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ABSTRACT Credit risk prediction is a critical task in the financial industry, allowing lenders to assess
the likelihood of a borrower defaulting on a loan. Traditional machine learning (ML) classifiers have been
widely used for this purpose, and they often struggle with imbalanced data and lack interpretability, making
it challenging for financial institutions to make informed decisions. This article explores the use of ensemble
classifiers and Synthetic minority over-sampling Edited nearest neighbor (SMOTE-ENN) technique in
credit risk prediction, aiming to improve the classification performance. The ensemble classifiers include
Random Forest, adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM). The study addresses the class imbalance issue by leveraging ensemble
classifiers and the SMOTE-ENN technique while employing Shapley additive exPlanations (SHAP) for
model interpretability. The experimental results showed that the proposed approach resulted in improved
classification performance. Specifically, on the German credit dataset, XGBoost outperformed the other
models with a Recall of 0.930 and a Specificity of 0.846, while Random Forest obtained the best performance
on theAustralian dataset, achieving a Recall of 0.907 and Specificity of 0.922. Additionally, the integration of
SHAP enhanced the models’ transparency by providing valuable insights into the contribution of individual
features, which is crucial for informed financial decision-making.

INDEX TERMS CART, credit risk, ensemble learning, XAI, machine learning, SHAP.

I. INTRODUCTION
Credit risk prediction is a critical task in the financial
industry, as it allows lenders to assess the likelihood of
a borrower defaulting on a loan. Machine learning (ML)
techniques have become increasingly popular in credit risk
prediction due to their ability to handle large amounts
of data and complex relationships between variables [1],
[2], [3]. However, traditional methods of credit risk pre-
diction often rely on single classifiers, which may not
capture the complexity of the data and lead to poor
performance.

Imbalanced data poses a challenge in credit risk prediction,
as there are typically far more instances of non-defaulting
borrowers than defaulting borrowers in the dataset [4], [5].
This imbalance can lead to biased models that prioritise
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the majority class and overlook the minority class [6], [6].
In order to address the class imbalance, researchers have
been exploring various techniques, including resampling,
ensemble learning, and cost-sensitive learning methods,
ensuring that both defaulting and non-defaulting borrowers
are represented equally [7], [8], [9].

Additionally, the black-box nature of machine learning
algorithms makes it difficult to understand how the model
arrives at its predictions, which is a critical aspect in the
financial industry where transparency and interpretability
are crucial for decision-making [10]. Recently, explainable
artificial intelligence (XAI) techniques have been developed
to increase the transparency of machine learning algo-
rithms [11]. XAI enables researchers to gain insights into
how the model makes its predictions [12]. This allows for
a better understanding of the factors contributing to credit
risk, enabling financial institutions to make more informed
decisions.
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The combination of efficient data resampling, ensemble
learning, and XAI has the potential to enhance credit risk
prediction. Therefore, in this study, we aim to explore the
effectiveness of ensemble classifiers in predicting credit risk
while providing model explanations. Specifically, the study
aims to compare the performance of some popular ensemble
classifiers, including random forest, AdaBoost, XGBoost,
and LightGBM. These classifiers are also compared with
traditional single classifiers, such as decision trees, logistic
regression, and Multilayer perceptron (MLP). The study
also aims to examine the interpretability of the models by
generating SHAP values and plots to understand the factors
influencing credit risk prediction. The main contributions of
this study are:
• Investigating the impact of ensemble classifiers on credit
risk prediction.

• Demonstrating the potential of SMOTE-ENN in improv-
ing credit risk prediction models.

• Providing insights into the key factors influencing credit
risk through model interpretation.

• Discussing the implications of our findings for financial
institutions and the future of credit risk prediction.

The rest of this paper is structured as follows: Section II
reviews related credit risk literature. Section III presents
the various datasets, ML algorithms, performance evaluation
metrics used in the study, and the proposed credit risk frame-
work. Section IV presents and discusses the experimental
results, and Section IV concludes the study.

II. RELATED WORKS
Credit risk assessment is pivotal in the financial domain,
with early works primarily leveraging logistic regression
and decision tree algorithms for prediction tasks [13], [14],
[15], [16]. These traditional methods, while foundational,
exhibit limitations, particularly when dealing with imbal-
anced datasets, which is a common scenario in credit risk
modelling [17], [18].

To address these challenges, recent studies have been
using ensemble learning techniques that combine multiple
classifiers to enhance the predictive accuracy [19]. Random
Forest andAdaBoost, for instance, have been demonstrated to
offer improved performance by aggregating diverse decision
trees to reduce variance and bias [9], [20], [21], [22].
More advanced gradient boosting frameworks like XGBoost
and LightGBM further build upon this, introducing more
sophisticated optimization and regularization techniques to
tackle overfitting and speed the training processes [4], [23],
[24].

Meanwhile, resampling techniques, such as SMOTE and
ENN, have been used to address the class imbalance problem.
For example, Mahbobi et al. [25] incorporated SMOTE and
artificial neural networks for credit risk prediction, obtaining
an accuracy of 98.6%. Also, Gicic and Donko [26] used
SMOTE with deep learning architectures, including long
short-term memory (LSTM), stacked LSTM, Bidirectional

LSTM (BiLSTM), and Stacked BiLSTM networks, with the
stacked BiLSTM obtaining the highest accuracy of 87.19%.

The challenges noted in these studies typically include
handling large volumes of data, integrating diverse types
of data (e.g., structured and unstructured), and ensuring the
fairness and unbiased nature of the predictions.** **Recent
literature also highlights the struggle with computational
efficiency and scalability when applying complex models to
real-world data, pointing to an ongoing need for innovations
in computational strategies and hardware optimization [27],
[28], [29].

Furthermore, interpretability in machine learning has
received significant attention, leading to the utilization
of SHapley Additive exPlanations for explaining individ-
ual predictions in different applications [30], [31], [32].
SHAP values, based on cooperative game theory, pro-
vide a mathematically rigorous approach to quantify the
contribution of each feature to a given prediction, thus
offering transparency and insight into model decisions [33].
For instance, Wang et al. [34] employed SHAP values to
interpret the prediction of ML models applied to student loan
default prediction. The integration of the SHAP technique
led to several insights, such as how the risk of student
loan default is influenced by factors like college entrance
examination scores, academic performance, and the number
of scholarships received by the student.

Major findings in the field suggest that while advanced
ML techniques can significantly improve predictive accuracy,
they often sacrifice transparency. This trade-off calls for
continuous efforts to balance complexity and interpretability,
ensuring that models perform well and are understandable
to stakeholders [28], [35]. Meanwhile, the reviewed research
works and the challenges identified indicate the need for
a multi-faceted approach to credit risk evaluation. There-
fore, this study proposes an approach that combines the
strengths of ensemble classifiers, resampling techniques,
and interpretability methods to create robust, understandable
models.

This study advances existing models by employing
sophisticated ensemble classifiers, including random forest,
AdaBoost, XGBoost, and LightGBM, which, when com-
binedwith the SMOTE-ENN technique, effectively addresses
the issue of data imbalance that affects traditional single clas-
sifiers. Furthermore, using SHAP for model interpretability
provides deeper insights into the decision-making processes,
enhancing the transparency and usability of the predictive
models in practical scenarios.

III. MATERIALS AND METHODS
A. DATASETS
In this study, two publicly available datasets are employed.
The first is the German Credit Dataset [36], which is
comprised of 1000 instances, each representing an individual
credit applicant. The features include a range of attributes,
shown in Table 1. Each attribute contributes to the final
decision of classifying the credit risk of the applicant as either
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TABLE 1. German credit dataset.

good or bad. This dataset is widely used for benchmarking
classification algorithms in credit risk assessment.

The second dataset is the Australian Credit Approval
dataset [37], a publicly available dataset for credit card
applications. It comprises instances representing individual
applicants for credit, where the various attributes relate to the
applicant’s financial history. The dataset’s primary objective
is to predict whether an application should be approved or
denied, making it an essential resource for developing and
testing credit scoring models. The dataset is described in
Table 2.

TABLE 2. Australian credit approval dataset.

B. CLASSIFIERS
1) RANDOM FOREST
Random Forest is a robust ensemble learning algorithm that
operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the
classes of the individual decision trees [38], [39]. Random
Forests aim to reduce the overfitting of individual decision
trees by averaging their predictions, thereby improving the
accuracy and robustness of the model [40].

The decision trees are created using different subsets of
the dataset. For each tree, a bootstrap sample is used, i.e.,
a random selection with replacement from the training data.
This process is known as bootstrap aggregating or bagging.
During the construction of each tree, a random subset of
features is selected at each split point, introducing feature

randomness [41], [42]. This ensures that the trees in the forest
are uncorrelated, enhancing the diversity of the ensemble and,
consequently, its predictive performance. The typical choice
for the number of features considered at each split is

√
m for

classification, where m is the total number of features.
Assuming {T1,T2, . . . ,Tn} is the set of decision trees in

the random forest, and h(x,Ti) is the prediction of tree Ti
for input x, the model prediction, H (x), is the mode of the
predictions made by the individual trees:

H (x) = mode{h(x,T1), h(x,T2), . . . , h(x,Tn)}. (1)

2) XGBoost
The XGBoost is an efficient and scalable implementation
of gradient-boosted trees designed for speed and perfor-
mance [10], [43]. It is known for its ability to handle
sparse data and its use of a novel tree-learning algorithm.
XGBoost improves on the traditional gradient boosting
method by introducing a regularization term in the objective
function, which helps to control over-fitting [44]. The core
principle involves sequentially adding predictors that correct
its predecessor, thus improving the model with each iteration.
The objective function that XGBoost optimizes is given by:

L(φ) =
∑
i

l(ŷi, yi)+
∑
k

�(fk ), (2)

where l is a differentiable convex loss function that measures
the difference between the prediction ŷi and the target yi,
and � penalizes the complexity of the model to avoid
overfitting [44].

3) AdaBoost
AdaBoost focuses on converting a set of weak learners
into strong learners by iteratively adjusting the weights of
incorrectly classified instances. It adapts by giving more
weight to difficult-to-classify instances and less to those
already classified correctly in previous iterations [45], [46].
The final model is a weighted sum of the weak learners,
calculated as follows:

F(x) =
T∑
t=1

αtht (x), (3)
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where ht (x) is the output of the weak learner, and αt is its
weight in the final prediction, with T being the total number
of iterations.

4) LightGBM
LightGBM is a gradient boosting framework that uses
tree-based learning algorithms designed for distributed
and efficient training, particularly on large datasets [47].
It introduces two novel techniques: gradient-based One-
Side Sampling (GOSS) to filter out the data instances to
focus on those with larger gradients, and exclusive feature
bundling (EFB) to reduce the number of features in sparse
datasets [48]. LightGBM builds trees leaf-wise (best-first),
as opposed to level-wise, allowing it to achieve lower loss
compared to level-wise growth [49]. The LightGBM model
is highly customizable and capable of handling categorical
features natively.

5) CLASSIFICATION AND REGRESSION TREE
The Classification and Regression Trees (CART) algorithm
is a tree-building technique that splits a dataset into subsets
based on a decision rule inferred from the input variables.
CART can be used for classification or regression tasks.
The decision rule at each node is chosen based on the
Gini impurity, aiming to maximize the homogeneity of the
subsets [50], [51]. The Gini impurity is defined as follows:

Gini(D) = 1−
m∑
i=1

p2i (4)

where D is the dataset at a node, m is the number of classes,
pi is the proportion of class i in the datasetD, N is the number
of samples, yi is the actual value, and ŷ is the predicted
value. The algorithm recursively splits the training set until a
specified maximum depth is reached or no further gains can
be made [38], [52], [53].

6) LOGISTIC REGRESSION
Logistic regression is a statistical method that is used to
predict the probability of a binary outcome based on one or
more predictor variables. The model is built on the logistic
function, an S-shaped curve that can take any real-valued
number and map it into a value between 0 and 1, but never
exactly at those limits [54], [55]. Mathematically, if P is the
probability of the outcome, the logistic regression equation
can be written as:

log
(

P
1− P

)
= β0 + β1X1 + β2X2 + · · · + βkXk (5)

where:
• log

(
P

1−P

)
is the logit function.

• P is the probability of the presence of the characteristic
of interest.

• β0, β1, β2, . . . , βk are the regression coefficients indi-
cating the weight of each factor.

• X1,X2, . . . ,Xk are the independent variables.

7) MULTILAYER PERCEPTRON
A Multilayer Perceptron is a class of feedforward artificial
neural network (ANN) that consists of at least three layers
of nodes: an input layer, a hidden layer, and an output
layer [56]. Except for the input nodes, each node is a neuron
that uses a nonlinear activation function. MLP utilizes the
backpropagation technique for training. It is represented by
the following:

ŷ = σ (W2σ (W1x + b1)+ b2) (6)

where x is the input vector, W1 and W2 are weights, b1 and
b2 are bias terms, σ is the activation function, and ŷ is the
output. The model learns by adjusting the weights and biases
to minimize the difference between the actual and predicted
outputs, typically using gradient descent.

C. SMOTE-ENN
The Synthetic Minority Over-sampling Technique - Edited
Nearest Neighbors is a hybrid approach for handling
imbalanced datasets, which combines the over-sampling
approach of SMOTE with the under-sampling technique of
ENN [57]. SMOTE-ENN aims to balance dataset distribution
by synthetically generating new instances of the minority
class and removing the instances of both classes that are
identified as noise or in the class overlapping areas. This
method not only augments the minority class but also ensures
that the classifier boundary is more general and not overfitted
to the noisy data [41], [58].

Algorithm 1 SMOTE-ENN Algorithm
1: Input: Dataset D with minority class M and majority

class N , Over-sampling rate S, Number of nearest
neighbors k

2: Output: Balanced Dataset D′

3: Apply SMOTE to D with over-sampling rate S and k
nearest neighbors to generate synthetic samples for
minority classM

4: Combine original dataset D with synthetic samples to
form an augmented dataset Daug

5: Apply ENN to Daug to remove samples that do not agree
with majority of its k nearest neighbors

6: D′← The resulting dataset after ENN
7: return D′

Furthermore, SMOTE generates synthetic samples by
operating in the feature space rather than the data space.
For each minority class sample xi, SMOTE selects k nearest
neighbors from the minority class, chooses one neighbor xnn
at random, and generates a new sample xnew as follows:

xnew = xi + λ · (xnn − xi), (7)

where λ is a random number between 0 and 1. Meanwhile,
ENN removes instances of the dataset that are misclassified
by their k nearest neighbors, making the class boundaries
cleaner and less prone to overfitting. The SMOTE-ENN
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technique is described in Algorithm 1. The combination of
SMOTE and ENN effectively balances the class distribution
while removing noisy and borderline instances, thus improv-
ing the performance of classification models on imbalanced
datasets.

D. SHAPLEY ADDITIVE EXPLANATIONS
Interpretable machine learning seeks to explain the
decision-making process of complex models, offering
insights into the contribution of individual features to
the output of the model [59], [60], [61]. SHAP is a
game theory-based approach that assigns each feature an
importance value for a particular prediction. It connects
optimal credit allocations with local explanations using the
classic Shapley values from cooperative game theory and
their related extensions [62], [63]. The Shapley value is the
average marginal contribution of a feature value across all
possible coalitions. For a prediction instance i and a feature
value vj, the Shapley value φj is computed as:

φj(vj) =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |!

(8)

[fS∪{j}(vS ∪ vj)− fS (vS )] (9)

where F is the set of all features, S is a subset of features,
fS is the model function trained on the feature subset S, vS is
the set of feature values for S, and | · | denotes the cardinality
of a set. SHAP values interpret the impact of having a certain
value for a given feature compared to the prediction wewould
make in the absence of that feature [64]. This aligns with
the intuition that features contributing positively towards the
prediction will have larger SHAP values and vice versa for
features detracting from the prediction outcome. SHAP not
only provides a measure of feature importance but also offers
local explanations that reveal the effect of each feature on
an individual prediction. This granular insight is valuable,
especially in critical applications such as finance, where
understanding model predictions is essential for trust and
actionable intelligence.

E. PERFORMANCE EVALUATION METRICS
Performance evaluation metrics are important for assessing
the effectiveness of ML models. In this study, the following
metrics are used: accuracy, precision, recall, specificity, and
F-measure. These metrics are obtained from the confusion
matrix, a table used to describe the performance of a
classification model on a set of test data for which the
true values are known. It contains information about actual
and predicted classifications done by a classifier and helps
to visualize the performance of an algorithm. The terms
involved are:

• True Positives (TP): Correctly predicted positive obser-
vations

• True Negatives (TN): Correctly predicted negative
observations

• False Positives (FP): Incorrectly predicted positive
observations

• False Negatives (FN): Incorrectly predicted negative
observations

Confusion Matrix =
[
TN FP
FN TP

]
1) ACCURACY
Accuracy measures the proportion of correctly predicted
observations in the dataset. It is calculated as the number
of correct predictions divided by the total number of
predictions [65].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

2) SENSITIVITY
Sensitivity, as called recall, measures the proportion of
correctly predicted positive instances out of all actual positive
instances in the dataset [66]. It is calculated as the number of
true positive predictions divided by the sum of true positive
and false negative predictions. They are defined as:

Recall =
TP

TP+ FN
(11)

3) SPECIFICITY
Specificity quantifies the test’s ability to correctly identify
negative instances among all actual negatives in the dataset.
Specifically, it measures the proportion of true negative
outcomes to the total number of actual negative cases [67],
[68]. It is given by the formula:

Specificity =
TN

TN + FP
(12)

A high specificity value indicates that themodel effectively
identifies negative cases and minimises false positives [69].

4) F-MEASURE
The F-measure is the harmonic mean of precision and recall,
providing a balance between the two [70]. It is defined as:

F1 = 2×
Precision× Recall
Precision+ Recall

(13)

Meanwhile, Precision measures the proportion of correctly
predicted positive instances out of all instances that were
predicted as positive [71]. It is represented mathematically
as:

Precision =
TP

TP+ FP
(14)

F. PROPOSED FRAMEWORK FOR CREDIT RISK
PREDICTION
The proposed framework for credit risk prediction is designed
to leverage the strengths of ensemble classifiers and the
SMOTE-ENN technique. This framework integrates multiple
stages, from data resampling throughmodel development and
evaluation to interpretation, emphasizing the importance of
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class balance and interpretability. The significance of this
approach lies in its capacity to handle imbalanced datasets,
a common challenge in credit risk modeling. SMOTE-ENN
enhances the representation of minority classes, thus miti-
gating model bias towards the majority class and improving
the predictive accuracy across diverse applicant profiles.
Additionally, the use of ensemble methods helps to reduce
variance and bias, further enhancing model performance.
Algorithm 2 outlines the step-by-step process of the proposed
framework:

Algorithm 2 Proposed Credit Risk Prediction Framework
1: Input: Training data Dtrain and testing data Dtest
2: Output: Credit risk predictions P
3: Step 1: Data Preprocessing
4: Normalize and encode features in Dtrain and Dtest .
5: Apply SMOTE-ENN to Dtrain for class balancing.
6: Step 2: Train Ensemble Classifiers
7: Train the following models on the balanced Dtrain:

1) Random Forest
2) AdaBoost
3) XGBoost
4) LightGBM

8: Step 3: Model Validation
9: Validate each model using k-fold cross-validation.

10: Evaluate model performance based on accuracy, recall,
specificity, and F-measure.

11: Step 4: Feature Importance Evaluation with SHAP
12: Identify the best-performing model based on validation

results.
13: Compute SHAP values for the best-performing model to

assess the impact of each feature.

IV. RESULTS AND DISCUSSION
In this section, we present the experimental results obtained
by the various classifiers before and after the data resampling.
Since the German and Australian datasets were used in the
study, it is important to analyze the performance of themodels
on these datasets separately.

A. EXPERIMENTAL RESULTS USING THE GERMAN
DATASET
The German Credit Dataset, employed in this study,
comprises 1,000 instances, each described by 11 features
representing various financial and personal attributes of loan
applicants. The dataset, described in Table 1, is characterized
by a binary class distribution with applicants labeled as
‘good’ or ‘bad’ credit risks. This skewed distribution, where
approximately 70% of instances are labeled ‘good’, presents
inherent challenges in model training due to class imbalance.
The performance of the models on the German dataset before
and after resampling is shown in Tables 3 and 4, respectively.
Prior to resampling, it was observed that all classifiers
struggled particularly with respect to specificity, as evidenced

by the values not surpassing the 0.474 mark. This suggests
a potential bias towards the majority class, a common
issue in imbalanced datasets. Meanwhile, the XGBoost
demonstrated superior performance with the highest accuracy
(0.765) and F-measure (0.841); however, the specificity was
poor, showing the limitation in effectively identifying true
negatives.

TABLE 3. Classifiers performance on German dataset before resampling.

TABLE 4. Classifiers performance on German dataset after resampling.

After the data resampling using the SMOTE-ENN tech-
nique, a substantial improvement in classifier performance
was evident, with notable improvements in the various
classifiers. XGBoost again leads with an increase in accuracy
to 0.897 and recall to 0.930, signifying an increase in the
model’s ability to correctly identify positive class instances.
These enhancements reflect the resampling’s efficacy in pro-
viding a more representative distribution of classes, which is
crucial for improving the model’s learning and generalization
capabilities. This enhancement in recall is also observed
in the random forest, which showed a notable increase in
specificity to 0.825. The improvement in specificity across
classifiers post-resampling demonstrates the effectiveness of
the data resampling in mitigating class imbalance, which
resulted in a more robust predictive model.

Furthermore, the classifiers also improved with regard to
the F-measure after resampling, particularly with XGBoost
achieving a score of 90.7%. This improvement in F-measure
across the board indicates a more harmonious balance
between precision and recall, which further demonstrates the
positive impact of the SMOTE-ENN resampling on classifier
performance. The enhanced balance between sensitivity and
specificity after resampling suggests that models became
more skilled at generalizing, reducing the bias towards the
majority class, and improving the predictive performance for
the minority class. These improvements are critical for credit
risk assessment, as they ensure a fair and accurate evaluation
of potential credit risks, potentially leading to more stable
financial portfolios.

115020 VOLUME 12, 2024



I. Aruleba, Y. Sun: Effective Credit Risk Prediction Using Ensemble Classifiers

Meanwhile, since the XGBoost obtained the best perfor-
mance, it will be worthwhile to understand how it reached
its predictions and which features were most significant in
the decision-making process. Therefore, Figure 1 provides
a summary plot that shows the distribution of the SHAP
values for each feature across all the data points in the
test set. The colour coding (red for high and blue for low)
indicates the value of the feature for each instance, with red
dots indicating higher feature values and blue dots indicating
lower values. The horizontal dispersion of the dots represents
the distribution of the SHAP values for each feature, with
a wider spread indicating higher variability in the feature’s
impact on the model’s output [72], [73].

FIGURE 1. SHAP summary plot 2 for German credit dataset.

From Figure 1, the feature at the top, i.e., Checking
account, is the most impactful feature. According to the
model, high values of ‘Checking account’ generally lead
to a higher prediction value, potentially indicating a ‘good’
credit risk. Credit amount also has a significant impact but in
both positive and negative directions, suggesting a complex
relationship that may depend on other factors or interactions
between features. Duration and Age show a mix of positive
and negative influences, indicating that their effect on the
model’s output is not uniform across all data points. Lastly,
Purpose, Saving accounts, Housing, Job, and Sex seem to
have a smaller impact on the model’s output, as indicated by
the closer clustering of SHAP values around zero.

B. EXPERIMENTAL RESULTS USING THE AUSTRALIAN
DATASET
The Australian Credit Approval Dataset contains
690 instances and 15 features related to various personal
and financial attributes of credit card applicants. The class
distribution is nearly balanced, with approximately 55% of
the instances classified as positive (credit approved) and 45%
as negative (credit denied), providing a diverse scenario for
evaluating model performance. The performance metrics for
the various classifiers on the Australian dataset before and
after resampling are shown in Tables 5 and 6, respectively.
Before resampling, XGBoost outperformed other classifiers
with the highest accuracy (0.895), recall (0.870), and
F-measure (0.886), indicating a robust predictive performance
that is balanced across the various classes. Notably, while
AdaBoost and LightGBM trailed closely in performance,

the CART algorithm demonstrated comparatively lower
performance, with an accuracy of only 0.790 and an
F-measure of 0.780.

TABLE 5. Classifiers performance on Australian dataset before
resampling.

TABLE 6. Classifiers performance on Australian dataset after resampling.

After applying the SMOTE-ENN resampling to address
the class imbalance, improvements across all classifiers
were observed, particularly in recall and F-measure. The
random forest showed themost noticeable enhancement, with
accuracy increasing to 0.916 and F-measure reaching 0.910,
surpassing the XGBoost. This suggests that the random
forest benefited more from the resampling, potentially due
to its inherent handling of feature selection and decision
boundaries in a more balanced dataset.

The resampling process evidently mitigated the bias
towards the majority class, as demonstrated by improved
sensitivity values across all classifiers. The consistent
increase in specificity after resampling also indicates that
the classifiers maintained an improved true negative rate,
confirming the notion that balancing the dataset can lead to
models with better generalization and a fairer representation
of both classes.

Furthermore, having obtained the best classification per-
formance, the random forest model is explored further to
understand the features contributing more to the predictions.
Therefore, the SHAP technique is applied, and the summary
plot is shown in Figure 2.

From Figure 2, it can be observed that feature A9 appears
to be the most significant predictor, with high values leading
to a higher output of the model, which could be interpreted as
an increased likelihood of credit approval. Feature A15 shows
a high impact on the model output with a mix of positive
and negative contributions, suggesting a complex, non-linear
relationship with the target variable. Features A11 and A8
also play essential roles but with a more moderate impact
compared to A9. Lower-impact features, such as A6, A3, A2,
A5, A4, and A7, still contribute to the model’s predictions,
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TABLE 7. Comparison with studies that used German dataset.

FIGURE 2. SHAP summary plot 2 for australian credit approval dataset.

but to a lesser extent. This lesser impact suggests that while
they are relevant, these features do not singularly drive credit
decisions but might still be considered in a more holistic
assessment of credit risk.

Understanding these feature impacts through SHAP values
enhances the transparency and fairness of the credit scoring
process and provides actionable insights that can guide future
data collection and feature engineering efforts. By focusing
on high-impact features, financial institutions can streamline
their data collection strategies to capture the most relevant
information, improving the efficiency and accuracy of their
credit risk assessments.

C. COMPARISON WITH RECENT STUDIES
This section presents a comparative analysis of our approach
with other recent studies that utilized the German and
Australian datasets for credit risk prediction. Tables 7
and 8 summarize the performances of various methodologies,
providing a comprehensive view of how our approach stands
in comparison to the state-of-the-art.

Firstly, for the German dataset, our methodology not only
outperforms others in terms of overall accuracy and balance

between recall and specificity but also offers the added
benefit of interpretability, a crucial aspect often overlooked
in many studies. For instance, Esenogho et al. [78] employed
an LSTM Ensemble with SMOTE-ENN, achieving a high
accuracy of 0.904 but lacking interpretability. Similarly,
Alam et al. [13] achieved competitive results with Gradient
Boosted Decision Trees; however, their models also lacked
the interpretability provided by our use of SHAP values.
This feature of our approach is critical, as it allows for
better understanding and trust in model decisions, which is
particularly important in financial applications.

Similarly, for the Australian dataset, our Random Forest
and SMOTE-ENN approach outperformed most models,
achieving an accuracy of 0.916, recall of 0.907, and speci-
ficity of 0.922 with an F-measure of 0.910. This performance
is notable when compared to [81], which, while achieving
a high recall of 0.953 with a CART-based Ensemble, did
not manage to maintain as high specificity, showcasing
our model’s ability to maintain balance. Additionally, our
model’s interpretability, marked by the✓ symbol, sets it apart
from other studies.

D. DISCUSSION
This study’s findings demonstrate the significant advance-
ments in credit risk prediction models, particularly through
the integration of ensemble learning techniques and advanced
data preprocessing methods like SMOTE-ENN. The results
highlight the robustness of these methods in enhancing
classification performance and their ability to balance the
trade-offs between recall and specificity effectively. The
application of ensemble classifiers such as XGBoost and
Random Forest, combined with SMOTE-ENN, resulted in
notably high accuracy, recall, specificity, and F-measure
across both German and Australian credit datasets. This
indicates a robust capability to identify both defaulters and
non-defaulters accurately, a critical requirement in credit risk
assessments to minimize financial losses.

One of the standout features of the proposed approach in
this study is its emphasis on model interpretability, enabled
by the use of SHAP values. Financial institutions highly
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TABLE 8. Comparison with studies that used the Australian dataset.

value transparency in predictive models, as it aids in the
justification of decision-making processes and compliance
with regulatory requirements. The inclusion of SHAP values
helps in identifying the features that most significantly
impact the model’s predictions and facilitates a deeper
understanding of the underlying decision-making processes
of the algorithms. This aspect is particularly important in
gaining stakeholder trust and for the broader acceptance and
deployment of these models in sensitive financial sectors.

When compared with other studies, our approach demon-
strates superior performance and interpretability. Many
recent methods achieve high performance but often at the
cost of model transparency. Our methodology bridges this
gap by maintaining high performance while also providing
clear insights into the contributing factors of the predictions.
Meanwhile, the practical implications of these findings are
enormous. By improving the accuracy and transparency of
credit risk assessments, financial institutions can make more
informed decisions, potentially leading to lower default rates
and better management of financial risk. Furthermore, the
approach outlined in this study provides a scalable and
adaptable framework that can be tailored to various types of
credit products and diverse geographical markets.

V. CONCLUSION
This study presented a robust approach for credit risk
prediction using ensemble learning algorithms, SMOTE-
ENN resampling, and SHAP for model interpretation.
The experimental results indicate the robustness of the
proposed approach, with the XGBoost and random forest
achieving the best performance on the German andAustralian
datasets, respectively. The proposed approach significantly
outperformed other methods in recent literature, indicating its
robustness. Meanwhile, understanding the decision-making
process of ML models is critical, especially in financial
applications like credit risk prediction. Therefore, this study
examined the SHAP summary plot to interpret the contribu-
tions of different features to a predictive model’s output.

The study contributes to the field of credit risk prediction
by demonstrating how advanced ML techniques can be

effectively applied to improve both the performance and
transparency of predictive models. The integration of ensem-
ble learning, SMOTE-ENN, and SHAP for interpretability
has shown to be effective, offering a comprehensive approach
that could be crucial for future developments in credit risk
management. Meanwhile, despite the promising results, this
study is not without limitations. The dependency on the
quality and the representativeness of the data used can
significantly influence the outcomes. Future research could
explore the integration of more diverse data sources to further
enhance the predictive power of the models. Additionally,
testing the models across more varied datasets could help in
establishing their robustness and generalizability.
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