPE designed
for efficient and effective golf swing analysis. Kurose et al.
[78] performed method for objective form analysis that can
evaluate the quality of play performed by the tennis player
using observable information such as estimated joint position
of the player and the result of the game. Yan et al. [79]
presented an automatical clipping system to summarize the
sports video stream using 2D poses predicted by 2D pose
estimation models as input. To solve the poor detection issue
of certain sports movement, instead of using pretrained 2D
HPE models, several researches [77], [80], [81] use their
own dataset of specific sports to train their 2D HPE models.
Due to the variety of sports and the fact that these sports-
related researches are often trained on self-collected data,
it is difficult to have a common standard to compare these
methods.

In related researches using 3D pose estimation, 3D pose
skeletons can provide more information about human than
2D pose skeletons such as joint angle measurement and speed
analysis. However, 3D HPE is also more challenging because
most of the 3DHPEmodels require calibrated camera system
and more complicated models and algorithms than 2D HPE
models. However, as illustrated in Figure 4, directly using
multi-view 3D HPE on in-the-wild scenarios often leads to
poor performance. Because of the data variety of the 2D
pose datasets [82], [83] and the lack of the related multi-
view in-the-wild 3D human pose datasets, 2D HPE models
often perform better than multi-view 3D HPE models in
outdoor scenarios. Due to this reason, instead of directly

VOLUME 12, 2024 117113



Y.-W. Chiu et al.: 3D Baseball Pitcher Pose Reconstruction

TABLE 1. Comparison between 3D HPE methods.

FIGURE 5. In the wild performance of 2D HPE [30].

FIGURE 6. Human pose capturing in large skating venue [3].

using 3D HPE models [19], [20], [29] trained on 3D human
pose datasets, most of the studies [3], [53], [54], [55], [84]
use two-step methods where 2D HPE models [2], [30] are
combined with 3D triangulation algorithms that aggregate
multi-view 2D poses to a 3D pose. The comparison between
3D HPE methods are presented in Table 1. There are lots
of practical difficulties while reconstructing 3D poses in
real-world environment. For example, to solve the problem
of unclear human pose images captured in large skating
venue, Tian et al. [3] performed a transformation system
and a time smoothness system attempting to effectively
handle the performance of themulti-view 3D pose estimation.
To solve the problem of noisy joint estimations on sports
field and long processing time of multiple people 3D

FIGURE 7. Pinhole camera model, where (x, y, z) represents a 3D point in
the world and (u, v ) is its 2D image projection.

HPE, Bridgeman et al. [85] presents a new multi people
3D HPE method that applies a fast greedy algorithm to
efficiently identify correspondences between 2D poses in
multi-view videos. Their approach also uses a temporal
skeleton association and filtering method to correct errors of
the estimated poses. There are also some researches [86], [87]
using monocular 3D pose estimation to predict relative 3D
human poses for further analysis.

III. METHOD
In this section, we elaborate on our proposed methods
of joint-wise volumetric triangulation and 3D baseball
pose reconstruction system. Section III-A introduce basic
algorithms that will be used in our triangulation method
including camera geometry and two-view DLT triangulation.
In Section III-B, our 3D pose reconstruction method using
joint-wise volumetric triangulation would be described.
In Section III-C, we introduce our baseball customized filter
system that can filter out noises while the high frequency
signal of the pitching motion is preserved.

A. CAMERA GEOMETRY AND TWO-VIEW DLT
TRIANGULATION
Refer to [49], by assuming the relation between the camera
and the world as the ideal pinhole camera model in Figure 7,
the projection from a 3D point (x, y, z) to the 2D image point
(u, v) can be formulated with:

Zi

uv
1

 =
fx 0 u0
0 fy v0
0 0 1

 [R|T ]


x
y
z
1

 = M


x
y
z
1

 . (1)
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Here R ∈ R3∗3 represents the rotation matrix and T ∈ R3∗1

represents the translation matrix from world coordinate to
camera coordinate, fx , fy indicate the focal length, and u0,
v0 indicate the image coordinate of the lens center from the
camera. All parameters above can be obtained by camera
calibration, which sets several reference points in the world to
calculate the relations between world coordinate and image
coordinate. In other words, with calibrated camera, we can
represent the relation of 3D point in the world and its 2D
projection on the image though the camera matrix M . Here
Zi represents the distance of X to the focal plane in camera
coordinate system.

Direct linear transform (DLT) triangulationmethod aims to
find the position of 3D point X with its 2D projections from
multi-view cameras. More elaborately, consider two cameras
with their camera matrices M1,M2 and their corresponding
2D image projections (u1, v1), (u2, v2). In each view c, we can
represent the relation between xc = [uc, vc, 1]T and X as
kcxc = McX , where kc is the unknown scale factor. Since
xc and McX are two parallel vectors, their cross product
xc × McX vanishes. We can list three equations from xc ×
McX = 0, where mic means the ith row ofMc:

uc(m3
cX )− (m1

cX ) = 0, (2)

vc(m3
cX )− (m2

cX ) = 0, (3)

uc(m2
cX )− vc(m

1
cX ) = 0, (4)

where (4) is redundant as it is a linear combination of (2)
and (3). Therefore, with two views c = 1, 2, there will be
essentially four equations to solve X as follows:

u1(m3
1)− (m1

1)
v1(m3

1)− (m2
1)

u2(m3
2)− (m1

2)
v2(m3

2)− (m2
2)

X = 0. (5)

FIGURE 8. Two-view triangulation.

B. JOINT-WISE VOLUMETRIC TRIANGULATION
The main disadvantage of the traditional triangulation meth-
ods is that they only use 2D joint predictions to reconstruct
3D human poses, which ignores the information of 2D joint
heatmaps from 2D pose estimation model. Our joint-wise
volumetric triangulation is designed to efficiently utilize the
information of these 2D joint heatmaps.

The pseudo code of our joint-wise volumetric triangulation
are presented in Algorithm 1. Our method assumes to

TABLE 2. Notation.

Algorithm 1 Joint-Wise Volumetric Triangulation

Require: 2D joint heatmaps H2D
c,i of I joints in C camera

views, Camera matricesMc in C camera views
Ensure: 3D human pose J3Di
1: J3Draw,i← Simple triangulation(H2D

c,i ,Mc)
2: for i← 1 to I do
3: V 3D

i ←Mesh grids around J3Draw,i

4: H3D
i ←

C∑
c=1

H2D
c,i (McV 3D

c,i )

5: Ĵ3Di ← 3D point that has the greatest heatmap value
from H3D

i .

6: J3Di =
∑
k∈Ni

e
α∗H3D

i,k∑
l∈Ni

e
α∗H3D

i,l
V 3D
i,k

where Ni = {(p, q, r) : ∥V 3D
i,p,q,r − V

3D
i,p∗i ,q

∗
i ,r
∗
i
∥2 < d}

7: end for

have videos from C synchronized cameras capturing human
motions. Each camera is calibrated to get its projectionmatrix
Mc. For each frame c, we have 2D joint heatmap information
H2D
c from the prediction of 2D pose estimation model, and

the main goal is to reconstruct the 3D human pose J3Di ∈ R3

from a 3D volumetric heatmapH3D
i ∈ Rn∗n∗n that aggregates

the information from these 2D heatmaps for each joint i.
Most human joint heatmap aggregationmethods [17], [19],

[21], [23], [24], [47] take human pelvis as the center of the
heatmap and consider the large space all around the body.
However, a clever placement of the domain for the volumetric
heatmap near the real position of the joint with a smaller
side length D can increase accuracy while using less mesh
grids to achieve better computing speed. Towards this end,
as illustrated in Figure 10 and algorithm 2, we use a simple
triangulation method to reconstruct a preliminary 3D human
pose. We first find 2D poses by finding arguments of the
maxima (argmax) of the 2D joint heatmaps. After that, two-
view DLT triangulation Tri(J2Dj,i , J2Dk,i ,Mj,Mk ) mentioned in
Section III-A is utilized to get the 3D joint reconstruction
results for joint i from every two views j, k . We compare
their reprojection errors and choose the 3D joint J3Draw,i ∈

R3 with the lowest error as the preliminary 3D pose. After
finding J3Draw, we place the volumetric heatmap H3D

i of
joint i around the position J3Draw,i, then perform discretization
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FIGURE 9. Flow chart of joint-wise volumetric triangulation.

FIGURE 10. Position definition of joint-wise volumetric heatmap.

from every axis to get V 3D
∈ RI∗n∗n∗n∗3, which indicates

the 3D coordinate that corresponds to each voxel in the
volumetric heatmaps, namely (V 3D

i,p,q,r,1,V
3D
i,p,q,r,2,V

3D
i,p,q,r,3)

indicates the 3D coordinate of the (p, q, r)-th voxel in H3D
i .

After determining the coordinates in the volumetric
heatmaps, we then aggregate 2D heatmap values from every
camera to the volumetric heatmap. Projective geometry
is utilized to project the 3D coordinates in V 3D to each
camera view c. Refer to section III-A, the projection from
a 3D point to the image point can be formulated as matrix

multiplication kc
[
V 2D
c,i,p,q,r,·, 1

]T
= McV 3D

i,p,q,r,·, where kc

can be eliminated through normalization. The volumetric
heatmap is then calculated as the summation of the projected
2D heatmap values from every camera view:

H3D
i,p,q,r =

C∑
c=1

H2D
c,i (V

2D
c,i,p,q,r,·). (6)

Here the right hand side in (6) is computed with pixels
in H2D

c,i through nearest neighbor interpolation. We pick the
point that has the greatest heatmap value Ĵ3Di = V 3D

i,p∗i ,q
∗
i ,r
∗
i
,

where

(p∗i , q
∗
i , r
∗
i ) = argmax

p,q,r
H3D
i,p,q,r , (7)

as the preliminary estimation of J3Di . We then estimate J3Di
as the centroid of mesh grids in H3D

i that are at most distance

FIGURE 11. Aggregate information of 2D heatmaps into volumetric
heatmap.

d away from Ĵ3Di , where eachmesh grid is weighted by taking
softmax [48] over H3D

i , namely:

J3Di =
∑
k∈Ni

eα∗H
3D
i,k∑

l∈Ni
eα∗H

3D
i,l
V 3D
i,k , (8)

where Ni = {(p, q, r) : ∥V 3D
i,p,q,r − V

3D
i,p∗i ,q

∗
i ,r
∗
i
∥2 < d}.

C. FILTER SYSTEM CUSTOMIZED FOR BASEBALL
PITCHING
Baseball pitching is a motion that contains dramatic velocity
changes during arm acceleration phases. With off-the-shelf
low-pass filter that is often used to filter human poses, it is
likely to cause delay or loss in the signals from the pitching
arm because of the high frequency movement. As there is
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FIGURE 12. Flowchart of baseball customized filter system.

Algorithm 2 Simple Triangulation

Require: 2D joint heatmaps H2D
c,i of I joints in C camera

views, Camera matricesMc in C camera views
Ensure: a raw 3D human pose J3Draw,i
1: for i← 1 to I do
2: for j← 1 to C do
3: J2Dc,i ← argmax(H2D

c,i )
4: end for
5: end for
6: for i← 1 to I do
7: L ←∞
8: for j← 1 to C − 1 do
9: for k ← j+ 1 to C do
10: Ĵ3Di ← Tri(J2Dj,i , J2Dk,i ,Mj,Mk )
11: L̂ ← 0
12: for l ← 1 to C do
13: L̂ ← L̂ + ∥J2Dl,i −Ml Ĵ3Di ∥2
14: end for
15: if L̂ < L then
16: L ← L̂
17: J3Draw,i← Ĵ3Di
18: end if
19: end for
20: end for
21: end for

not enough 3D labeled pitching pose data for us to train
pose smoothing spatio-temporal models, a customized filter
system designed for pitching motion is a must. Figure 12
shows the flowchart of our baseball customized filter system.
It contains two modules: outlier removal and a filter system
based on traditional low-pass filters that will filter noises
at different levels depending on the action characteristics
of the joints during pitching, which will be elaborated in
Section III-E.

D. OUTLIER REMOVAL
After 3D human pose reconstruction with triangulation, there
are still many outliers in the reconstructed 3D pose signal.
We designed a simple but effective algorithm to detect the

outliers. For every time frame t , we compute the mean and
standard deviation of the pose data close to it. The outliers
can be detected if the distance between the joints at frame t
and the mean are larger than a margin of error. Algorithm 3
shows the detail of the outlier detection algorithm,whereMi,t ,
SDi,t indicate the mean and standard deviation of the ith joint
around frame t:

Algorithm 3 Outlier Detection
Require: 3D poses containing I joints from a time clip of

total T frames
[
J3Di,t

]
, window size 2W + 1, outlier

detection constant β, number of iterations N .
Ensure: An I ∗ T array

[
Oi,t

]
indicating which joints in

which frames are outliers.
1: for n← 1 to N do
2: for t ← 1 to T do
3: for i← 1 to I do
4: Mi,t ← 6t+W

s=t−W J
3D
i,s /(2W + 1)

5: SDi,t ← sqrt(6t+W
s=t−W (J3Di,s −Mi,t )2/(2W + 1))

6: if ∥J3Di,t −Mi,t∥2 > β ∗ SDi,t then
7: Oi,t ←True
8: else
9: Oi,t ←False

10: end if
11: end for
12: end for
13: end for

After outlier detection, considering speed and signal
smoothing, we simply replace the outliers with the linear
interpolation of adjacent joints. The process of outlier
detection and replacement will be iterated for N = 4 times.

E. FILTER SYSTEM DEPENDING ON CHARACTERISTICS OF
PITCHING
We designed a filter system to remove the noise from the
pitching movement without eliminate the pitching signals.
The backbone of the filter system includes a Median filter
[88] to wipe out outliers, a Gaussian filter [61] to filter
out Gaussian noises from the pose movement, and a fourth
Butterworth filter [62] to further decrease high-frequency
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FIGURE 13. Human3.6M annotation format.

noises. Depending on the characteristics of pitching action,
we separated the movement of body parts in the human pose
into three types: fast movement, mediummovement, and slow
movement. For a right handed pitcher, Table 3 shows how we
categorize the body parts:

TABLE 3. Types of human body movements.

For joints that have fast movement like the pitching
arm, the movement contains lots of high frequency signals,
so we use Median filter with smaller window length l fast ,
Gaussian filter kernel with smaller standard deviation σ fast ,
and Butterworth low-pass filter with higher critical frequency
wfast , to preserve the high frequency signals of the joint
movement. For joints that have slowmovement like the lower
body, we use Median filter with larger window length lslow,
Gaussian filter kernel with bigger standard deviation σ slow,
and Butterworth low-pass filter with lower critical frequency
wslow, to filter out high frequency noises as much as we can.
Detailed parameter settings are presented in Table 9.

IV. DATASETS AND EVALUATION METRICS
A. HUMAN3.6M DATASET
Human3.6m [10] is a widely used dataset in 3D pose
estimation. It contains 3.6 million images from 11 subjects
performing actions in 17 daily scenarios: discussion, taking
on the phone, walking dogs, etc. Each action video is captured
by four synchronized cameras at 50 Hz, and a high-speed
motion capture VICON system is utilized to capture the 3D
joint positions from subjects. Figure 13 shows the annotation
format of Human3.6m.

B. MSL BASEBALL DATASET
1MSL Baseball Dataset is a baseball player pose dataset
recorded in Movement Science Lab (MSL) by National

1This project is reviewed and approved by Jen-Ai Hospital Institutional
Review Board. Both MSL Baseball Dataset and Tainan Baseball Dataset
have been obtained with the informed consent of involved subjects.

Taiwan University. The dataset contains 15 pose sequences
composed of 79200 images of a subject doing three different
baseball actions: hitting, pitching, punching. Each action
video is captured by four synchronized cameras at 300 fps.
A fixed VICON system with 10 cameras operating at 120 fps
is utilized to capture human 3D joint position from markers
attached to the subjects. The camera setting as well as
annotation format of the MSL Baseball Dataset are shown
in Figure 14 and Figure 15.

FIGURE 14. Camera setting of MSL baseball dataset. The red dots indicate
camera position and the black arrows indicate camera orientation.

C. TAINAN BASEBALL DATASET
Tainan Baseball Dataset is a baseball pitching pose dataset
recorded in Tainan Municipal Baseball Stadium by National
Taiwan University of Sports. The dataset contains 27 pitching
pose sequences composed of 32805 images from different
pitchers. Due to the difficulty of real-world marking and
capturing, there is no joint label in the dataset. Ourmulti-view
system consists of three synchronized cameras at 300 fps to
capture videos from pitchers. Figure 16 shows the angles of
the pitchers photographed by each camera.

D. EVALUATION METRICS
We use two of the most widely used evaluation metrics in
pose estimation: mean per joint position error (MPJPE) and
Procrustes aligned mean per joint position error (P-MPJPE)
[11]. MPJPE is calculated from the mean of Euclidean
distance between joint predictions J and the ground truth
joints Jgt :

MPJPE(J ) =
1

T ∗ I

T∑
t=1

I∑
i=1

∥Ji,t − Jgt,i,t∥2 (9)
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FIGURE 15. MSL baseball dataset annotation format.

FIGURE 16. Camera setting of Tainan baseball dataset.

where Ji,t denotes the ith joint position at frame t . T is
the total frame number. I is the joint number in a single
pose. P-MPJPE is a variant of MPJPE. It is similar to
MPJPE since it measures the Euclidean distance between
joint predictions and the ground truth joints, but before
calculating, an additional alignment step is applied to the
prediction. The prediction was shifted, scaled, and rotated
trying to minimize the error:

P−MPJPE(J ) =
1

T ∗ I

T∑
t=1

I∑
i=1

∥P(Ji,t , Jgt,i,t )− Jgt,i,t∥2

(10)

where P(Ji,t , Jgt,i,t ) denotes Procrustes superimposition [89]
to make Ji,t similar to Jgt,i,t by minimizing the Procrustes
distances between them. These two evaluation matrices are
used in most of the 3D HPE studies [11].
Similar to MPJPE, mean per joint velocity error (MPJVE)

and mean per joint acceleration error (MPJAE) can be
calculated to evaluate the performance of joint velocity and
acceleration:

MPJVE(J ) =
1

T ∗ I

T∑
t=1

I∑
i=1

∥Vi,t − Vgt,i,t∥2 (11)

MPJAE(J ) =
1

T ∗ I

T∑
t=1

I∑
i=1

∥Ai,t − Agt,i,t∥2 (12)

where we calculate the velocity of from joint positions and
acceleration from velocity:

Vi,t = Ji,t − Ji,t−1,Ai,t = Vi,t − Vi,t−1 (13)

FIGURE 17. Alphapose annotation format.

V. EXPERIMENT
A. JOINT-WISE VOLUMETRIC TRIANGULATION
1) EXPERIMENT SETTINGS
Figure 18 shows the framework of the experiment on trian-
gulation methods. To test the robustness of the triangulation
methods from 2D pose predictions, we use the simplest model
in Alphapose (Simple Baseline) [30] as our 2D detection
model to generate 2D pose estimations. After triangulation,
outlier removal algorithm mentioned in Section III-D are
applied after every triangulation method to reduce the
error from the outliers. Parameter settings of the joint-wise
volumetric triangulation and outlier removal are shown in
Table 5. We tested parameter settings on other subjects
in Human3.6m and picked the setting with a reasonable
computational speed (25 fps). MPJPE and P-MPJPE are
used to evaluate the error of the pose. All of the algorithms
are implemented on Intel Core i9-13900K CPU@5.80 GHz.
Alphapose model are executed on RTX 4090.

We evaluate the performance of triangulation methods
on the test set of Human3.6m (S11) and pitching set in
MSL Baseball Dataset. Because of the difference in joint
annotation between Alphapose (Figure 17), Human3.6m
(Figure 13) and MSL Baseball Dataset (Figure 15), we only
consider joints in Table 4 that are labeled in all three datasets.

TABLE 4. Joint matching between alphapose and Human3.6m.

2) EXPERIMENT RESULT
We compare our joint-wise volumetric triangulation method
with several triangulation methods including L2 triangulation
and midpoint triangulation [49], two robust triangulation
methods for 3D object reconstruction [56], [57] that can
tolerate erroneous 2D joint predictions, and a 2D heatmap
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FIGURE 18. Flow chart for the experiment on joint-wise volumetric triangulation.

TABLE 5. Parameter setting.

triangulation method from the state-of-the-arts [19], [20]
multi-view 3D human pose estimation on human3.6m
that uses softmax function to generate 2D joints from
2D heatmaps followed with RANSAC [90] algorithm to
reconstruct final 3D joint prediction.

Table 6,7,8 presents the experiment results on Human3.6m
and MSL Baseball Dataset. Our joint-wise volumetric trian-
gulation outperforms all of the other triangulation methods
on every kind of motion in terms of P-MPJPE by a large
margin. Although [56], [57] attain lowerMPJPE on few kinds
of motion, our method has lower average MPJPE and is more
robust to heavily occluded poses like ‘‘Sit’’ in Human3.6m.
As an example illustrated in Figure 20, Figure 21 and
Figure 22, the accuracy of traditional triangulation methods
are influenced by wrong 2D pose predictions in camera 1
and camera 3 as they value wrong predictions as much
as right predictions. Our triangulation method can consider
extra information on 2D pose heatmaps and reduce the
impact of wrong 2D predictions which has less response on
volumetric heatmaps, so it can still correctly reconstruct 3D
human poses in the case of 2D joint prediction error. Our
triangulation algorithm operates at 25 fps, though slower than
other triangulationmethods (>40 fps), but still meets the need
of most real time applications.

B. BASEBALL CUSTOMIZED FILTER SYSTEM
1) EXPERIMENT SETTINGS
To evaluate the performance of the filter system on pitching
motions, we use the pitching set of MSL Baseball Dataset
and Tainan Baseball Dataset for testing. We take one of the
pitching motion to adjust the parameters of our filter system
and use the rest to evaluate the performance. Parameter
settings of our baseball customized filter system are shown
in Table 9. Raw 3D pitching poses are pre-generated by

FIGURE 19. Example of sitting in Human3.6m.

FIGURE 20. Visualization of predictions of Figure 19.

the joint-wise volumetric triangulation method mentioned in
Section III-B, while we use the more accurate Alphapose
2D HPE model (Fast Pose with ResNet152 backbone). Filter
systems are then applied to remove the noises of the predicted
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FIGURE 21. 2D joint (left foot) heatmaps generated by alphapose [30].
Here white dots indicate 2D joint predictions, while green dots indicate
ground truth labels.

FIGURE 22. Visualization of 3D reconstruction results of Figure 21. Lines
indicate epipolar lines generated by 2D joint predictions in each camera.

TABLE 6. Evaluation result on Human3.6M (MPJPE(mm)).

pitching pose, as evaluated by MPJPE, MPJVE, and MPJAE.
The environment settings are the same as that mentioned in
Section V-A1.

TABLE 7. Evaluation result on Human3.6M (P-MPJPE(mm)).

TABLE 8. Evaluation result on MSL baseball dataset.

TABLE 9. Parameter setting.

TABLE 10. Filter experiment results on MSL baseball dataset.

2) EXPERIMENT RESULT
We compare the performance of our filter system in
Section III-C on the baseball pitching motion against
other filter systems including three classic low-pass filters:
Gaussian filter [61], 4th order Butterworth filter [62], and
one Euro filter [64]. For Kalman filter prototype, we pick a
humanmotion filter system [72] that also takesMSLBaseball
Dataset as test dataset for comparison. Since there are only
15 pose sequences, it is infeasible to train ML based filter
systems like SmoothNet [73]. Table 10 shows the result of
the filter experiment on MSL Baseball Dataset. As observed,
our baseball customized filter system reduces MPJPE by
12%, MPJVE by 93% and MPJAE by 99% compared to raw
poses and outperforms all the other filter systems. As MSL
Baseball Dataset was captured at 300 fps, the MPJVE and
MPJAE of our system correspond to 0.35m/s (1.28 km/h)
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FIGURE 23. Trajectory of human joints in MSL baseball dataset.

FIGURE 24. Filtering results on tainan baseball dataset.

average velocity error and 38.7 m/s2 average acceleration
error, respectively.

Figure 23 compares the filtered trajectory, among various
filter systems, of the left leg and right wrist joints from the

FIGURE 25. Trajectory of right wrist in tainan baseball dataset.

pitching pose. We observe large phase shift error in Gaussian
filtering as well as signal jittering in one Euro filtering and
Butterworth filtering, while our filter system does not have
such issues. Comparing with OCR-UKF, our filter system
shows better robustness when dealing with outliers in the raw
poses.

To evaluate our filter system on real-world scenario,
we also tested our filter system on in-the-wild Tainan
Baseball Dataset. Video demonstration of the filtering poses
can be found at [91]. Figure 24 and Figure 25 show the
filtering results of a pitcher (subject 574) in Tainan Baseball
Dataset during the arm acceleration phase. We can observe
that our baseball customized filter, Butterworth filter and one
Euro filter preserve most of the high frequency signal in the
pitching action without signal lag, while our filter system has
less jittering than the other two filters.

VI. CONCLUSION AND FUTURE WORK
This work focuses on multi-view 3D baseball pitcher pose
reconstruction using 2D synchronized videos as input.
We present a novel joint-wise volumetric triangulation
method to aggregate the information from 2D joint heatmaps
efficiently with volumetric heatmaps focused on preliminary
joint predictions. Our approach outperforms other triangu-
lation methods in terms of MPJPE and P-MPJPE. To filter
out noises while preserving the high-speed baseball pitching
motion, we designed a baseball customized filter system to
categorize joints based on characteristics of pitching action
and filter them separately. Compared with common filters
for human pose filtering, our filter system achieves better
velocity and acceleration performance than other common
filter system for human pose filtering.

At present, our joint-wise volumetric triangulation
operates without considering the relations between pose
sequences, and our reconstruction system is customized
for pitching motion of a single player. As future work,
we expect to make our joint-wise volumetric triangulation
time-aware and extend our system to cover other baseball
movements such as batting or catching, that can be applied
to multiple players on the field. By that, we expect to find
more applications in live baseball game tracking.
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