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ABSTRACT The performance of 5Gmobile network cells is highly impacted by their evolving configuration
and temporal environmental conditions, such as the number of connected devices or resource utilization.
Evaluation of the performance of such a system is a complex task that requires the simultaneous analysis of
multiple indicators and inspires the research community to work on zero-touch network servicemanagement.
In this paper, we present a novel time series clustering method - Temporal and Multivariate Similarity
Clustering (TMSC) - that incorporates Dynamic Time Warping with Limited Warping Length and Spectral
Clustering, allowing for radio cell grouping based on realization of multiple Key Performance Indicators.
We evaluated TMSC against state-of-the-art algorithms at a practical task of identifying cell configuration
differences by clustering their performance metrics with a limited set of observations. The proposed
algorithm outperformed other methods regarding the Normalized Mutual Information score achieved for
more than 95% of the cases studied. We also display the potential for method generalization by evaluating
it at the hand gesture recognition task, which yields satisfactory results.

INDEX TERMS 5G network performance, radio cell management, spectral clustering, dynamic time
warping, multivariate time series, temporal similarity.

I. INTRODUCTION
The 5G cellular networks are complex systems with
hundreds of features controlled by thousands of configuration
parameters. Temporal radio cell performance depends on
its hardware, software configuration, and the environment
in which it operates. The state of the environment (e.g.
traffic load, channel conditions, number of connected users)
and resulting performance (e.g. throughput, block error rate,
spectral efficiency) vary significantly over time. Automated
management of such a complex system to achieve an
expected performance profile is challenging and inspires the
research community to work on zero-touch network service
management [1], [2], [3], [4].

Significant heterogeneity in configuration-performance
profiles throughout the operator network makes network
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management troublesome. One proposed solution to simplify
this problem is dimensionality reduction by cell clustering.

Clustering in the context of cellular networks usually
refers to grouping radio cells in the geographic domain
for interference coordination or mitigation [5], cell load
balancing [6], user mobility management [7] or energy
efficiency [8].

In network performance management, clustering is a rela-
tively new problem. Various equipment vendors and mobile
network operators may approach this differently. In this
context, three management scenarios can be distinguished
based on their level of advancement:

1) Basic network management: no methodology defined
for cell clustering, network control realized in a mass
manner (e.g. unified management actions)

2) Expert-centric network management: relatively sub-
jective cell clustering realized using expert-defined
heuristics based on preselected analytics and metrics
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(e.g. by grouping cells based on bandwidth, duplex,
antenna setup, frame configuration, etc.)

3) Zero-touch networks: ongoing research toward self-
evaluating and self-managing networks, with objective
cell grouping

To the authors’ best knowledge, the problem of cell clus-
tering concerning temporal environmental and performance
characteristics in 5G cellular networks has not been solved
yet. Although time series clustering has been widely studied,
its application to performance analysis in cellular networks
has been limited, as presented in the relatedwork section II-B.

In this paper, we propose a new algorithm, Temporal and
Multivariate Similarity Clustering (TMSC), which simul-
taneously explores patterns in a set of time-variant cell
characteristics that facilitates multivariate cell clustering and
outperforms state-of-the-art clustering algorithms.

The structure of the article is as follows. In Section II,
we formulate the problem (also concerning the state of the
art), identify the patterns observed in the 5GKey Performance
Indicators (KPI), and summarize the related work. Section III
introduces the TMSC algorithm in detail, followed by its
evaluation on a data set of KPIs from live mobile operator
networks in Section IV. In Section V, we discuss the
generalization of the TMSC method to other domains, which
we exhibit with an experiment on a hand gesture data set, and
describe the algorithm’s limitations. Finally, we conclude the
article and indicate further steps in Section VI.

II. PROBLEM FORMULATION
Radio cell performance assessment is critical to successful
5G network deployments. Although measuring instantaneous
performance in a single domain is relatively simple and can
be done by, e.g. carrying out drive tests [9] or download speed
trials, evaluating performance in a longer time horizon is
more complicated. Cell performance is highly dependent on
environmental conditions [10]. For example, user throughput
decreases as user density increases [11]. The conditions, such
as the number of connected users, the volume of the data
they download/upload, or the speed at which they aremoving,
vary significantly in time, and hence, to properly evaluate
cell performance, the knowledge of its operating environment
is necessary. Moreover, monitoring multiple performance
metrics over an extended period is generally required to
understand the radio cell capacity achieved [12].
It should be noted that data collection, transmission,

storage, and analysis generate additional costs for the network
operator and / or the equipment vendor. Therefore, the amount
of data required to produce satisfactory results is an essential
criterion for potential solutions to the problem. This translates
into the number of observed cells and KPIs and the duration
of the observation period.

A specific case of performance evaluation is when a
certain network feature is enabled in a subset of cells. Due
to varying environmental conditions, a direct comparison
between cells with feature enabled and those with feature
disabled might not be feasible. This refers to the following

FIGURE 1. Example variable realization for downlink data volume
measured in three different cells with the same configuration and similar
location.

research question: is it possible to identify differences in 5G
radio cell configuration by cell clustering using temporal
environmental and performance metrics?

A. DATA CHARACTERISTICS
To evaluate network performance, telecommunications
experts choose a set of relevant indicators from available
Performance Management (PM) data, which are often cross-
correlated and, therefore, should be analyzed jointly as
multivariate time series [12]. Mobile network KPIs are
time series collected with different granularity, spanning
from (rare) 5- and 15-minute intervals to (most popular)
hourly or daily aggregations. Temporal granularity affects
signal characteristics, such as volatility, with 5-minute and
daily intervals displaying the highest and lowest standard
deviation, respectively. We focus on the KPIs collected every
hour to balance data availability with its carried information
content. The hourly measured signals tend to be noisy,
although they show evident daily and weekly trends. These
variations are strongly related to human activity (making
phone calls, watching videos, uploading short clips) and
mobility (driving to and from work, walking around the
city, picking up children from school) during the day and at
night, as well as on weekdays versus weekends [13], [14].
An exemplary time series, showing clear daily trends, for a
selected KPI is presented in Fig. 1. There are also seasonal
changes and anomalies (e.g., sports events or partial network
failures, changing traffic locally); however, a time frame of
one week is a good representation of the behavior of a cell,
as it captures the majority of the conditions under which the
given radio cell operates typically.

To cluster cells based on their KPIs, one must find simi-
larities (or dissimilarities) among observations for different
objects, usually by defining a distance measure. In this
context, it is vital to understand the physical interpretation
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FIGURE 2. Different types of signal patterns. Top row, from left: original,
value offset and scaled signals. Bottom row, from left: noisy, time offset
and time-warped signals.

of these time series, as similarity in the context of mobile
network metrics is different from the classical shaped-based
approach to comparing time series [15]. Instead of only
comparing the shapes of the signals, we also want to consider
the value range of the variable and time distortions. The
distance measure for telecommunication KPIs should be less
sensitive to noise (the signals tend to be noisy by nature of
the measurement observation and the system itself working
in a dynamic environment), time offset (time shifts might
come from physical locations of the cells, how the users move
during the day, or even time zones), and time warping (for
example, peak hours might be longer in one location than
other, with cells functioning almost identically otherwise).
On the other hand, the measure should be more sensitive to
the range of values of the signals and their shape because
the maximum absolute and relative values of KPIs indicate
performance in the edge cases. Fig. 2 presents different signal
patterns observed experimentally in KPIs measured in 5G
networks. In this example, the distance measure is expected
to yield higher values (meaning less similarity) for scaled
and value offset signals and lower values (meaning more
similarity) for noisy, time offset, and time-warped signals
compared to the original signal.

These patterns, as identified and explained above, can
also be found in systems of other nature, e.g., measurements
recorded by accelerometers used for gesture recognition
[16], [17] or melt curves used for fungal identification [18].
This brings us to the conclusion that solving the problem
for exemplary data (here, 5G performance metrics) can
contribute to the generalized problem of data clustering
for complex systems operating in fluctuating and noisy
conditions or affected by measurement imperfections.

B. RELATED WORK
Cellular data clustering is not widely discussed in the
literature, while reliable and efficient data modeling remains
challenging for the research community and telecommuni-
cation engineers [10]. In [19], Chidean et al. used Kullback-
Leibler divergence and k-Means clustering to identify urban
areas based on aggregated network usage data. However, the
proposed approach is univariate, as network usage indicators
are summed up into a single variable for analysis, which
is only possible for indicators with the same unit (in this

case, count of incoming/outgoing calls, received/sent text
messages, and established Internet connections). Mahdy et al.
performed univariate time series clustering to expand the
training set for deep recurrent neural networks that forecast
traffic load. The best results were reported with the use
of k-Means for time series data (TimeSeriesKMeans)
clustering algorithm with Soft Dynamic Time Warping
(softDTW) distance metric [20]. In [21], Wang et al.
developed a compelling base station (BTS) performance
evaluation method, which utilizes the FastDTW algorithm,
auto-encoder, and k-Means clustering. The authors clustered
the base stations into three performance categories based on
a time series of four selected KPIs. The precision of the
method was evaluated by comparing the distributions of
the KPIs in each group with the mean values according to
the KPI standards provided by the mobile network operator
from which the data were collected. Li et al. presented
a different approach and performed a cell performance
analysis by extracting the variable deviation at each time step,
representing it as a vector of distribution statistics to which
k-Means clustering was applied. For the multivariate case,
representative vectors for each variable were concatenated.
This method captures the temporal dynamics of a variable,
but loses information about its value range [22]. Lu et al.
performed cell clustering by comparing the statistical and
temporal characteristics of the variables separately and
applying the k-Medoids algorithm to the weighted distance
matrix. The results were evaluated using silhouette score
and cluster averages [23]. A more advanced description
was reported by Wang et al., who used Self Organizing
Maps (SOM) and k-Means algorithms to extract the behavior
patterns of cells of the Long Term Evolution (LTE) mobile
network and group them. They used data sets collected
from a live LTE European network [24]. Finally, Kajó et al.
created a clustering method DANCE based on Decorrelating
Adversarial Networks and used it to recognize different
groups of mobile network users in a simulated scenario [25].
Note that themobile user datawas collected from a simulation
with subsecond granularity at the user equipment (UE)
level. Therefore, they do not exhibit the same characteristics
described in Section II-A.

III. TEMPORAL AND MULTIVARIATE SIMILARITY
CLUSTERING ALGORITHM
Having defined the signal patterns in the measured indicators
in section II-A, and motivated by the physical context of the
complex system under study, we propose a new algorithm
called Temporal and Multivariate Similarity Clustering,
or TMSC. The algorithm finds similarities between multi-
variate time series, allowing for a controlled level of time
distortion and/or warping, and groups observations into a
predetermined number of clusters. The algorithm is designed
to work with variables of different units and magnitudes.
Although not necessary for the calculation, for the best
results, it is recommended that the clustered time series are
aligned in time and are not fragmented by missing values,
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FIGURE 3. The flow chart of Temporal Multivariate Similarity Clustering
algorithm. Blue blocks represent functional blocks, and green blocks
represent data format steps, with matrix dimensions in brackets.

with a more detailed explanation provided in Section III-B.
Fig. 3 graphically represents the flow of the procedure, and
the following sections describe the functional blocks of the
procedure in detail.

A. DATA PREPROCESSING
Data preprocessing aims to equalize the impact of all
variables on distance calculation and facilitate trendmatching
in data. This can be achieved by KPI standardization, which
allows the abstraction of variable units while keeping value
range differences between observations of the same variable,
and the moving average calculation reduces noise in the
variables, smooths out short-term fluctuations, and highlights
longer-term trends, as described below.

Given N observations, described each by M variables of
length T , the input data set is a matrix X = (xijk ) where 0 ≤

i ≤ N , 0 ≤ j ≤ M and 0 ≤ k ≤ T .
In the first step, each variable is standardized among all

observations to have amean of 0 and a standard deviation of 1:
For given j and xj = (xijk ), where 0 ≤ i ≤ N and 0 ≤ k ≤

T , x′
j is calculated

x′
j =

xj − mean(xj)
std(xj)

(1)

and X′
= (x′

j) = (x′
ijk ).

Next, a simple moving average with a window of length w
is applied to standardized data:

x′′
ijk =

1
w

k∑
t=k−w+1

x′
ijt (2)

and X′′
= (x′′

j) = (x′′
ijk ).

B. LDTW DISTANCE CALCULATION
The state-of-the-art method for dealing with time-warped
time series is Dynamic Time Warping (DTW). It is a
distance measure for time series, first introduced in [26]
and commonly used in the fields of industrial engineer-
ing [27], bioinformatics [28], transportation [29], gesture
recognition [16] and flight maneuver recognition [30].
Dynamic Time Warping between two time series x =

(x0, . . . , xn−1) and y = (y0, . . . , ym−1) is formulated as the
following optimization problem:

DTW (x, y) = min
π

√ ∑
(i,j)∈π

(xi − yj)2, (3)

where π = [π0, . . . , πK−1] is a path of length 0 < K <=

n+ m that satisfies the following properties:
• it is a list of index pairs πk = (ik , jk ) with 0 ≤ ik < n
and 0 ≤ jk < m

• π0 = (0, 0) and πK−1 = (n− 1,m− 1)
• the following inequalities hold for all k > 0:

– ik−1 ≤ ik ≤ ik−1 + 1
– jk−1 ≤ jk ≤ jk−1 + 1

Although DTW is widely used in time series comparison
tasks, it suffers from the pathological alignment problem,
which leads to an abnormally large number of links between
two sequences [31]. Therefore, Zhang et al. introduced
Dynamic Time Warping Under Limited Warping Path Length
(LDTW), which limits the total number of links during the
optimization process of DTW (by setting an upper bound
on K ) and therefore effectively oppresses the pathological
alignment [31].

In terms of data characteristics explained in Section II-A,
LDTW allows a controlled level of time warping (including
time offset) while at the same time remaining sensitive
to value offset or scaling of a signal. We used LDTW
implementation from the tslearn [32] library, with our
improvements, such as memory preallocation and matrix
algebra replacing loops, which improved calculation speed
(at the expense of higher memory usage), as presented in
Fig. 4.
LDTW is applied pairwise to all observations on each

variable separately, resulting in a feature distance matrix
D = (dnmj) where 0 ≤ n,m ≤ N and 0 ≤ j ≤ M .

C. DIMENSIONALITY REDUCTION
Since the distance matrix is calculated for each feature
(variable) separately, each pair of observations has a feature
distance vector of lengthM . Clustering algorithms that work
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FIGURE 4. LDTW calculation time and peak memory usage vs. time series
length for original (solid blue line) and improved (dashed red line)
implementations on Lenovo P14s notebook (Intel Core i7 vPRO 10th gen,
32GB RAM).

on a precomputed distance or affinity matrix, such as Spectral
Clustering, described in Section III-D, require a scalar
distance for each pair of observations. Hence, after evaluating
multiple vector metrics, the Euclidean norm (L2) was chosen
and applied to each vector of distances of characteristics,
resulting in a scalar distance matrixD′

= (d ′
nm), of size NxM ,

where

d ′
nm =

√√√√√ M∑
j=0

(dnmj)2. (4)

D. CLUSTERING
Taking into account the characteristics of 5GKPIs, as system-
atized in Fig. 2, and the need to distinguish between identified
patterns, empirical experiments were carried out, which led to
the selection of Spectral Clustering [33] as the best algorithm
for the given task among other state-of-the-art algorithms.
Spectral clustering uses the eigenvalues of the affinity

matrix of the data to reduce dimensionality before clustering
in fewer dimensions. This work uses the Python implementa-
tion fromscikit-learn library [34]. It worked efficiently
with similarity matrix S created from distance matrix
calculated in Section III-C by the following transformation

S = max(D′) − D′. (5)

IV. RESULTS
Due to the complexity of cellular networks, their temporal
performance dependence on the environment, and the need to
obtain the approval of the mobile network operator for data
collection, it isn’t easy to get a real-world ground truth set for
algorithm evaluation.

To evaluate TMSC against existing methods (as listed
below), we collected KPIs from a selected set of radio
cells with significantly different configurations, which,
according to telecommunication engineers, should result
in performance deviations under similar environmental
conditions [35]. Then a task of identifying differences in

TABLE 1. Configuration for selected classes. Specific bands are not
provided due to privacy concerns.

TABLE 2. Eight chosen Key Performance Indicators with units. 5G SA is
short for 5G Stand Alone.

TABLE 3. Results of two-sample Kolmogorov-Smirnov test for goodness
of fit applied to configuration classes and Key Performance Indicators.

configuration, based on cells’ chosen Key Performance
Indicators measurements, was set for TMSC and the state-of-
the-art clustering algorithms: k-Means [36], DBSCAN [37],
Spectral Clustering [33], Gaussian Mixture Models
(GMM) [38] as well as the DANCEmethod proposed in [25].

A. DATA SET
We nominated three classes of radio cells that differ in the
following configuration aspects: operating frequency band,
bandwidth, and duplexing method, as presented in Table 1.
For the chosen classes, we collected eight network KPIs listed
with their units in Table 2, aggregated hourly for one week
(a total of 168 samples for each KPI and cell) from live
networks of large European operators. The data obtained was
then analyzed for possible missing values, and only cells with
less than 5% missing values were used for the study. The
averages for each cell replaced themissing values. Therewere
9209 cells left, with 3851, 1658, and 3700 cells for bands 1,
2, and 3, respectively.

To test whether there are significant differences between
the selected classes, we performed a two-sampleKolmogorov-
Smirnov test pairwise to the three configurations on each
KPI separately [39]. The results, in the form of Kolmogorov-
Smirnov statistic and respective p-value are presented
in Table 3. All comparisons yielded p-value practically equal
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to 0, therefore the null hypothesis that the samples from two
compared classes come from identical distributions must be
rejected. However, significant differences in the univariate
distributions of the KPIs indicated by the Kolmogorov-
Smirnov test do not indicate performance differences between
cells from these classes, as this comparison does not include
the environmental conditions under which the cells operated.

B. EVALUATION METHOD
Instead of clustering the entire data set at once, we evaluated
TMSC with smaller batches of cells to verify how it performs
with limited data. As explained in Section II, an algorithm
that does not require a large data set is desired. To this
end, we randomly drew 100 cells from each class, resulting
in 300 observations. The sample set was then clustered
using the proposed method and reference algorithms. Since
TMSC uses Spectral Clustering, we provide results for
Spectral Clustering with Euclidean distance to verify the
importance of the selected distance measure. Similarly,
k-Means, GMM, and DBSCAN also used the Euclidean
distance. We experimented with the parameters of each
method and selected those that achieved the best possible
results.

Standard cluster analysis approaches (e.g., silhouette
score, Calinski-Harabasz index) depend on the distance
metrics adopted and, therefore, cannot be a reference for the
direct comparison of the clustering results between methods
that use different distance metrics [40]. Since we had the
ground truth labels but were solving a clustering problem
(not classification), the selected metric was the Normalized
Mutual Information (NMI) score [41], which is widely
used as a similarity measure to evaluate the performance
of clustering and classification algorithms, because it is
independent of the distance metrics used and the absolute
values of the labels.

With X being a set of predicted labels and Y a set of
ground-truth labels Normalized Mutual Information ofX and
Y is defined as

NMI(X;Y ) =
2I(X;Y )

H(X ) + H(Y )
, (6)

where I is Mutual Information of X and Y given by:

I(X;Y) =

∑
Y

∑
X

P(X,Y) log
(
P(X,Y)

PX PY

)
, (7)

and H is entropy given by:

H(X) = −

∑
X

PX logPX . (8)

NMI takes values from 0 (no mutual information) to 1
(perfect match).

The random batch selection procedure was repeated
100 times to capture the empirical cumulative distribution
functions of NMI for each of the algorithms. The results
curves are presented in Fig. 5.

FIGURE 5. Empirical Cumulative Distribution Function of Normalized
Mutual Information Score for evaluated clustering algorithms. TMSC is
depicted with purple dotted line, DANCE - dark blue solid, k-Means - red
dashed, DBSCAN - green dashed-dotted, Spectral Clustering - solid yellow
and Gaussian Mixture Models - dashed light blue.

Spectral clustering with Euclidean distance metric
achieved the worst results, with the NMI in the range of 0 to
0.06, which was expected and highlighted the importance
of distance measure selection, compared to the results of
our proposed algorithm. Surprisingly, DBSCAN was second
worst, producing volatile results, failing for the bottom 30%
of batches, and achieving results for the top 35% of sample
sets comparable to those of k-Means, which produced a wide
range of NMI from 0.16 to 0.6 and beat theGaussian Mixture
Models that delivered maximum NMI value of 0.42. TMSC,
providing consistent NMI from 0.48 to 0.69, outperformed all
other methods for 95% batches, except for 5% of cases where
the second best algorithm DANCE was better. It should be
noted that DANCE employs artificial neural networks for the
clustering task; therefore, it requires large amounts of data to
learn patterns, and the batch size in this task could have been
too small to reach its full potential (a disadvantage concerning
operating on relatively short sequences of measurement data,
as expected by practical applications in telecommunications
and other fields, as commented above in the paper).

V. GENERALIZATION OF TMSC APPLICATION
Because of the difficulty in determining a ground truth set
for 5G performance KPIs measured in live networks and
demonstrating the applicability of the TMSC algorithm to
time series data collected from various systems, a clustering
exercise was performed on a data set from other application
domains with similar signal characteristics.

We decided to focus on classification problems, where
having proper labels allows for reliable method comparison.
Classification results are typically evaluated with one or
more metrics: accuracy, precision, recall, or F1 score [42].
However, in some cases, the authors of the publication also
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report the confusion matrix, which allows the computation of
Normalized Mutual Information as presented in Section V-A.

A. CONFUSION MATRIX TO NORMALIZED MUTUAL
INFORMATION
Confusion matrix of X and Y can be interpreted as a table of
conditional probabilities P(X|Y) [43], [44].

Following the Normalized Mutual Information definition
in Eq. 6, probabilities P(X,Y), PX , and PY are required for
NMI calculation.

The marginal probability PY is known from the design of
the experiment. The joint probability P(X,Y) is given by:

P(X,Y) = P(X|Y) · PY (9)

and marginal probability PX is given by:

PX =

∑
Y

P(X,Y) (10)

which allows the calculation of Normalized Mutual
Information.

B. GESTURE RECOGNITION
The data set selected for evaluation is a gesture recognition
data set introduced in [16].1 The data consists of a time
series of X-, Y- and Z-axis acceleration measurements from
a hand-held device, collected for eight participants who
replicated eight preselected hand gestures multiple times
over seven days. The data set available for download is
incomplete compared to what was reported in [16]. It contains
55 (15 in the training set and 40 in the testing set)
measurements for each gesture, and the information about the
participant and the day of the experiment is not present in
the data. The authors indicated significant differences in the
measurements collected from different participants and even
from the same participant on other days and adjusted their
methodology accordingly. The authors tested their proposed
algorithm using two approaches: evaluating accuracy for each
participant and each day separately and evaluating accuracy
for each participant regardless of the measurement date. They
achieved NMI (calculated from the confusion matrix as in
Section V-A) of 0.949 and 0.838 for the former and latter
approaches, respectively. The second approach disregards the
date information, and without participant information, the
task becomes even more complex. Therefore, we compared
our clustering results to that result.

We clustered the entire training set, the test set, and
the joint data set and obtained NMI of 0.827, 0.79, and
0.816 respectively, which is close to the value reported
for the participant-specific evaluation. The result is highly
satisfactory, as the TMSC was not explicitly designed for this
task.

1The data set is available at https://www.timeseriesclassification.com/
description.php?Dataset=UWaveGestureLibrary (Accessed January 1, 2024)

C. LIMITATIONS
Although the proposed algorithm has been shown to achieve
good results, it has limitations. First, it is designed for
signals with specific characteristics (potential offset or
warping in the time domain, noisy measurements, signal
scaling), as described in Section II-A. Second, it requires
calculating the pairwise distance using LDTW for each
variable. Therefore, the computational complexity of the
proposed method isO(N 2MT 3) for the number of samplesN ,
the number of variables (KPIs)M , and the length of the time
series T . On the other hand, the second-best reported method,
DANCE, requires dedicated resources (preferably a powerful
Graphics Processing Unit (GPU)) and a significant amount
of training time. Specific steps for TMSC could be explored
to avoid these difficulties, such as signal quantization,
computation parallelization, or the use of hash functions.
Lastly, the number of clusters should be known or found using
internal clustering evaluation methods.

VI. CONCLUSION
We have defined and systematized a set of patterns observed
in experimental data, particularly in performance data
measured in 5G cellular networks. We proposed a clustering
algorithm, Temporal and Multivariate Similarity Clustering
(TMSC), designed to cluster 5Gmobile network performance
data. The algorithm combines existing techniques, such as
Dynamic Time Warping and Spectral Clustering, into a
novel chain, allowing efficient clustering of 5G network
performance data. We evaluated it against state-of-the-art
algorithms in identifying radio cell configuration differences
based on time series realization of eight Key Performance
Indicators. With a limited sample size, essential for practical
use in network performance management, TMSC outper-
formed all other methods in at least 95% of cases. The result
obtained is particularly important when considering learning
methods (e.g., those utilizing artificial neural networks,
as in [25]), as it allows operation on short data sequences,
which are unavailable in alternative methods (especially
significant in industrial applications, e.g., in 5G networks
and/or processes with significant dynamics).

The algorithm can help the mobile network operator or
equipment vendor in cell clustering for various management
tasks, e.g., identifying best/worst performing cells, generat-
ing virtual clusters for large-scale feature activation, enabling
feature gain estimation concerning environmental conditions,
etc.

To analyze the potential for generalization of TMSC,
we experimentedwith and evaluated the algorithm in the hand
gesture recognition task, producing an outcome comparable
to a method specifically designed for that purpose.

We identified the limitations of the procedure and
indicated promising mitigation steps. Another potential
research area is to explore the possibility of incorporating
regularizationmethods, which have yielded promising results
in [25].
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