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ABSTRACT Ensuring the safety of vehicles requires the critical responsibility of diagnosing and correcting
brake faults. Implementing this proactive measure to address brake faults not only ensures the protection of
lives but also enhances the efficiency and cost-effectiveness of repair processes conducted on-site. Machine
learning technology has recently contributed to a significant rise in the popularity of predictive maintenance.
The objective of this study is to provide a method for identifying issues with the air pressure system
(APS) of air brake systems in heavy-duty vehicles. The data obtained by sensors has been used to analyse
the APS failure in this Scania Truck. After examining numerous classification methods, Random Forest
was determined to have the greatest performance, with a classification accuracy of 99.4%. Moreover, the
implementation of eXplainable Artificial Intelligence has included the use of SHapley Additive exPlanation
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME) to provide explanations for the
contributions of features in model predictions. We picked 20 features from the wheel speed sensor data
received from several Internet of Things (IoTs) sensors, which significantly influenced our final selection.
By repeatedly applying random forest to these 20 features, we achieved the same degree of accuracy as
previously. Consequently, our suggested approach used a reduced amount of computer resources and was
less intricate to execute in terms of calculation.

INDEX TERMS Predictive maintenance, machine learning, eXplainable AI (XAI), SHAP, smart
transportation system.

I. INTRODUCTION
Explainable Artificial Intelligence, often known as XAI,
is a forward-thinking and essential initiative within field
of artificial intelligence (AI) [1]. Its primary objective
is to tackle a significant obstacle that AI systems must
surmount, namely capability of providing humans with
explanations that are easy to comprehend for their judgments
and forecasts. Demand for people to believe and have faith
in results that are derived from AI models is driving force
behind relevance of XAI. Increasing interpretability and
transparency of results produced by machine learning (ML)
algorithms is major focus of XAI [2]. It is acknowledged that
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‘‘black-box’’ character of certain AI models might generate
suspicion and limit their acceptance in important fields like
healthcare industry [3], financial industry, academics [4] and
autonomous cars [5], [6], [7]. Goal of XAI is to enable
consumers to understand why a given choice was taken,
rather than taking it as an unintelligible result, by revealing
underlying mechanisms of AI algorithms and making their
decision-making process more visible. This is accomplished
through discovering internal processes of AI algorithms [8],
[9]. XAI has potential to democratize AI technology and
allow its responsible and ethical use across various fields by
providing consumers with a greater knowledge of AI systems.
Continued development of XAI has a possibility of bringing
about a new age of AI-human cooperation, one in which AI
systems will become more understandable, trustworthy, and

114940

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2653-9541
https://orcid.org/0000-0001-7049-0373
https://orcid.org/0000-0002-8284-6354
https://orcid.org/0000-0002-1939-4842


M. A. Khan et al.: Secure Explainable-AI Approach for Brake Faults Prediction in Heavy Transport

seamlessly integrated into our everyday lives [10], [11], [12],
[13]. Additionally, prioritizing the alignment of XAI with
privacy and security factors is imperative [14], [15], [16].
Heavy Commercial Road Vehicles (HCRVs) rely primarily

on air braking systems because of their dependability and
safety advantages they provide due to usage of compressed
air to actuate braking mechanism. However, just like any
other complicated system, air brake systems may run into
problems that need to be fixed to keep passengers of vehicle
as well as the vehicle itself safe [17]. Problem of an increased
stroke length in pushrod is one of major challenges that are
related to air brake system [18]. Natural wear and tear of
brake lining as well as thermal expansion of braking drum
are primary causes of this longer stroke. Cumulative effect
of these elements might, over time, result in an excessive
gap between brake lining and brake drum. This reduces the
effectiveness of brakes as a whole and can cause vehicle to
become unstable. This is a major cause for worry because it
may result in longer stopping distances, which makes it more
difficult for drivers to maintain control of vehicles while they
are using brakes [19].
A compressor that is linked to engine is responsible for

producing necessary amount of air pressure for braking
system. This compressor works to increase air pressure before
storing it in vehicle’s air storage tanks until braking system
needs it again [20], [21]. Multiple air pressure sensors are
included in air brake system to facilitate management of
various facets of technology. This facilitates operation that
is both dependable and smooth. Application of air pressure
to braking mechanism is controlled in large part by these
circuits, which also play an important role in releasing
pressure. A simple schematic diagram of an air brake system
with APS is given in Figure 1. This was presented in [22] as a
base for illustration of air brake systems in HCRVs. Pressure
sensors are mounted on air reservoirs to monitor pressure
level and leakage if happens. Air brake chamber, shown in
Figure 2, is an important part of air brake system. This space
serves two purposes simultaneously. It is what slows or stops
a vehicle by turning air pressure created by brake pedal into
mechanical force applied to braking components like brake
shoes or brake pads [23].
Mechanical failures and delays not only result in increased

expenses but also put precious lives in danger. Traditional
brake maintenance and repairs may not always be feasible,
especially in situations when there is limited time and
resources. Predictive maintenance (PdM) is an essential com-
ponent in ensuring maximum up-time and minimizing risk of
unanticipated breakdowns as a result of this challenge [24].
To improve upkeep of HCRVs, PdM makes use of several
different technologies, including ML, big data analysis,
constraint programming, and route optimization. It is possible
to get useful insights about individual maintenance needs of
each product by collecting data from embedded sensors in
vehicles and evaluating that data. This data is subsequently
used in training of ML algorithms, such as predictive
random forest (R.F) model, which can accurately forecast

FIGURE 1. IoT-enabled intelligent air brake system: Schematic diagram
for sensor integration and data collection.

requirements for vehicle maintenance based on operational
data collected from the vehicle [25]. When operational data
from vehicles is entered into predictive model, performance
of vehicle can be analyzed, and the most effective mainte-
nance strategy can be devised for each specific vehicle. This
procedure is performed on each vehicle, which results in a
maintenance strategy that is more accurate and effective since
it is suited to specific requirements of each vehicle. Use of
methodologies that can be explained in validation of model
guarantees that findings are clear and visible to maintenance
workers, which further increases the level of faith that can be
placed in AI suggestions of system [26].

A viable strategy to improve HCRVs maintenance is to
combine PdM strategies with AI models that are explica-
ble. Maintenance schedules may be tailored to individual
requirements of each vehicle with the use of ML and big data
analysis [27], hence minimizing the number of breakdowns
and unplanned breaks. Use of AI that is capable of being
explained guarantees that decision-making process that lies
behind suggestions for maintenance is open to scrutiny and
can be comprehended, therefore striking a balance between
risks of failure and need for maintenance. This strategy
will, in long run, result in increased productivity decreased
expenses, and improved security [28] in the movement
of commodities. This work offers vital insights into the
explainability of AI in the context of analyzing brake faults
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in HCRVs. However, it is crucial to acknowledge that the
scope of XAI extends beyond the specific area of focus in
this study. Explainability plays a vital role in establishing
confidence and understanding in the usage of AI technology.
To better understand how XAI contributes to these elements,
it is important to delve into its practical implementation and
user interaction

FIGURE 2. Operational framework air pressure system.

Following are the key contributions of this study:
• Data preprocessing with imputation and imbalance
class handling with Synthetic Minority Over-sampling
Technique and Tomek Links (SMOTE)

• Classification of fault using ML algorithms
• Interpretability of the model using SHapley Additive
exPlanation

• Sequential modeling for validation of SHAP results
• Implementation of LIME for sequential model
interpretation

Remaining sections of this paper are organized as follows:
In Section II, we discuss related work on brake fault

prediction of HCRVs and XAI. Section III details the
methodology for our proposedmodel. Section III presents our
experimental results and Section V concludes the paper.

II. RELATED WORK
Researchers have made great strides in the field of vehicle
brake fault prediction, both in terms of their knowledge of air
braking systems and their ability to perform diagnostic testing
on such systems. To precisely establish length of pushrod’s
stroke and pressure inside the brake chamber, Kandt et al. [29]
included a numerical model in their research. This model is
an invaluable tool for assessing operation of air brake system,
as it offers crucial insights into the performance of system as
well as its qualities. Through development of model-based
diagnostic approaches, Subramanian et al. [22] were able to
further enhance diagnostic capabilities of air brake systems.
Their study centered on developing methods to predict
pressure fluctuations that occur within braking chamber of an
air brake system. It is possible to identify potential problems
or abnormalities in braking system early on by forecasting
pressure changes. This enables timely maintenance and
reduces danger of unanticipated failures. When it comes to
improving safety and dependability of HCRVs when they are
being used for smart transportation missions, this diagnostic
method is an essential component. Dhar et al. [30] proposed
a novel diagnostic method for anticipating out-of-adjustment
problems in pushrod’s stroke by building a brake chamber

pressure and energy model. These numerical models and
model-based diagnostic approaches offer crucial tools for
precisely assessing operation of air brake system as well
as its overall health and provide predictions on possibility
of difficulties linked to pushrods. These approaches help
to enhancement of vehicle safety, operating efficiency, and
overall transportation dependability. Maintenance staff may
spot differences in pushrod’s stroke adjustment bymonitoring
pressure and energy dynamics in brake chamber. This allows
for quick maintenance steps to be taken, which helps avoid
potentially dangerous situations on road. Ramarathnam et al.
[31] developed another model-based approach to fault
diagnosis in air brake systems that include leakage. Robust
machinery is required to put these concepts into action; yet,
these machines are not favorable to environment or economy.
These designs only include usage of brakes, and they have
not been tested for a diverse array of vehicle weights and
driving circumstances. This investigation into a model for
use of airborne pollutants using an algorithm that is based on
data began with these participants, who served as motivation
for project. This approach applies to a broad variety of
applications and makes use of cycle velocity data to test and
identify pushrod’s stroke.

ML has become a prominent technology in the field
of PdM, where fault detection and diagnosis (FDD) is a
key application. To develop an ML model for prediction,
a reasonable amount of data is required. This dataset is
typically divided into a training set and a testing set for
model training and evaluation, respectively [32], [33], [34].
Raveendran et al. [35] focused on fault identification, and
variousML techniques including decision tree (D.T) and R.F,
were applied to a wheel speed sensor dataset. Results showed
that R.F model outperformed other methods. Building on
this work, researchers extended their analysis and tested
additional algorithms such as Naïve Bayes, Support Vector
Machines (SVM), SVM (Linear), SVM (Gaussian), and
K-Nearest Neighbor (K-NN) on the same dataset with
variations in the amount of training and testing data.
Once again, R.F model demonstrated superior performance.
In the context of stability control, study [36] introduced
a model called Sliding Mode Observer (SMO) for brake
applications. SMO model is designed to enhance vehicle
stability control, further improving safety and performance.
Another study applied Gaussian Kernel SVM (G-SVM) to
predict faults in brake system of front right vehicle [37].
This demonstrates versatility of ML techniques in various
aspects of PdM. Preference for R.F models in these studies
can be attributed to their resistance to model overfitting
issues [38]. Overfitting occurs when a model is too complex
and learns noise in data, leading to poor generalization. R.F
is less prone to overfitting due to its ensemble nature, which
aggregates multiple decision trees. Development of AI has
been heavily influenced by our understanding of natural
human intelligence. However, path toward Artificial General
Intelligence (AGI) requires integration of common sense,
cognitive models, and computing approaches that emulate
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human behaviour [39]. AGI aims to create intelligent systems
capable of generalizing and understanding world similar to
human intelligence, rather than being limited to specific tasks
like current narrow AI systems.

Explaining these models is becoming more and more
important due to the extensive usage of ML for critical
predictions. A novelmethod known as SHAP has been used to
maintain confidence in their forecasts. Finding out howmuch
of an impact each attribute has on the model’s predictions is
the goal of this approach [40], [41], [42], [43]. The prevailing
opinion is that the Shapley value frequently arises as the
foremost approach capable of satisfying specific criteria in
XAI. Significance of this option stems from its distinctive
attributes and numerous benefits, rendering it an irresistible
alternative that is difficult to disregard in sector. Although the
output of the Shapley value computation is unique, specific
value obtained can vary greatly based on the properties of
model, data used for training, and the context in which the
explanation is sought. Kwon et al. [44] found which features
were important for which tasks without having to retrain the
system. They did this by using the Shapley value to find the
feature’s variance explained. To solve the attribution issue,
Å trumbelj et al. [45] established the significance of traits
for certain forecasts by using the Shapley value. The first
research finds the Shapley value by retraining the model
with every conceivable subset of features. Without retraining
the model, the second research applies the Shapley value
to its conditional expectation. No matter how independent
characteristics may be, both methods treat them as if they
were randomly distributed.

Shapley value for the conditional expectancies of a
model’s function was calculated by Datta et al. [46] using a
constructed distribution. This distribution was generated by
multiplying the marginals of the distribution of underlying
features. A study by Lundberg and Lee [47] looked at how to
use conditional expectancies to find the Shapley value, how to
get different approximations based on function or distribution
assumptions, and how to combine these to use them in deep
network modules. The significance of features was assessed
in their study using the Shapley value. In particular,Matzka S.
used an easy-to-understand XAI method for such PdM [48],
[49]. But these methods do not do a good job of dealing
with major problems like class imbalance and missing data,
which our suggested ways fix. Additionally, none of these
approaches offer a clear-cut, simple solution.

Our research is the first of its kind to focus on the unique
problem of predicting when brakes may fail while also
placing a premium on how well models can be explained.
We use a dataset of medium size that has imbalanced
classes and missing values. Our goal is to create a plan that
addresses the problems of imbalanced classes and missing
data in this field by improving our approaches. By providing
solutions to these unique problems within the framework of
predicting when brakes will fail, our study adds to the existing
literature.

III. RESEARCH METHODOLOGY
Standard procedures for using SHAP to examine black box
models and ensure model interpretability usually include the
following:

• Preparing Data: First step is to prepare data used to
train black box model. We need to make sure the dataset
is preprocessed, cleaned, and ready for analysis [50],
[51].

• Defining Baseline Model: Choose a black box model
(e.g., ensemble algorithm) that we want to interpret
using SHAP. Train model on prepared dataset to create
baseline model.

• Compute Shapley Values:Calculate Shapley values for
each feature in dataset. Shapley values contribute to each
feature to prediction of model for a specific instance.

• Interpret Shapley Additive Feature Attribution Val-
ues: Analyze Shapley values to understand how each
feature affects output of model. Positive Shapley values
indicate a feature contributes positively to prediction,
while negative values suggest a negative contribution.

• Visualize Explanations: To gain better insights and
communicate explanations effectively, we create visu-
alizations of SHAP values. Plotting individual feature
attributions or summary plots can help us understand
feature importance.

• Validate and Refine Explanations: It is essential to
validate explanations provided by SHAP to ensure they
are accurate and reliable. This may involve checking
results against known ground truths or comparing expla-
nations across different model instances. If necessary,
we can refine explanations by adjusting parameters or
using alternative techniques.
By implementing these steps, SHAP can shed light
on inner workings of black box models and provide
valuable insights into feature importance and model
behaviour. This understanding is critical for building
trust in AI systems, ensuring fairness, and identifying
potential biases in decision-making process.

Process flow of the suggested method is shown in Figure 3.

A. DATASET DESCRIPTION
Scania Trucks APS failure dataset has been used for fault
classification and model evaluation. Scania is a diversified
firm that produces HCRVs, coaches, and engines for use
in industrial and marine applications. The data has been
collected using different IoT sensors like Accelerometers,
Gyroscopes, Motion sensors, Pressure sensors, Proximity
sensors, Temperature sensors and different Internet of
Vehicles (IoVs) sensors. Training set and testing set that
makeup Scania Trucks APS failure dataset are both included
in the set. There are 1,000 failure examples out of 60,000 in
the training set that are marked as positive. This dataset is
made up of 171 columns, one of which is specified to be used
as the class label. Seventy different features are broken up and
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placed in seven different histograms; each histogram has ten
different bins to place characteristics.

Notably, characteristics were encrypted to protect security
since the information was initially meant for industrial
reasons. Furthermore, a large number of attributes had
missing values; in fact, some attributes were missing as much
as 82% of their data. Additional complications arose from
the study due to the existence of several outliers. We used
KNN imputation, a non-parametric method that finds values
for missing attributes by comparing them to comparable
occurrences, to solve the problem of missing data.

FIGURE 3. Workflow for the suggested methodology.

B. DATA PREPROCESSING
The dataset is highly imbalanced and it is difficult to use
it without some preprocessing techniques for better results
of ML algorithms. Therefore for handling class imbalances
and missing data respectively, implementation of SMOTE
and KNN imputation proved to be advantageous, which
contributed to model prediction for possible APS failures.
Furthermore, dataset is an invaluable resource for tackling
maintenance difficulties in industrial applications, and it
highlights significance of processing data and imbalances
that might occur in real-world situations. A short description
of applied techniques is given below:

1) SMOTE
To rectify dataset class imbalances, SMOTE is used. Using
feature-space similarity as ametric, SMOTE creates synthetic
instances for underrepresented groups. We utilised Scikit-
learn to apply SMOTE and normalise the input data. The
dataset was balanced when SMOTEwas applied, with 59,000
occurrences for positive and negative classes combined.

2) KNN IMPUTATION
To solve the problem of missing data we utilised KNN
imputation, which stands for k-nearest neighbours imputa-
tion. Using an average of the attribute values of the nearest
instances in the feature space, this method recovers missing
values. Similar cases or pieces of data will have comparable
values; that is the basic premise. We used KNN imputation to
successfully deal with missing values as our dataset includes
instances with a large quantity of missing data.

C. MODEL DESCRIPTION
R.F classifier has been used as a base model for fault
classification. Then for interpretation of classification results,

we applied SHAP [52]. For comparative analysis of feature
attribution, we used Local Interpretable Model-Agnostic
Explanations (LIME) [53]. Below is the outline of our
proposed framework as depicted in Algorithm 1.

Algorithm 1 Random Forest With SHAP and Sequential
Random Forest, Along With LIME
1: Let Dtrain = {(x1, y1), (x2, y2), . . . , (xn, yn)} be the

training dataset.
2: Let Dtest = {xtest1 , xtest2 , . . . , xtestm} be the test dataset.
3: Initialize ŷtest as the predicted labels for Dtest using R.F.
4: Apply SHAP to interpret R.F predictions on Dtest.
5: Enrich Daugmented by appending tuples (xtesti ,SVi).
6: Generate ŷaugmented with RFaugmented on Daugmented.
7: Train Sequential RFaugmented on ŷaugmented.
8: Report performance improvement of Sequential Random

Forest with SHAP.
9: Apply LIME to interpretRFaugmented predictions onDtest.
10: Analyze LIME explanations for feature importance

insights.

Note:SVi: Shapley Values

D. MACHINE LEARNING MODELS
A brief explanation of each ML model implemented is
provided below:

1) DECISION TREE
D.T are widely used for classification and regression tasks
due to their interpretability and clarity. They partition dataset
based on input feature values, making sequential judgments
from the root node to leaf nodes to make predictions. Root
node represents entire dataset and is split into subgroups
based on feature values. At each node, algorithm selects
the best feature and threshold to divide data, aiming to
maximize information gain and reduce impurity. Child nodes
are created after each split, and process continues recursively
until a stopping criterion is met. Leaf nodes mark end of
D.T, providing final predictions. Decision rules derived from
features explain how model arrives at its predictions.

2) RANDOM FOREST
R.F bagging technique excels in noisy or poorly classified
data. R.F is reliable in many scenarios since its parameter
order is generally unaffected. Bootstrap is used to randomly
sample datasets. Each sample generates a D.T without
pruning. This process creates a D.T forest. Each D.T votes for
class with the most support in R.F model. Permutation-based
feature selection strategy using R.F. works well on datasets
with large dimensions and strongly correlated variables,
which has led to its widespread adoption across disciplines.
The Gini coefficient’s decline in purity determines a vari-
able’s relevance. Permutation approach breaks connection
between a variable ai and outcome variable Y by randomly
replacing alternative values for all occurrences of ai. R.F uses
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Gini coefficients to identify variables that reduce predictor
purity deterioration. R.F is less sensitive to parameters
compared to other predictive models. It depends on two
main parameters: ntrees and mtrees. The ntrees parameter
determines the number of trees in the R.F model, while the
mtrees parameter controls the number of variables used to
split a D.T node. Determining the optimal value for mtrees
often involves testing various options. The generalization
error of R.F tends to converge with ntrees, unlike many
other classifiers [54].More trees improve R.Fmodel. Optimal
ntrees balance classification accuracy and processing speed.

3) GRADIENT BOOSTING
Gradient Boosting is a powerful ensemble learning technique
that has gained widespread popularity for both regression
and classification tasks. It operates by constructing multiple
weak learners, often D.T, in a sequential manner to iteratively
correct errors made by the previous models. Key concept
behind Gradient Boosting lies in its focus on residuals
or gradients of target variable from previous model. Each
new weak learner is designed to capture and learn from
these residuals, making subsequent model more adept at
addressing remaining errors. This iterative process continues
until final model is created, which combines predictions of all
weak learners using optimized weights. Strength of Gradient
Boosting lies in its ability to handle complex relationships
within data.

4) LOGISTIC REGRESSION
Logistic regression is a popular statistical approach for binary
classification in ML. It classifies, not regresses. It works well
for cases where result variable is yes or no, spam or not spam
etc. Logistic Regression models how input characteristics
affect binary outcome probability. Logistic function (sigmoid
function) transfers every real-valued input to a range between
0 and 1. This range represents instance’s positive class
probability.

5) KNN CLASSIFIER
K-Nearest Neighbors (KNN) is an easy-to-use machine-
learning classifier for regression and classification. It uses
idea that related feature space instances have similar labels.
KNN uses a user-defined parameter to classify closest
neighbors. KNN uses Euclidean distance to create pre-
dictions. It then chooses K closest neighbors and applies
input point’s expected label to majority class label. KNN
is a slow, non-parametric approach that defers training until
prediction time. It is good for intricate interactions and
shifting patterns. KNN’s performance depends on K and may
be computationally expensive on big datasets. It also assigns
equal priority to all characteristics, which might restrict high-
dimensional data.

E. FAULT DETECTION USING SHAP VALUES
In mathematical terms, the following describes the local
feature attribution problem: The objective is to find an

importance vector φ ∈ Rd given a decision function f :

Rd
→ R obtained from a machine learning model, where

d is the number of input features. Concerning each input x,
the model’s prediction f (x) is affected by the input phii in this
vector.

Explanatory capacity of methods that attempt to address
this problem is often severely limited since they generate
relevance ratings based on raw input attributes x. To illustrate
the point, inferring precise patterns or finding clear explana-
tions for how the model detects problems becomes hard when
trained on raw input [55].

Ribeiro et al. [53] suggested a way to solve this issue
by figuring out how important a feature is about an
understandable representation y ∈ Y of the instance x ∈

X that is being explained. To achieve this, it is essential
to establish a predefined mathematical context that enables
accurate conversion between interpretable representations
and original ones. In this regard, we propose following
formulation:
Definition 1: The feature space is represented by X and

the mapping fromX toY×R is easily written as φx→y, where
R is the residual component andY is the interpretable domain.

φx→y : X → (Y × R) (1)

Similarly, φy→x represents the mapping from (Y × R) to
X , defined as:

φy→x : (Y × R) → X (2)

For every value of x:

φy→x(φx→y(x)) = x (3)

By including the residual component R, we may limit
the evaluation of feature significance to certain parts of the
representation while still keeping enough data to restore the
original input. With the initial model f and some post-hoc
tweaks to its input domain, deriving attributions from the
representation y and the residual r becomes easy.
An enhanced model, denoted as f̃ , is the result of this

procedure:

f̃ (y; r) = f (φy→x(y, r)) where (y, r) = φx→y(x) (4)

A linear function of binary variables is used in the
explanatorymodel using additive feature attributionmethods:

g(y′) = φ0 +

M∑
i=1

(φiy′i) (5)

The simplified explanation is represented by g(y′), where
y′ ∈ {0, 1}M is the number of simplified input characteristics
and φi ∈ R. Each feature is given an effect φi by an
explanatory model in approaches that follow Definition 1.
After that, f (x) is almost equal to the output of the original
model, as it is the result of combining the effects of all feature
attributions.

By incorporating this approach, the original model is
extended to function within a distinct input domain while
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FIGURE 4. Confusion matrix obtained from random forest results.

preserving all essential characteristics of f without neces-
sitating any retraining. This facilitates the computation of
feature attributions based on the modified input domain while
maintaining the effectiveness and performance of the original
model.

According to Scott et al. [55], the only additive technique
that meets the requirements of local precision, missingness,
and consistency assigns φi an effect (Shapley value) to each
variable x ′

i .

φi(f ) =

∑
x ′⊆N\{i}

|x ′
|! · (|N | − |x ′

| − 1)!
|N |!

· (f (x ′
∪ {i}) − f (x ′))

(6)

where the Shapley value of feature i is represented by φi(f ).
All features in the dataset are represented byN , which is equal
to N = {1, 2, . . . , n. The representation of the number of
features in coalition x ′ is given by |N |, which stands for the
entire number of features in the dataset, i.e., |N | = n, and
feature i is not included in this coalition (i.e., x ′

⊆ N \ {i}.
The characteristic function that represents the overall value
of the coalition is denoted as f (x ′), and the total value of the
coalition is f (x ′

∪ {i}) when feature i joins.
The formula essentially sums up themarginal contributions

of feature i to all possible coalitions x ′, weighted by the
number of ways each coalition can be formed. It considers
all possible orders in which a feature can join a coalition to
ensure fairness.

Going beyond only estimating brake failure is vital for
achieving a holistic view of brake fault prediction. Gaining
a more comprehensive understanding of the dynamics at
play is essential for equipping domain specialists with the
information needed for PdM. In Section IV, we define
‘‘cause’’ as the primary factors that are expected to lead to
failures. Just so there is no confusion, we are not saying these

are the actual causes; the algorithm just came up with these
justifications.

Estimating the relevance of each parameter for fault
prediction can be approached in various ways, involving
specific steps for exploration and deeper analysis. One
widely used explainable method is SHAP, which quantifies
parameter importance independently of any particular model.
SHAP values are employed in SHAP method to describe the
relevance of individual parameters in prediction model.

To successfully utilize SHAP approach, output of pre-
diction model, for example, R.F must align with total
SHAP values for a given input. Determining the most
crucial parameters for fault prediction entails computing
SHAP values of all parameters under consideration. This
investigation allows us to delve into underlying reasons for
any air brake’s air pressure problems.

Given the complexities involved in precisely computing
SHAP values, methods such as Tree SHAP, Kernel SHAP,
and Deep SHAP are commonly utilized. Despite the intri-
cacies of SHAP value calculations, these methods provide
valuable insights. In this study, we implemented a prediction
model based on ML and Tree SHAP. A comprehensive
mathematical formulation of SHAP can be found in [47],
[56], and [57].

F. LIME
Black box ML models use the Locally Interpretable Model
Agnostic Explanations (LIME) technique to post-hoc explain
their predictions. Its main objective is to approximate the
behaviour of any complex model locally by constructing an
interpretable model that explains individual predictions [53].
LIME is intentionally designed to be model-agnostic,
enabling its application to any classifier, regardless of the
specific algorithm employed for predictions.
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FIGURE 5. Overview plot of SHAP values for the predicted fault
categories.

Similar to the SHAP approach, LIME primarily highlights
the local context. For each observation, LIME tries to build
a localised model so it can explain it. Using a set of data
points that are statistically close to the one being described,
this method is carried out. D.T and linear models are two
examples of the many shapes these interpretable models may
take, which helps to make them more user-friendly.

To explain a particular observation x, LIME constructs
a local model by utilizing a subset of data points that are
similar to x. This local model is then analyzed to interpret
the prediction for x. This method enables LIME to shed light
on the decision-making process of black-box models, making
it a crucial tool for model interpretation and enhancing
transparency in complex ML systems. The objective function
minimized by LIME to determine φi is expressed as follows:

ψ = arg min
g∈G(f ,g,πx )

(L(f , g, πx) +�(g)) (7)

In this formulation:

• An explanation model is represented as g ∈ G, where
G is a set of theoretically interpretable models, which
includes linear models and decision trees.

• The function f : Rd
→ R maps input instances in Rd to

an output with a real value.
• The proximity metric πx(y) takes into account how near
an instance y is to instance x.

• To determine how complicated the explanation is, the
function �(g) is used.

• To show that LIME is model-agnostic, we aim to
minimise the locality-aware loss L without supposing
any particular shape for f . How closely the function f
is approximated within the locality described by π (x) is
quantified by the loss L.

Ultimately, LIME seeks to identify a simple model g
from the set G that closely approximates the behaviour
of the complex black-box model f in the vicinity of
instance x, as indicated by the proximity measure πx(y).
This methodology allows LIME to deliver model-agnostic
explanations for individual predictions, independent of
any prior knowledge about the underlying black-box
model.

IV. RESULTS AND DISCUSSIONS
As a practical demonstration, we have selected Scania Trucks
APS failure dataset, which serves as an ideal example for
model explainability and feature contribution evaluation.
Input features in this dataset have been anonymized to protect
proprietary information, making it suitable for studying
and assessing feature importance without revealing sensitive
details. This dataset allows us to apply the earlier approach
and gain insights into how the model operates within
modified input domainwhile preserving its explainability and
performance.

A. COMPARISON OF MACHINE LEARNING CLASSIFIERS
We can determine efficiency of our ML model in terms
of its accuracy, precision, recall and F1-Score by using
various assessment parameters. R.F had the highest overall
testing accuracy 99.4% compared to other methods we tested
i.e. Decision Tree, Gradient Boosting, Logistic Regression,
K-Neighbors Classifier, XGBClassifier, CatBoosting Clas-
sifier, and AdaBoost Classifier. Table 1 below provides
results of a comparison study of all Classifiers with minority
sampling strategy used by SMOTE.

TABLE 1. Classifiers performance after SMOTE.

Confusion matrix is constructed using predicted labels
of trained machine-learning model and actual labels of
each record in test dataset. It is now possible to get ML
model assessment parameters. Confusion matrix, shown in
Figure 4.(a) is a result of R.F model applied to experimental
dataset.
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B. CAUSE ANALYSIS WITH SHAP
After assessing multiple classification techniques, we opted
for R.F as a base model to analyze relevant feature attribution.
Subsequently, we applied SHAP and observed the following
results.

For illustration of features contribution in decision process
of fault classification, a summary plot is given below in
Figure 5.While class 0 indicates no fault and class 1 indicates
prediction of fault in classification.

A SHAP decision plot in XAI provides insights into
relative impact of each input variable on model predictions.
It reveals factors that influence model’s outcomes and
sheds light on decision-making process. In Figure 6, SHAP
decision plot ranks attributes based on their importance in
fault identification. In plot, the most significant features in
model’s prediction are represented towards rightmost side
and represent positive class prediction. It is essential to note
that contribution of each variable in positive class (class 1) is
emphasized in plot. As dataset’s details are not transparent,
we can only speculate that the most helpful feature likely
belongs to family of data that includes air pressure, engine
load, gear selections, and air consumption from Scania trucks
during actual operation. These features appear to play a
crucial role in fault identification based on SHAP decision
plot.

FIGURE 6. Decision plot of SHAP values for predicted class faults.

C. SEQUENTIAL RANDOM FOREST
Upon evaluating SHAP and identifying the most influential
feature for model predictions, we proceeded to utilize only
20 out of initial 171 selected features. Remarkably, after
replicating process, we found that these chosen features
yielded identical results compared to using entire dataset’s
features.

This highlights effectiveness of SHAP in selecting essen-
tial features. By doing so, we not only reduced model
complexity and conserved computational resources but also
gained valuable insights into inner workings of ML models,
which are often perceived as black boxes.

Results for the sequential R.F are shown below in Table 2.
Confusion matrix shown in Figure 4.(b) is a result of

sequential R.F model applied to experimental dataset.

TABLE 2. Classification report from sequential random forest.

D. LIME
Both LIME and SHAP get parameters for feature contribution
at observation level (local explanation); however, techniques
that achieve this task are different. LIME obtains parameters
locally, whereas SHAP obtains them globally. Figure 7 shows
a visual representation of the results from LIME, comparing
two techniques in terms of their capacity to assess the effect of
variables at the regional level. These findings were obtained
using LIME.

FIGURE 7. Representation of features attribute from LIME.

E. ALGORITHM EFFICIENCY REVOLUTION
The computational efficiency of our training and prediction
processes was investigated in our research about optimisation
measures. We achieved significant reductions in space and
temporal complexity by exhaustive analysis and repeated
refining. As an example, the training time complexity was
lowered fromO(10 * 171 * log(171)) to O(10 * 20 * log(20)),
which is an 88.24% reduction. The prediction phase also saw
a drop, going from O(10 × log(171)) to O(10 × log(20)),
which is a reduction of 54.1%. Furthermore, improvements
in space complexity were seen during training, when the need
decreased from O(10 × 171) to O(10 × 20), indicating a
decrease of 86.35%. The findings show that our optimisation
methods were successful in making our computing processes
more efficient, which allowed us to train and forecast models
faster without compromising accuracy.
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V. CONCLUSION
Primary focus of our study is predicting APS issues
within air brake systems, employing various classification
methods. We utilized multiple classification algorithms for
fault detection, with the R.F classifier emerging as the
most effective. To understand the feature contribution within
the R.F model, we leveraged SHAP to compute overall
feature attribution, revealing that only 20 out of 171 features
significantly influenced model prediction. Subsequently,
we utilized R.F to implement these SHAP-identified features,
finding that the accuracy of these features was consistent
with previous results. Our proposed solution not only
streamlines the process but also reduces the demand for
computational resources. The most notable achievement of
our study is our concerted effort to delve into the black box
of ML models, shedding light on the inner workings and
enhancing transparency. To enhance interpretability in future
research, we propose to employ DeepLIFT, DeepSHAP
(DeepLIFT+Shapley Values).
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