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ABSTRACT An actor-critic based distributed deep reinforcement learning approach is proposed to optimize
the reactive power of the distribution network under the access of distributed photovoltaics, wind turbines
and other power sources. This approach can optimize and dispatch the resources of the distribution network
in real time under the change of power output such as distributed photovoltaics and wind turbines, so as
to optimize the reactive power of the distribution network. First, this paper builds an optimization model
with the objective function of minimizing the reactive power of the distribution network, and considers the
operating constraints. Then, the agents of the proposed approach are trained, and the well-trained agents can
schedule and optimize the resources of the distribution network in real time. Finally, based on the actual
source-load output data in a certain place, reactive power optimization simulation experiments are carried
out on the IEEE 33-bus, IEEE 123-bus simulation systems and the actual power distribution system in a
region of China. Simulation results show that the proposed distributed deep reinforcement learning approach
(DDRLA) can optimize distribution network reactive power online in real time.

INDEX TERMS Actor-critic, distributed power generation, distribution network, reactive power
optimization, distributed deep reinforcement learning.

I. INTRODUCTION
With the large-scale wind power, photovoltaic and other
distributed power sources accessing the distribution network
in large quantities, the proportion of power sources with
uncertain output in the system is gradually increasing, and the
distribution network is facing challenges in the consumption
of distributed power sources, flexible resource regulation and
control, etc. [1]. Due to the obvious fluctuation of wind
power and photovoltaic with weather changes, its output has
randomness, in addition to the random fluctuation of the
load, which brings power quality reduction, network loss
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increases and other problems to the distribution network, and
the security of the distribution system is difficult to ensure [2].

Previously, most reactive power optimization studies
focused on a single objective, such as minimizing operating
costs [3], active power loss [4], or emissions [5]. With
the construction of new power distribution systems, electric
vehicles [6], photovoltaic (PV) generations [7], etc. are
connected to distribution networks. Researchers’ goal has
changed from a single-objective reactive power optimization
problem to a multi-objective optimization problem [8] that
considers operating indicators [9], economic indicators [10],
power quality indicators [11], etc. These single-objective
optimization problems can be solved by dynamic program-
ming (DP) methods [12], fuzzy decision methods [13], etc.
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The goal of reactive power optimization in distribution
network is to effectively ensure the voltage stability of each
node and reduce voltage fluctuation and network loss under
the constraints of safe operation of the power grid [14].
Many studies have been carried out on reactive power
optimization in traditional power distribution networks, such
as genetic algorithm (GA) [15], simulated annealing (SA)
algorithm [16], and particle swarm optimization (PSO)
algorithm [17], etc. optimized solution. Ai et al. [18]
proposed a reactive power optimization algorithm for distri-
bution networkwith PV generation to address the problems of
power quality degradation. A multi-objective reactive power
optimization model is established using the Non-dominated
SortingGenetic Algorithm III (NSGA-III) to effectively solve
the problem. The experimental results show that except for
the proposed NSGA-III where active power reduction can
reach about 25%, only less than 10% of PVs active power
is reduced in all other cases. Traditional reactive power
optimization methods face challenges in achieving global
optimality and tend to have slow computational speeds.
Li et al. [19] utilized simulated annealing algorithm to
solve the mathematical models, which contains PVs, wind
turbines, and electric vehicles in active distribution networks.
The experimental results based on the on the modified
IEEE 14-bus distribution network show that the voltage
deviation and system losses are significantly decreased after
optimization. Liu et al. [20] proposed an improved PSO
algorithm combined with the ε-greedy strategy to solve
the multi-objective reactive power optimization model. The
simulation results show that in terms of the active power loss
and the static voltage stability, the proposed improved PSO
algorithm has better reactive power optimization capability
compare with the standard PSO algorithm and NSGA-II.
Henceforth, the strategy significantly explores the possibility
of finding optimal solutions in the local space during the early
stages of the iteration. Additionally, it mitigates the ten-
dency to fall into local optima in the later stages of the
iteration, enhancing the overall effectiveness and robustness
of the optimization process. Linlin et al. [21] proposed
a multi-objective reactive power and voltage optimization
model and introduced the grey wolf optimization algorithm
to effectively improve the system node voltage quality
and improve the stable operation level of the system.
Niu et al. [22] proposed a new adaptive range composite
differential evolution (ARCoDE) algorithm designed to
efficiently and accurately solve the optimal reactive power
dispatch (ORPD) problem. Thanks to a novel adaptive
range strategy for control parameters, the proposed ARCoDE
algorithm excels in both exploration and exploitation. It can
effectively manage the ORPD problem, which includes
complex constraints and a mix of discrete and continuous
variables. Saddique et al. [23] proposed a novel algorithm
called the Sine-Cosine Algorithm (SCA) is employed to
solve the ORPD problem. To demonstrate the superiority
of the proposed algorithm, its results are compared with
recently published outcomes obtained using PSO, modified

Gaussian Barebones Teaching-Learning Based Optimization
(BBTLBO), Ant Bee Colony Optimization (ABCO), Whale
Optimization Algorithm (WOA), and Backtracking Search
Algorithm (BSA). The results achieved with SCA indicate
a significant improvement in power loss minimization.
The analysis clearly shows that the proposed algorithm is
robust, effective, and computationally efficient in solving
the ORPD problem compared to existing meta-heuristic
algorithms.

However, these methods have disadvantages such as slow
calculation speed, easy to fall into local optimum, and
dependence on models and prediction data [24]. With the
increase of distribution network scale and the number of
reactive power controllable devices, the complexity of these
methods for solving reactive power optimization problems is
greatly increased [25], and they are no longer suitable for real-
time online reactive power optimization problems.

In recent years, artificial intelligence technology [26] in the
field of reinforcement learning has been rapidly developed.
The principle of deep reinforcement learning (DRL) [27] is
that the agent constantly gets feedback from the environment
during interaction with the environment, and constantly tries
to make mistakes and learns according to the feedback from
the environment in order to optimize the decision. A well-
trained agent can give optimization strategies in real time
according to the changes in the environment. In distribution
network reactive power optimization, a well-trained agent
can adapt itself to the uncertainty of source load [28] and
optimize the distribution network reactive power and network
loss.

The process of the agent interacting with the distribution
network environment in the distribution network is called
Markov Decision Process (MDP) [29], in which the agent
makes different optimization strategies according to different
environments in the distribution network, i.e., adjusts reactive
power regulation equipment according to different source-
load-output situations in the distribution network. The
agent gets different network losses under different actions,
and through continuous interaction and learning with the
environment, the final trained agent is able to adjust the
reactive power regulation equipment in real time according
to the changes of the source-load-output of the distribution
network to optimize the return value [30]. Therefore, this
paper proposes an Actor-Critic based Distributed Deep Rein-
forcement Learning Approach (DDRLA) for the distribution
network reactive power optimization and voltage fluctuation
problem considering distributed power sources and load
uncertainty. The proposed method ensures that the voltage
fluctuation of the distribution network optimize the grid
network loss under the condition that the voltage fluctuation
of the distribution network is within the constraint range.
Finally, the feasibility of the proposed Actor-Critic based
distributed deep reinforcement learning method is verified
through example proofs and reactive power optimization
simulation experiments on the improved the IEEE 33-bus
simulation system.
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The shortcomings of the proposed DDRLA are as follows.
Actor-Critic involves two neural networks. Both neural
networks update parameters in a continuous state each
time. Moreover, there is a correlation before and after each
parameter update of the neural network. This results in the
neural network potentially having difficulty converging. The
contributions are summarized as follows.

1) Better than traditional heuristic optimization method,
GA, the DDRLA can adaptively adjust the actions of SC,
OLTC, and DG in real time to optimize reactive power.

2) Compared with DQN and DDPG, DDRLA performs
better reactive power optimization effects during testing.

3) DDRLA has the capability to be applied to large-scale
power distribution systems.

The remainder of this paper is organized as follows.
Section II introduces the distributed deep reinforcement
learning approach based on Actor-Critic. In Section III,
the model for reactive power optimization problem in
distribution network is proposed. In Section IV, three
experiments are designed and conducted to validate smaller
network loss, voltage deviation effect and a real-time perfor-
mance of the proposed DDRLA. Section V concludes this
paper.

II. DISTRIBUTED DEEP REINFORCEMENT LEARNING
APPROACH BASED ON ACTOR-CRITIC
The essence of reinforcement learning lies in interactive
learning, that is, the agent can interact with the environment.
The agent selects the corresponding action according to the
current environment state to respond to the environment.
The environment gives the corresponding reward value to
the agent’s action, and the agent adjusts the action strategy
according to the reward value. The agent’s goal is to optimize
the expected value of the cumulative reward sum in constant
interactionwith the environment. By continuously interacting
with the environment and learning through trial and error,
the agent can choose an action strategy to optimize the
environment to optimize the reward.

A. ABBREVIATIONS
DP Dynamic programming
GA Genetic algorithm
SA Simulated annealing
PSO Particle swarm optimization
NSGA-III Non-dominated sorting genetic algorithm
DRL Deep reinforcement learning
MDP Markov Decision Process
KL Kullback–Leibler
DDRLA Distributed Deep Reinforcement Learning

Approach
SC Switching Capacitor
OLTC On-Line Tap Changer
DG Distributed Generation
DQN Deep Q-Network
DDPG Deep Deterministic Policy Gradient

B. MARKOV DECISION PROCESS
Reinforcement learning is a type of feedback-based learn-
ing [31]. It is modelled using the Markov decision process:
a Markov decision process is represented by a quintuple
⟨S,A,R,T , γ ⟩, where S represents the state space, A
represents the action space, R represents the reward function,
T represents the state transfer function, and γ is the reward
discount factor. The process of the interaction between the
agent and the environment can be described as: at time
t, the agent observes that the state of the environment is
st , executes an action at , the agent obtains a reward rt ,
and the environment moves to the next state st+1. As the
agent interacts with the environment, an interaction trajectory
(st , at , rt , st+1, at+1, rt+1, · · ·) is formed.

C. POLICY GRADIENT
Value-based methods, such as Q-learning [32], train a deep
learning network through TD errors, judge the Q value of
the action state through the deep learning network, and
select the action with the largest Q value through a greedy
strategy. The strategy method also uses a deep neural network
to evaluate the state, and the ultimate goal of the strategy is to
maximize the cumulative return expectation of formula (1):

max
T∑
t=1

(R (st) |πθ ) = max
T∑
t=1

(rt |st , πθ ) (1)

The core idea of the strategy method [33] is to judge
whether an action is good or bad. If the action is
good, then increase the probability of this action being
selected; otherwise, reduce the probability of this action
being selected. The agent interacts with the environ-
ment to obtain a periodic interaction sequence τ =

(s1, a1, r1, s2, a2, r2, · · · , sT , aT , rT ), and the cumulative
return of the trajectory τ can be expressed as follows:

∧

R (τ ) =
∑T

t=1
R (st , at) (2)

The cumulative advantage of the control strategy is as
follow:

∧

A (τ ) =
∧

R (τ )− Vφ (τ ) =
∑T

t=1
R (st , at)− E

[∑
τ

r (φ)

]
(3)

where Vφ(τ ) is the expected reward value of the Critic
network with the parameter φ at the trajectory τ .

Use P (τ, θ) to represent the probability of the trajectory τ

under the parameter θ , then the goal of reinforcement learning
can be updated as:

maxℜ (θ) =
∑
τ

p (τ, θ)R (τ ) (4)

Gradient descent and Monte Carlo [34] methods are used
to approximate the derivative of the objective function:

θ ← θ + α∇θ

∑
τ

logP (τ, θ)R (τ ) (5)
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Using the Monte Carlo method, the policy gradient is
approximated with the experience of m trajectories. Each
trajectory contains the complete sequence of actions taken
by the agent in the environment from the start state until the
termination state to approximate the policy gradient, which
can be expressed as:

ĝ =
1
m

m∑
i=1

∇θ

∑
τ

logP (τi, θ)R (τi) (6)

If isR (τ ) greater than 0, then the probability of trajectory τ

becomes larger; otherwise, the probability becomes smaller.

D. ACTOR-CRITIC
DDRLA’s Actor-Critic network consists of two main com-
ponents: the actor network and the critic network. The actor
network takes the state or observation as input and processes
it through several hidden layers to produce the parameters
of the action distribution, representing the policy. The critic
network also takes the state as input, processes it through
hidden layers, and outputs a single value estimating the
expected return from that state. These networks can share
initial layers or be entirely separate. The actor network’s
updates are constrained by a clipped objective to ensure stable
policy changes, while the critic network minimizes the mean
squared error between predicted values and actual returns.
Both networks are optimized simultaneously using gradient-
based methods to achieve effective and stable learning.

The role of R (τ ) is to evaluate the entire trajectory and
control the probability of the trajectory, the formula (5) can
be updated to the action strategy gradient, namely:

ĝ = E

[
T∑
t=1

Rt∇θ

∑
τ

logπθ (at |st )

]
(7)

where E [·] is the expected value at different strategies
corresponding to different probabilities.

This article uses the TD error under the action at to evaluate
the quality of the action, namely:

Rt =
(
V π (st+1)+ rt − V π (st) |at

)
π (8)

where V π (st+1) is the expected reward value of the critic
network with strategy π in state st+1. And V π (st) |at is the
expected reward value of the critic network with strategy π

in state st after taking action at .
In Actor-Critic, the optimization method of Actor uses

the evaluation of Critic combined with the strategy gradient,
and the optimization of Critic uses the value function to
approximate Rt , then the network update target of the value
function is as follows:

min
θ

[rt + Rt+1 (S, θ)− Rt (Sold , θold )]2 (9)

where Sold and S are the states before and after the update,
respectively. And θold and θ are the parameters of the actor
network before and after the update, respectively.

Deriving formula (8), and add update amplitude control
item βKL [πold |πθ ], the optimization formula is obtained:

ĝ =
T−1∑
t=1

rt + Rt+1 (S, θ)− Rt (Sold , θold )− βKL [πold |πθ ]

(10)

where πold and πθ denote the strategies before and after the
update, respectively. β denotes the penalty term coefficient.
This paper utilizes the KL divergence (Kullback-Leibler

divergence) [35] to control the update amplitude of the action
strategy. TheKL divergence is a measure of how different one
probability distribution is from another. In Bayesian theory,
there is a real distribution πold , which is estimated by an
approximate distributionπθ . TheKL divergencemeasures the
distance between the approximate distribution πθ and the true
distribution πold on the action space S, that is KL [πold |πθ ],
which can be expressed by formula (11):

KL [πold |πθ ] = Es∼P

[
log

πold

πθ

]
(11)

If the update amplitude is too large, a larger penalty term
βKL [πold |πθ ] is given, that is, the value of β is increased.
If the update amplitude is too small, a smaller penalty term
βKL [πold |πθ ] is given, that is, the value of β is reduced.
As shown in formula (12):{

β ←
∼
α β if KL [πold |πθ ] > βhighKLt arg et

β ← β/
∼
α if KL [πold |πθ ] < βlowKLt arg et

(12)

where βhighKLt arg et represents the upper control limit of
the KL divergence. βlowKLt arg et represents the lower control
limit of theKL divergence. If theKL divergence is greater than
the control upper limit value βhighKLt arg et , it means that the
update speed is too fast. Otherwise, it means that the update
speed is too slow.

∼
α is a constant greater than 1.

In this paper, the parameters of the Actor network are
updated by the update rule of the policy gradient method:

θ = θold + η1ĝ (13)

where θold and θ are the parameters before and after the
update, respectively. η1 denotes the update step of the action
network.

To update the parameters of the Critic network, the squared
error Loss LSEL(φ) is calculated:

LSEL(φ) = −
∑T

t=1

(
∧

Rt −Vφ(st )
)2

(14)

Then calculate its gradient∇φLSEL , and finally also update
the parameters of the neural network according to the update
rule of the policy gradient method:

φ = φold + η2∇φLSEL (15)

where φold and φ are the parameters before and after the
update, respectively. η2 denotes the update step of the critic
network.
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FIGURE 1. Structure of actor-critic network.

As shown in Fig. 1, the structure of Actor-Critic network
is described as follows.
Step 1: Actor interacts with the environment according to

the current policy. Actor chooses actions from the current
state and interact with the environment, receive rewards
and move to the next state. This process will generate a
trajectory sequence that contains the agent’s behavior in
the environment and the results of its interaction with the
environment.
Step 2: Use the state, action and reward information in the

trajectory sequence to calculate the TD error. Based on the
TD error, the Critic network is updated. It is an approximator
of the value function and improves the accuracy of the value
function estimation by minimizing the TD error.
Step 3: Use the updated Critic network to evaluate the

trajectory sequence. By using the Critic network to estimate
the cumulative return of each state, the trajectory sequence
is evaluated and the expected return of each state under the
current strategy is obtained.
Step 4: Use the policy gradient method to update the

parameters of the Actor network. The policy gradient method
is a gradient ascent method that uses the evaluation results of
the Critic network to calculate the gradient, indicating how
the probability of selecting actions in different states should
be adjusted in order to maximize the expected return. Use
this gradient to update the parameters of the actor network to
improve the policy.
Repeat the Above Steps: The entire training process is

an iterative process. And these steps are repeated multiple
times until the Actor and Critic networks can fit the
environment well and the strategy reaches a satisfactory level.
In each iteration, the Actor continuously improves the policy,
while the Critic gradually improves the estimation accuracy
of the value function. By constantly interacting with the
environment and updating network parameters, the entire
system is gradually fitted and optimized in the reinforcement
learning task to achieve better performance.

E. DDRLA ALGORITHM
In the nutshell, the Actor network is responsible for giving
actions based on the current state of the environment, while

the Critic network is responsible for evaluating the actions.
Then, the Actor network selects the action based on the
evaluation of the Critic network. By using an adaptive the
KL)term and multiple workers, the Actor network and Critic
network can be trained efficiently.

Pseudo-code for the DDRLA algorithm is provided in
Algorithm Boxes 1 and 2. W is the number of workers, D is
the threshold value of the parameter that can provide workers
with gradient updates,N is the total episodes, T is the number
of data points collected by each worker before computing the
parameter updates, and K is the number of time steps for
backpropagation after computing K steps.

III. MODELING
Switching Capacitor (SC) and On-Line Tap Changer (OLTC)
are discrete regulation devices. They regulate reactive power
in predetermined steps or gears, causing the system to
absorb or release a specific amount of reactive power
through the operation of a switch or transformer. These
regulation devices can only regulate at predefined discrete
levels. The reactive power of Distributed Generation (DG)
is continuously regulated. In this paper, the DG inverter
is operated on a bus with an apparent power capacity of
SDG. The DG inverter can supply or absorb reactive power
continuously over a range, instead of being able to regulate
only at a specific level, as is the case with discrete regulation
devices. This continuous regulation allows the DG system
to respond more flexibly to the changing demands of the
power system, such as adjusting reactive power in real time to
stabilize the voltage. The constraint onQDG can be expressed
as:

−QDG,MAX ≤ QDG ≤ QDG,MAX (16)

where QDG,MAX is the maximum reactive power value

running on the bus, QDG =
√
S2DG − P

2
DG; PDG is the active

power. αDG ∈ [−1, 1], QDG = αDGQDG,MAX .

A. REACTIVE POWER OPTIMIZATION MODEL DESIGN
The goal of reactive power optimization in distribution
network is to ensure that the voltage can operate within the
normal range and minimize the active network loss. The
objective function for reactive power optimization is defined
as:

min
N∑
i=1

Ploss,i (17)

where N is the number of command cycles in a day; Ploss,i is
the active network loss.

Constraints include constraints on node voltage Ud ,
reactive powerQd , and change in action value SGd , as shown
below: 

Umin ≤ Ud ≤ Umax

Qmin ≤ Qd ≤ Qmax

SGmin ≤ SGd ≤ SGmax

(18)
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Algorithm 1 DDRLA (chief)
for i ∈ {1, · · · ,N } do

for j ∈ {1, · · · ,M} do
Wait until the gradient on θ is available for at least D workers out ofW workers.
Average the gradient values and update the global θ .

for j ∈ {1, · · · ,M} do
Wait until the gradient on φ is available for at least D workers out ofW workers.
Average the gradient values and update the global φ.

end for
end for

Algorithm 2 DDRLA (worker)
Randomly initialize Actor network µ(s |θ ), Critic network Q(s, a |φ ) and the Kullback–Leibler (KL) penalty.
for the number of iterations ofi ∈ {1, · · · ,N } do

Receive initial observation state s1.
for ω ∈ {1, · · · ,T/K } do
Select action at = µ(st |θ ) according to the current policy πθ .
Perform Action at .
Get reward according to reward function rt .
Observe new state st+1.
Collect {st , at , rt } for trajectory τ = (s1, a1, r1, s2, a2, r2, · · · , sT , aT , rT ).

Estimate the reward
∧

R (τ ) =
∑T

t=1 R (st , at).

Estimate advantages
∧

A (τ ) =
∧

R (τ )− Vφ (τ ).
Storing partial trajectory information.

end for
πold ← πθ

for m ∈ {1, · · · ,M} do

Rt = (V π (st+1)+ rt − V π (st) |at ), ĝ = E
[
T∑
t=1

Rt∇θ

∑
τ

logπθ (at |st )
]

if KL [πold |πθ ] > 4KLt arg et then
Interrupt and continue to the next external iteration i+ 1.

end if

Calculate ĝ =
T−1∑
t=1

rt + Rt+1 (S, θ)− Rt (Sold , θold ).

Send gradient θ to chief.
Wait until gradient is accepted or discarded; then update parameters.

end for
for b ∈ {1, · · · ,B} do
LSEL(φ) = −

∑T
t=1
∧

R
t
−Vφ (st)

Calculate ∇θLSEL .
Send gradient φ to chief.
Wait until gradient is accepted or discarded; then update parameters.

end for
if KL [πold |πθ ] > βhighKLt arg et then

λ←
∼
α λ

else if KL [πold |πθ ] < βlowKLt arg et then
λ← λ/

∼
α

end if
end for

VOLUME 12, 2024 113903



J. Liao, J. Lin: DDRLA for Reactive Power Optimization of Distribution Networks

B. DEEP REINFORCEMENT LEARNING
During the learning process, the agent interacts with the
environment of the distribution grid system and achieves
reactive power optimization of the power system by executing
actions. The agent optimizes the reactive power allocation
by constantly observing the state of the distribution network
system and adjusting the strategy function according to the
current state to select an appropriate action strategy. During
the training process, the agent continuously learns and adjusts
according to the feedback information of the environment
to obtain better optimization performance. Through such
interaction and learning, the agent gradually masters the
methods and techniques for reactive power optimization of
the distribution network system, so that the reactive power
allocation can be more flexible and efficiently adapted to
different power system operating states in order to achieve the
optimal balance of voltage stability and energy utilization.

C. STATE AND ACTION
The action space can be expressed as [a1, a2, · · · , aN ]T . ai is
the action set corresponding to SC, OLTC, and DG, ai ∈ Ai,
Ai is the search space for the i-th action, i ∈ {1, 2, · · · ,N }.
That is, the optimal combination of these actions needs to be
chosen to achieve the optimization goal.

In this paper, three important variables and matrices
are introduced to describe the decision-making process of
reactive power optimization in distribution networks. These
variables provide a comprehensive description of the state of
the distribution network and the operation of the regulation
devices during the different decision phases. The voltages on
all buses in the distribution network system as a state space
can be represented as:

si = {Ui, SGi,Ei} (19)

where Ui is the node voltage matrix of the distribution
network in the i-th decision-making stage, and the dimension
is n × m, n is the number of measurable nodes, m is the
measurement times of the action cycle; SGi is the switching
position of each regulating device in the i-th action cycle; Ei
is the action completed by each regulating device in an action
period.

In this paper, the action decision-making cycle time of
the distribution network system is 15 minutes, the sampling
period of the reactive equipment is 15 minutes.

D. REWARD FUNCTION
The SC node voltage needs to meet the constraints, and the
reward is set to the opposite number of the sum of the network
loss and the action cost. The reward is defined as:

ri,SC = −Ploss,i − λSC

i∑
j=1

∣∣GSC,j − GSC, j−1
∣∣ (20)

where λS is the action adjustment coefficient, and GSC, j is
the switching gear of SC at the j-th decision-making time.

The reward obtained by OLTC at the current action
moment is defined as:

ri,OLTC = −Ploss,i − λO

i∑
j=1

∣∣GOLTC,j − GOLTC,j−1
∣∣ (21)

where λO is the action adjustment coefficient, and GOLTC,j is
the switching gear of the OLTC at the j-th decision-making
time.

The reward obtained by DG at the current scheduling
moment is defined as:

ri,DG = −Ploss,i − λD

ND∑
k=1

∣∣∣∣Uk,j − Uk,baselineUmax − Umin

∣∣∣∣ (22)

where λD is the DG gear adjustment coefficient, Uk,baseline
is the voltage reference value, Uk,j is the voltage of the bus
connected to the DG, Umax and Umin is the voltage upper and
lower limits, and ND is the total number of nodes.

E. TIME COMPLEXITY OF ALGORITHM
From Algorithm Boxes 1 and 2, the time complexity of the
algorithm is as follows:

O (N · T ) = O
(
n2

)
(23)

Therefore, N and T should not be too large when training
for reinforcement learning and designing the simulation
model. By providing the initial probability distribution and
hyperparameter tuning, both can effectively reduce the values
of N and T , thus reducing the time complexity.

IV. EXPERIMENTAL VERIFICATION
Select the actual data of distributed photovoltaics, wind
turbines and load output in a certain area of China for
half a year to analyze the computing power based on deep
reinforcement learning. Randomly select two typical days (a
typical day in winter and a typical day in summer) for a total
of 60 days as the test set, and the rest of the time as the training
set, and the decision-making interval is set to 15 minutes.

In order to verify the effectiveness of DDRLA, this paper
uses the following three algorithms for comparison: (1) the
traditional optimization algorithm, GA [36]; (2) Value-based
reinforcement learning algorithm, Deep Q-Network (DQN)
[37]; (3) Policy-based reinforcement learning algorithm,
Deep Deterministic Policy Gradient (DDPG) [38].
The hardware and software platforms for the simulation

tests conducted in this paper are shown in Table 1.

TABLE 1. Hardware and software platforms.
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TABLE 2. Neural network parameter settings.

A. DEEP LEARNING TRAINING PROCESS
In this paper, Pytorch framework is used to build a distributed
deep reinforcement learning algorithm, and a specific neural
network structure is designed as the model. The specific
neural network structure and training parameter settings are
detailed in Table 2.

Pytorch provides flexible and powerful tools to facilitate
the construction of complex neural network models and
supports distributed training, which can make full use of
multiple computational resources for parallel computation
and improve the training efficiency and performance of the
algorithm. With such a build, we are able to effectively
implement deep reinforcement learning algorithms and
conduct accurate model training and performance evaluation
in experiments.

In the training phase, the actions of the intelligences are
first initialized, and then, in the simulation environment of
the distribution network system, the tidal current is calculated
according to the action instructions provided by the Actor-
Critic network, and the corresponding action a is executed.
Next, the corresponding reward r is calculated according to
the reward function of each worker to evaluate the impact of
the action on the performance of the system. Subsequently,
Actor organizes the collected data

(
s, a, r, s′, a′

)
and envi-

ronment state information and stores them in the experience
playback pool. The experience playback pool is used to store
the experience data of the agent at different decision-making
stages for random sampling and reuse in the training process.
Through such a data collection and experience playback
mechanism, the agent gradually learns better strategies to
make better decisions in similar states, so as to achieve the
goal of distribution network reactive power optimization.
When the number of cache pools reaches the set threshold,
Actor updates the policy π and the critic updates the action
value parameters. critic can receive the data collected by the
actor and update the action value parameters by combining
the data generated by the actor. The training is repeated until
convergence.

B. ALGORITHM VALIDITY VERIFICATION IN THE IEEE
33-BUS SIMULATION SYSTEM
The calculation example is based on the IEEE 33-bus simula-
tion system. The calculation example system includes 3 DGs,
each with a capacity of 750 kW, as shown in Figure 2.

FIGURE 2. Distribution network example system based on IEEE 33-bus.

In Figure 2, parallel capacitors are added to nodes 21 and
32 in the system. The maximum number of actions per SC
per day is 5. SC1 has 6 gears, each gear is 0.4MVar, the total
capacity is 2MVar, SC2 has 5 gears, each gear is 0.3MVar,
the total capacity is 1.2MVar. OLTC sets 10 adjustment gears.
In the IEEE 33-bus distribution network system, it is assumed
that SC1 and SC2 each have 5 or 4 gears (corresponding
to 6 or 5 switching states) designated as the action of No.
1 worker, denoted as dim(ξ1) = 6 × 5 = 30. OLTC
has 11 discrete positions designated as the actions of No.
2 worker, denoted as dim(ξ2) = 11. In order to achieve a
better training convergence effect, the DG of node 15 is used
to participate in the adjustment of reactive power, and the DG
is set to have 20 discrete gears as the actions of No. 3 worker,
denoted as dim(ξ3) = 20. All actions are combined by matrix
splicing dim(ξ1)× dim(ξ2)× dim(ξ3) = 6600.
Four different optimization methods are simulated at the

typical time of 12:00 on a typical day (summer day andwinter
day), and the average network loss and voltage deviation are
compared. The experimental results are shown in Table 3.
As can be seen in Table 3, the DDRLA algorithm used in this
paper has the lowest network loss in typical summer days.
Compared with GA, DQN, and DDPG, the average network
loss in summer days is reduced by 13.59%, 8.94%, and
3.08%. The average network loss in winter days decreased
by 16.72%, 6.58%, and 3.07% respectively. In addition,
the voltage deviation after DDRLA optimization is the
smallest, which ensures the stability of voltage operation
and minimizes voltage fluctuations. In summer days, the
voltage deviation of DDRLA is 55.05%, 44.03%, 10.56%
lower than that of GA, DQN, and DDPG, respectively. And
in winter days, the voltage deviation of DDRLA is 55.25%,
44.99%, 13.55% lower than that of GA, DQN, and DDPG,
respectively.

Therefore, DDRLA can reduce the system network loss
with greater efficiency under the two typical conditions,
which proves the effectiveness and superiority of DDRLA
proposed in this paper.

The daily cumulative stall changes of OLTC and SC
regulated equipment for the four methods under two typical
days are shown in Figure 3. As can be seen from Figure 3, the
cumulative gear change of the equipment after optimization
using the DDRLA of this paper is smaller than that of the
other two methods, which indicates that the action cost of
optimizing the equipment by the method of this paper is
smaller, and it has better economy.
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TABLE 3. Comparison of typical daily network loss and voltage deviation in t the IEEE 33-bus distribution network system.

TABLE 4. Parameters of voltage regulation devices.

TABLE 5. Comparison of typical daily network loss and voltage deviation in the IEEE 123-bus simulation system.

FIGURE 3. Daily cumulative number of stall changes for different
methods of discrete regulation of equipment.

C. ALGORITHM VALIDITY VERIFICATION IN THE IEEE
123-BUS SIMULATION SYSTEM
In order to validate the scalability and applicability of
the proposed DDRLA, simulations of the IEEE 123-bus
simulation system are carried out. The detailed parameters
of the devices are shown in Table 4.
The network loss results of the IEEE 123-bus simulation

system in two typical days were comparatively analyzed,

FIGURE 4. Distribution network example system based on IEEE 123-bus.

as shown in Table 5. As can be seen fromTable 5, the DDRLA
proposed in this paper has the lowest network loss in typical
summer. Compared with GA, DQN, and DDPG, the average
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TABLE 6. Comparison of typical daily network loss and voltage deviation in the actual power distribution system in a region of China.

network loss in summer is reduced by 13.47%, 10.17%
and 5.07%, respectively. The average network losses in
winter decreased by 17.79%, 7.85% and 4.02% respectively.
In addition, DDRLA has been optimized to minimize voltage
deviation, ensuring the stability of voltage operation and
minimizing voltage fluctuations. In summer days, the voltage
deviation of DDRLA is 55.60%, 44.81%, 11.58% lower
than that of GA, DQN, and DDPG, respectively. And in
winter days, the voltage deviation of DDRLA is 55.54%,
46.10%, 14.89% lower than that of GA, DQN, and DDPG,
respectively.

Therefore, the effectiveness, superiority and applicability
of the DDRLA proposed in this article are proved.

D. ALGORITHM VALIDITY VERIFICATION IN THE ACTUAL
POWER DISTRIBUTION SYSTEM IN A REGION OF CHINA
In order to validate the scalability and applicability of
the proposed DDRLA, simulations of the actual power
distribution system in a region of China are carried out.

FIGURE 5. Actual power distribution system in a region of China.

The network loss results of the actual power distribution
system in a region of China in two typical days were
comparatively analyzed, as shown in Table 6. Compared to
GA, DQN, and DDPG, the average network loss in summer
is reduced by 13.30%, 11.89%, and 7.80%, respectively.
In winter, the average network losses decreased by 19.30%,
9.63%, and 5.37%, respectively. Additionally, DDRLA has
been optimized to minimize voltage deviation, ensuring
stable voltage operation and reducing voltage fluctuations.
During summer, DDRLA achieves voltage deviations that
are 55.43%, 44.56%, and 11.26% lower than those of GA,
DQN, and DDPG, respectively. In winter, DDRLA’s voltage

deviations are 55.45%, 45.76%, and 14.48% lower than those
of GA, DQN, and DDPG, respectively.

Therefore, the superiority of the proposed algorithm is
proved by the realistic examples based on the actual power
distribution system in a region of China.

DDRLA achieves effective optimization due to its stability
and efficiency in training. By using a clipped surrogate
objective, DDRLA ensures gradual and controlled policy
updates, preventing the destabilizing effects of large changes.
It enhances sample efficiency through importance sampling,
allowing multiple updates from the same batch of data.
The simultaneous optimization of policy and value functions
accelerates convergence and improves the accuracy of value
estimates. DDRLA is computationally efficient and robust
to hyperparameter variations, making it adaptable to a
wide range of tasks. Additionally, it avoids the complex-
ity of second-order optimization while maintaining strong
performance.

E. COMPUTATIONAL PERFORMANCE
In the online testing phase, the DDRLA algorithm was
applied to the IEEE 33-bus IEEE 123-bus simulation systems
and the actual power distribution system in a region of China.
The average execution time of the DDRLA algorithm is
28.2ms, 46.5ms and 30.8ms, respectively, which can meet the
real-time requirements of distribution systems.

Therefore, the DDRLA algorithm proposed in this article
is reasonable when dealing with high-dimensional action
spaces. The space is high-dimensional, and the DDRLA
algorithm proposed in this article is reasonable.

V. CONCLUSION
This paper proposes an Actor-Critic-based distributed deep
reinforcement learning approach (DDRLA) to optimize
reactive power in distribution networks. A well-trained
agent can adaptively make decisions to adjust node voltage
and reduce grid losses. This proposed DDRLA achieves
better optimization results by designing multi-worker online
training. Compared with the genetic algorithm (GA), deep Q
network (DQN), deep deterministic policy gradient (DDPG)
method, the DDRLA used in this paper ensures the minimum
voltage fluctuation while the network loss of the optimized
distribution network system is minimal. It has a remarkable
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effect in improving the safe, reliable, real-time performance
and efficient operation of the distribution network.

In the IEEE 33-bus simulation system, compared with GA,
DQN, and DDPG, the average network loss of DDRLA in
summer is reduced by 13.59%, 8.94%, and 3.08%, respec-
tively, and the average network loss in winter is reduced by
16.72%, 6.58%, and 3.07%, respectively. In addition, voltage
operation, DDRLA has a better optimization effect than GA,
DQN, and DDPG. In summer days, the voltage deviation
of DDRLA is 55.60%, 44.81%, 11.58% lower than that of
GA, DQN, and DDPG, respectively. And in winter days, the
voltage deviation of DDRLA is 55.54%, 46.10%, 14.89%
lower than that of GA, DQN, and DDPG, respectively.
Besides, the average execution time of the DDRLA algorithm
is only 28.2ms, which meets the real-time performance.

What is more, DDRLA is also applied to the IEEE 123-bus
simulation system, compared with GA, DQN, and DDPG,
the average network loss of DDRLA in summer is reduced
by 13.47%, 10.17% and 5.07%, respectively, and the average
network loss in winter is reduced by 17.79%, 7.85% and
4.02%, respectively. In terms of voltage deviation, in summer
days, DDRLA is 55.60%, 44.81%, 11.58% lower than GA,
DQN, and DDPG, respectively. And in winter days, DDRLA
is 55.54%, 46.10%, 14.89% lower than GA, DQN, and
DDPG, respectively. And the average execution time of the
DDRLA algorithm is only 46.5ms, which meets the real-time
performance in the more complex system.

To verify the superiority of the proposed algorithm, it is
applied to the actual power distribution system in a region
of China. Compared to GA, DQN, and DDPG, the average
network loss in summer is reduced by 13.30%, 11.89%,
and 7.80%, respectively. In winter, the average network
losses decrease by 19.30%, 9.63%, and 5.37%, respectively.
Additionally, DDRLA is optimized to minimize voltage
deviation, thereby ensuring stable voltage operation and
reducing voltage fluctuations. On summer days, the voltage
deviation of DDRLA is 55.43% lower than GA, 44.56%
lower than DQN, and 11.26% lower than DDPG. Similarly,
on winter days, DDRLA achieves a voltage deviation
reduction of 55.45% compared to GA, 45.76% compared to
DQN, and 14.48% compared to DDPG.

In future work, the proposed DDRLA algorithm will
be further examined by varying different parameters. The
outcomes obtained with these varying parameters will be
compared and analyzed in detail. The currently proposed
algorithm needs to be improved in three aspects: algorithmic
exploration performance, large-scale distribution system
adaptability and algorithmic stability. Future work can be
carried out from the following three aspects to improve the
shortcomings of the DDRLA, as follows.

1) Improve the exploration scope and utilization balance
to improve the performance of the algorithm.

2) Improve algorithm training speed to adapt to the needs
of large-scale environments.

3) Improve algorithm stability to solve problems such as
gradient disappearance and gradient explosion.
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