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ABSTRACT Due to the rapid development of technologies such as cloud computing and the Internet of
Things (IoT), wireless sensor networks are becoming increasingly popular in the field of environmental
monitoring. Anomaly detection algorithm is often used as the main method of sensor data detection. The
development and application of IoT technology has led to a significant increase in data traffic. However,
current anomaly detection methods are difficult to effectively detect heterogeneous data sequences from
multiple sources. In this study, the sensor monitoring model of an intelligent greenhouse is constructed by
using the spatio-temporal correlation anomaly detection algorithm in edge computing. The data is chunked
by a sliding window to reduce the error of one-sided estimation of single data on the detection results.
The spatial correlation anomaly detection algorithm is formed on the basis of the temporal correlation
detection algorithm, fusing the two algorithms with the edge computation to construct a multi-source multi-
dimensional data anomaly detection model. The results of the time-related anomaly detection algorithm
experiment showed that the F1-score of the algorithm was 91.26%. Compared with other methods, the false
alarm rate of spatial correlation anomaly detection algorithm was reduced by 56.50% ∼ 83.45%, and F1-
score was increased by 1.37% ∼ 22.25%. In the case of big data, the detection time of the sensor monitoring
model was 0.47s, the required energy consumption was reduced by 36.75% ∼ 79.20%, and the delay time
was the least. The anomaly detection algorithm in this study is related to time and space, which effectively
improves the detection rate and detection accuracy, thus reducing the computing load of the cloud platform,
and is superior to the deep learning method in processing delay.

INDEX TERMS Sensor monitoring techniques, anomaly detection, spatio-temporal correlation, sliding
window, cloud computing.

I. INTRODUCTION
Wireless sensor networks are widely used in environmental
monitoring due to the explosive expansion of cloud comput-
ing, the Internet of Things (IoT), and big data. Typically,
sensor nodes and aggregation nodes form a distributed net-
work system in wireless sensor networks. The aggregation
node receives the environmental data from the sensor nodes,
which self-organize to gather it and then sends it via multi-
hop relay [1], [2], [3]. Wireless sensor networks are widely
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used in industries such as transportation, agriculture, and the
military, making them a significant field of interest in automa-
tion. The rapid development of information technology has
led to a higher demand for abnormality detection in the
field of automation [4]. However, when dealing with massive
amounts of data and extreme wireless network environments,
most algorithms proposed for detecting anomalies in sen-
sor data focus solely on solving the time-continuous aspect
of single-source data. These approaches include distance-
based, integrated learning-based, clustering-based, and deep
learning neural network methods, which often overlook the
temporal and spatial correlation of multi-source data [5], [6].
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Simultaneously, the centralized cloud computing platform
struggles to handle large-scale sensor data volumes, and
its operational processes result in high latency, making it
challenging to achieve effective real-time monitoring of
abnormal data. Consequently, this study recommends imple-
menting a sensor monitoring model (SMM) based on edge
computing (EC) that utilizes the spatio-temporal correla-
tion anomaly detection algorithm (S-TCADA) to accurately
detect outliers. A temporal correlation anomaly detection
algorithm (TCADA) is proposed based on temporal corre-
lation. To address the challenge of heterogeneous data from
multiple sources and the long outlier distance of neighbor-
ing temporal data, the study introduces the sliding window
(SW) technique for chunking the data. Additionally, S-
TCADA is designed for multi-source heterogeneous data
to improve detection accuracy and shorten detection time.
A hierarchical EC model is used to construct an SMM,
which is then applied to smart greenhouses to enhance the
accuracy of sensor anomaly detection (AD). Therefore, this
study proposes the construction of an S-TCADA-EC-based
SMM for the purpose of resolving the issue of precise iden-
tification of outliers in heterogeneous data from multiple
sources.

The novelty of the study lies in the application of SWs
to multi-source data of neighboring time-sequence for data
chunking, thus effectively avoiding the resultant errors aris-
ing from one-sided estimation of single data. Furthermore,
SCADA based on TCADA is proposed for error detection of
heterogeneous multi-source sensor data from the perspective
of spatial correlation. To address the challenge of detecting
anomalous nodes in agricultural greenhouses, the study fur-
ther develops an S-TCADA-EC through the aforementioned
technique, which fully considers the temporal and spatial
correlation of multi-source heterogeneous data. The method
significantly improves the accuracy and robustness of sen-
sor AD.

The study introduces the use of SW for the chunking of
multi-source heterogeneous data, which improves the effi-
ciency of data processing. A TCADA has been developed
within the EC framework, and multi-source data has been
processed in blocks using software technology, markedly
reducing the detection bias caused by isolated data points.
Concurrently, a SCADA system has been developed based on
the TCADA algorithm. The algorithm conducts an in-depth
analysis of sensor data from the perspective of spatial cor-
relation, thereby enhancing the accuracy of AD. The study
proposes a sensor anomaly monitoring system that improves
the efficiency of AD for multi-source heterogeneous data
by combining TCADA with SCADA. This system fully
leverages the spatio-temporal correlation of multi-source
heterogeneous data, thereby enhancing the detection of
anomalies. The proposed system has practical applications
in the monitoring of intelligent greenhouses and actively
promotes the development of agricultural intelligence. The
implementation of this technical method has the potential to
advance the field of data AD, furnish a dependable theoretical

foundation for sensor monitoring technology, and simultane-
ously offer technical assistance for agricultural intelligence.

The study is structured into five parts. The first part intro-
duces the background of the research on sensor monitoring
technology and briefly describes the proposed methodology.
The second part summarizes the current research results and
shortcomings of sensor monitoring technology. The third part
studies and designs a SMM combining EC on the basis of
S-TCADA. The fourth part experiments and analyzes the
proposed SMM. Finally, the fifth part summarizes the exper-
imental results and indicates future research directions.

II. RELATED WORKS
In the midst of the digital transformation wave, data AD
and EC have become prominent research topics. Data AD
aims to identify irregular or anomalous patterns in large
datasets to ensure data quality and security. Meanwhile,
EC enhances efficiency by processing data near its source,
reducing latency [7]. AD algorithms combining temporal and
spatial correlation play a significant role in sensor monitoring
techniqueswithin the EC environment, improvingmonitoring
system accuracy and efficiency [8]. A selection of relevant
research conducted by these individuals is presented below.

T. Wang et al. proposed a data cleaning method based
on mobile edge nodes to address the issue of traditional
data cleaning methods being unable to ensure data credi-
bility. The method employed angle-based outlier detection
at the edge nodes to obtain training data, which effectively
improved data cleaning efficiency. However, the method
only improved data reliability and not its detection effective-
ness [9]. The study proposed a spatio-temporal correlation
algorithm design based on the temporal correlation algorithm
to improve the effectiveness of data AD. K. Sadaf et al.
proposed a deep learning-based intrusion detection approach
to identify potential threats in fog computing environments.
This classification approach was well-suited for fog devices
as they prioritize real-time performance, but were limited
to binary classification for packet classification [10]. The
study put forth the proposition of employing a combination of
algorithms based on EC and spatio-temporal correlation. This
approach took into account both multi-source and single-
source heterogeneous data. S. Tanwar et al. proposed a
structure for tracking hand movements of arthritis patients
using EC. However, the structure’s robustness was limited
in processing large amounts of data [11]. To address the
issue of poor processing of large amounts of data, the study
introduced SW for data classification. Additionally, P. Kumar
et al. proposed an anomalous intrusion detection system that
is decentralized to local fog nodes with a cloud-based security
architecture to tackle the problems of high false alarm rates
(FARs) and low accuracy in traditional intrusion detection
systems. This system reduced the FAR and improved detec-
tion accuracy, showing potential for application in modern
network security. However, the proposed method in the study
took into account the spatial correlation of outlier data, which
this detection system does not [12].
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The importance of AD in wireless sensor networks lies
in ensuring data reliability and quality. L. Chen et al.
proposed a method for AD that utilized spatio-temporal
correlation and information entropy to address the under-
utilization of spatio-temporal correlation of sensor data.
However, this method did not address the detection of outlier
data, despite its significant improvement in reducing false
positive and false negative rates [13]. For AD of outlier data,
N. Berjab et al. proposed a cross-correlation-based method
for acquiring spatio-temporal relationships of sensors. The
method achieved better results on the validation of real-world
datasets. However, the design of the method did not take
into account the bandwidth consumption, and its detection
of large amounts of data requires more bandwidth [14].
The framework combined spatio-temporal correlation algo-
rithms with EC, effectively reducing the required bandwidth
consumption for detection. The study proposed a dynamic
framework for modeling spatio-temporal traffic data to diag-
nose anomalies and improve the quality of service of the
current transportation system. The authors, X. Wang and L.
Sun, aimed to use clear and concise language to explain
their approach. A time-varying vector auto-regressive model
was used to characterize the system dynamics and modeled
with a low-rank tensor structure. However, while the method
showed superiority in dynamically monitoring anomalous
transportation networks, it lacked accuracy in monitoring
anomalies in massive data [15]. H. Liu et al. proposed a
collaborative intrusion detection mechanism based on dis-
tributed federated learning and secured the aggregated model
using block-chain technology to manage the storage and
sharing of the training model. However, the study aimed to
enhance the security of the transportation network system and
did not extensively investigate the effectiveness of anomaly
data detection [16]. The study applied algorithms based
on EC and spatio-temporal correlation to design a sensor
monitoring system for greenhouse cultivation. This approach
expanded the range of applications for AD algorithms.
In addition, A. Haj-Hassan et al. proposed a framework for
outlier detection for wireless human sensor networks. How-
ever, the method had some weaknesses for massive data [17].

Scholars have conducted extensive research on AD of
network data. One area of focus is the detection of
spatio-temporal data anomalies, which aims to enhance net-
work system security and reliability [18], [19]. However, this
research does not comprehensively consider factors such as
network bandwidth and outlier data. Contrastingly, EC has
been studied and applied in data AD for an extended period.
The present study suggests a new SMM approach. The spatial
correlation anomaly detection algorithm (SCADA) is further
designed based on the proposed TCADA, and the SMM
for smart greenhouses is constructed by integrating the two
algorithms in EC. The study introduces SW innovatively as
a multi-source data chunking method for data processing,
which is different from other data detection models and
effectively avoids the resultant error caused by one-sided
estimation of single data. To demonstrate the feasibility of the

TABLE 1. Comparison of the proposed methodology of the study with the
existing literature.

proposedmethod, the study compares it with the ADmethods
reviewed in the previous section. The comparison results are
presented in Table 1.

III. SENSOR MONITORING MODEL COMBINING S-TCADA
AND EC
Current algorithms for anomaly data detection mostly focus
on single-source data, ignoring the correlation of node
space and the detection of heterogeneous data from multiple
sources. Therefore, a SMM constructed using S-TCADA in
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EC is studied and designed. Firstly, SW is introduced in
TCADA for data chunking, and SCADA is further proposed
based on this. Secondly, S-TCADA is fused to construct a
sensor model in conjunction with EC, and it is applied to
data malfunction monitoring in smart greenhouses with cloud
platform technology and so on.

A. DESIGN BASED ON TCADA
Traditional AD methods ignore the relevant features of
multi-source data when processing streaming data, which
leads to the reduction of accuracy and efficiency. For this
reason, the study proposes a TCADA for multi-source
data, which determines the anomaly state by calculating its
anomaly score for multi-source data at adjacent time and
chunks the data using SW. Considering the heterogeneity
of multi-source data, the study categorizes the scene mal-
functions into point, context, and collective malfunctions,
as shown in Figure 1.

FIGURE 1. Schematic diagram of three types of abnormal scenarios.

Point anomaly means that a single data is far away from
other data of the same type, so it is judged as a point anomaly
or belonging to an isolated point. In Figure 1(a), the points O1,
O2, andO3 are far away from the planes N1 andN2, which can
be considered as belonging to point derangement. Contextual
derangement is a situation where an individual instance is
normal in other scenarios but appears deranged in a spe-
cific context. As shown in Figure 1(b), individual instances
at moment t2 exhibit contextual malfunctions. In contrast,
collective dissonance refers to a situation in which individual
instances within a group collection appear to be discordant.

This may occur even when the individual instances them-
selves are normal. However, when multiple instances within
the collection exhibit dissonance, it is referred to as collective
dissonance.

Based on the concept of scenario malfunction, the study
uses three time-sequence to measure the data, namely, single-
source data, multi-source heterogeneous data, and SW, and
calculates the relative distances between data objects using
the Euclidean distance equation [20], [21], [22]. Among
them, single-source data are collected by a single sensor,
which can be used to reflect the changes or development
trends produced by things over time, and the specific expres-
sion equation is shown in equation (1).

Ai = {a1, a2, . . . , ai, . . . , an} (1 ≤ i ≤ n) (1)

In equation (1), Ai denotes the set of single-source time-
sequence, a1 denotes the data collected at the 1st observation
moment. ai denotes the data collected at the i-th observation
moment, an denotes the data collected at the nth observation
moment. i denotes the ordinal number of the moment of
observation.Moreover, n denotes the number of observations.
Equation (2) is a simplified representation of multi-source
heterogeneous data, which are gathered from many sensors.
The data take the form of time-sequence data.{

TAm = {A1,A2, . . . ,Ai, . . . ,Am} (1 ≤ i ≤ m)
Ai =

{
a1, a2, . . . , aj, . . . , am

} (2)

In equation (2), TAm denotes the time-sequence data set of
multi-source sensing data, aj denotes the data value collected
at a specific moment.m denotes the number of data in the set,
j denotes the ordinal number of the observation moment, but
j ̸= i. Meanwhile, the study innovatively introduces the time
SW to chunk the data, and the expression of a SW data in a
wireless sensor is shown in equation (3).

W = {ae+1, ae+2, . . . , ae+i, . . . , ae+w} (1 ≤ i ≤ w)
E = {e1, e2, . . . , ei, . . . , ew}

F = {f1, f2, . . . , fi, . . . , fw}

(3)

In equation (3), W denotes data from a SW in the sensor,
and w denotes the length of the SW. E and F denote two sets
of neighboring multidimensional data, respectively, and ei
and fi denote a certain data value of the multidimensional data
collected at a certain moment. Equation (3) is able to be used
for statistical and monitoring purposes in practical situations,
where time-sequence are localized and computed based on
the length of the units formulated. Moreover, to enhance the
calculation of data information, the study invokes the time
SW for categorization. This SW dynamically adjusts the win-
dow size based on the characteristics of the data stream. In the
event of rapid alterations in the data pattern, the window can
be reduced in order to capture more recent data. Conversely,
if the data is relatively stable, the window can be expanded in
order to include more historical data. Concurrently, the study

VOLUME 12, 2024 116519



R. Zhang et al.: Sensor Monitoring Techniques in EC Using S-TCADAs

postulates that each time the data of the entire time-sequence
is accessed, its sub-sequence will be calculated in accordance
with the specifications delineated in equation (4).

Atsub = {at−w+1, at−w+2, . . . , at } (4)

In equation (4), Atsub denotes the sub-sequence of each
visit. Therefore, the proposed TCADA process for heteroge-
neous data from multiple sources is shown in Figure 2.

FIGURE 2. Algorithm flow for detecting time related anomalies.

In Figure 2, TCADA initially normalizes the data in order
to mitigate the adverse impact of disparate scales on the
data. Secondly, the time-sequence with multiple sources of
heterogeneity are input, and the calculation of the feature
matrix is performed when SW is 1. The specific calculation
is shown in equation (5).

Dt(e,f ) =

∑w−1
i=0 aet−ia

f
t−i

w
ae =

{
aet−w+1, a

e
t−w+2, . . . , a

e
t
}

af =

{
a ft−w+1, a

f
t−w+2, . . . , a

f
t

} (5)

In equation (5), Dt(e,f ) denotes the characterization matrix
of the e-th row and f -th column. ae denotes the expression in
row e and a f denotes the expression in column f . In accor-
dance with the aforementioned rationale, the window size
setting is implemented, and SW shifting is conducted with
the objective of obtaining the subsequent sequence at the next
moment. The anomaly score is calculated by determining
the degree of outlier distance shift of neighboring feature
evidences. Concurrently, the feature matrix is subjected to
pre-processing, and the distance calculation of neighboring
nodes is performed. The nearest neighbor distance differ-
ence algorithm is a commonly used method for calculating
data sets of various dimensions. The Euclidean distance is
employed to calculate the distance formula between two
neighboring nodes, as illustrated in Equation (6).

L (i, j) =
{∣∣Ai − Aj

∣∣ , 1 ≤ i ≤ n, 1 ≤ j ≤ n
}

(6)

In equation (6), L (i, j) denotes the distance between two
neighboring nodes. This nearest neighbor distance difference
calculation equation is applicable to data sets of various
dimensions. In this case, the expression equation for the
dataset is shown in equation (7).{

A =

{
ai

∣∣∣ai ∈ RN , 1 ≤ i ≤ M
}

ai = {ai1, ai2, · · · , aiN }

(7)

In equation (7), M denotes the total data objects in the
dataset, and N denotes the data dimensions. Furthermore,
the study analyzed and ranked the degree of influence
of the malfunction at this moment under each dimension on
the basis of the malfunction judgment rule. The algorithm
then ranked the malfunction scores in order from the largest
to the smallest, thus facilitating the rapid localization of the
sensors that may trigger the malfunction through the detected
anomalies.

B. DESIGN BASED ON SCADA
According to [23], there is frequently a strong spatial cor-
relation among the data gathered by nodes located in close
proximity within the monitoring area. Therefore, with the
goal to increase the accuracy and efficiency of AD, the study
further proposes SCADA on the basis of TCADA, which
analyzes the multi-sensor data from the same type of sensors
according to the sensor locations. Spatial correlation refers to
the existence of a quantitative functional relationship between
the data values of nodes within a specific spatial range. This
concept is particularly relevant in the context of sensor net-
works. Among them, it is essential to understand the degree
of similarity in the data collected by sensor nodes that are
located in close proximity to each other within the monitoring
area. Based on the spatial correlation, the study classifies the
spatial sequence data collected by the environmental moni-
toring of smart greenhouses into three categories, including
edge nodes aggregated into multiple different types of unit
sensor nodes, continuous time data flows formed by multiple
edge nodes, and covariance and Pearson’s coefficient [24],
[25]. The study initially delineates the formation of an edge
node, which is constituted by the aggregation of multiple uni-
tary sensor nodes of disparate types. The multidimensional
matrix on the basis of the time-sequence represented by its
collected data is shown in equation (8).

Bji(t) =


A11 A21 · · · Aj1
A12 A22 · · · Aj2
...

... · · ·
...

A1i A2i · · · Aji

 (i, j ∈ [1,N ]) (8)

In equation (8), B j
i (t) denotes the data collected by the j-th

sensor of the i-th edge node at the t-th moment. Aji denotes the
time-sequence of the jth sensor of the i-th edge node at the t-th
moment. This is followed by a continuous temporal data flow
formed by multiple edge nodes, as shown in equation (9).

BTi =


B1i (1) B1i (2) · · · B1i (T )
B2i (1) B2i (2) · · · B2i (T )
· · · · · · · · · · · ·

BNi (1) BNi (2) · · · BNi (T )

 (9)

In equation (9), BTi denotes a matrix of data flow over
a period of time constituted by all the sensors of the i-th
base station. According to the data flow equation, the other
edge nodes of the shed are numbered in order to perform
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data collection, and the numbering equation is shown in
equation (10).

A = {A1,A2, · · · ,An}

A′
=

{
A′1,A′2, · · · ,A′n

}
A′′

=
{
A′′1,A′′2, · · · ,A′′n

} (10)

In equation (10), A denotes the data set of the i-th edge
node. A1, A2, and An denote the 1-st, 2-nd, and n-th data of
the i-th edge node, respectively. A′ is the data set of the i+ 1-
th edge node. A′1, A′2, and A′n denote the 1-st, 2-nd, and n-th
data of the i+ 1-th edge node, respectively. A′′ is the data set
of the i+ 2-th edge node. A′′1, A′′2, and A′′n denote the 1-st,
2-nd, and n-th data of the i + 1-th edge node, respectively.
Finally, the mean, standard deviation and other correlation
coefficients of the data samples are calculated based on the
covariance and Pearson’s correlation coefficient, where the
equation for mean, standard deviation and variance is shown
in equation (11).

Ā =

∑n

i=1
ai

S =

√∑n
i=1 (ai − Ā)2

n− 1

S2 =

∑n
i=1 (ai − Ā)2

n− 1

(11)

In equation (11), Ā denotes the mean, S denotes the stan-
dard deviation of the sample data, and S2 denotes the variance
of the sample data. The equation for covariance between
random variables is then shown in equation (12).Cov(X ,Y ) = E {[X − E(X )] [Y − E(Y )]}

ρx,y =
Cov(X ,Y )

σxσy
=

E(x − µx)(y− µy)
σxσy

. (12)

In equation (12), Cov(X ,Y ) denotes the Pearson correla-
tion coefficient of random variables X and Y . ρx,y denotes
the correlation coefficient of random variables X and Y .
E {[X − E(X )] [Y − E(Y )]} denotes the covariance of random
variablesX and Y . σx and σy denote the standard deviation of
two random variables, respectively. For the nodes in the edge
layer of the smart greenhouse, it is investigated to compute
and analyze the correlation of the matrices of different edge
nodes in the same time situation, which in turn achieves the
result of alleviating the computational task. Therefore, the
computational steps of the proposed TCADA-based SCADA
are shown in Figure 3.
In Figure 3, the data is first normalized using min-max

normalization and sorted according to the number of edge
nodes. Secondly, abnormal node judgment is performed by
comparing the correlation of two edge nodes. The vector sim-
ilarity calculation of multi-source data is performed using the
correlation coefficient.Where the normalization expression is
shown in equation (13).

B̄ j
i (t) =

B j
i (t) − min(B j

i )

max(B j
i ) − min(B j

i )
(13)

FIGURE 3. Steps of spatial correlation-based anomaly detection
algorithm.

In equation (13), max(B j
i ) and min(B j

i ) denote the max-
imum and minimum values of the monitored data, respec-
tively. SCADA proceeds to the next edge node after marking
the edge node as an anomaly. On the basis of this, a similarity
matrix Ci,j is computed from the two N -dimensional matri-
ces, which in turn solves for the anomaly score of a certain
sub-sequence. The specific calculation formula is presented
in equation (14).

Hi =

∑N
j=1 Ci,j
N∑N

i=1
∑N

j=1 Ci,j
N 2

= N ·

∑N
j=1 Ci,j∑N

i=1
∑N

j=1 Ci,j

Ci,j =


C11 C12 · · · C1j

C21 C22 · · · C2j
...

...
. . .

...

Ci1 Ci2 · · · Cij


(14)

In equation (14), Ci,j denotes the similarity matrix of the
j-th sensor of the i-th edge node.Hi denotes the anomaly score
of the i-th sub-sequence.

∑N
j=1 Ci,j denotes the average value

of each row element in the similarity matrix and
∑N

j=1 Ci,j∑N
i=1

∑N
j=1 Ci,j

denotes the average value of all elements in the similarity
matrix. Considering the correlation between the derangement
score and the detection result, the study introduced a thresh-
old value as the detection range of derangement and utilized
the confidence level (CL) as the measurement criterion for
derangement detection [26], [27], [28].The specific expres-
sion equation of CL is shown in equation (15).

CL =
Hi∑N
i=1 Hi
N

(15)

In equation (15),
∑N

i=1 Hi
N represents the average of the

anomaly scores of the whole sub-sequence. According
to equation (15), the anomaly score of the anomalous
sub-sequence is greater than that of the normal sub-sequence.
The anomaly score of the overall time-sequence is equal to 1.
Therefore, the confidence CL of the normal sub-sequence
should be close to 1. Combining the above, the SCADA
obtained on the basis of the TCADA consists of two parts:
the algorithm for generating similarity matrices and the AD.
In this case, the metric equation for evaluating the AD is
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shown in equation (16) [29], [30].
Sen =

TD
TP

× 100%

Spe =
FP

G− TD
× 100%

(16)

In equation (16), Sen denotes the detection rate, whose
value is equal to 1 means that all abnormal patterns have been
successfully detected. Spe denotes the FAR, whose smaller
value indicates that the accuracy of the detection method is
higher. The numbers TD and TP represent the number of
anomalies found experimentally and appropriately, respec-
tively. The numbersFP andG represent the number of regular
sub-sequences and the number of sub-sequences that are
found to be anomalous.

C. SENSOR MONITORING MODEL CONSTRUCTION
COMBINING S-TECADA AND EC
In order to improve the detection accuracy of massive hetero-
geneous monitoring data, the study integrates TCADA and
SCADA, forming S-TCADA.Moreover, the specific steps are
shown in Figure 4.

FIGURE 4. Algorithm for anomaly detection-based on spatio-temporal
correlation.

As illustrated in Figure 4, the S-TCADA algorithm initially
gathers multi-source data through the nodes of the underly-
ing sensors and performs normalization and pre-processing.
Secondly, the underlying sensor nodes transmit the collected
time-sequence multi-source heterogeneous data. TCADA
conducts preliminary monitoring of the multi-source hetero-
geneous data, calculates the outlier distance of each node
within the SW, and filters out the nodes with anomaly scores
more than 1.5 times of the mean as the candidate anoma-
lous nodes, and labels them. SCADA derives the anomaly
scores by calculating the similarity of the multi-source
heterogeneous data of different edge nodes. Subsequently,
a threshold comparison is conducted. Then, S-TCADA iden-
tifies any anomalies and transmits them to the cloud platform.
At the same time, the study combines the hierarchical EC
to construct a multi-source and multi-dimensional data AD
model for intelligent greenhouse spatio-temporal correlation
anomaly detection algorithm-edge computing (S-TCADA-
EC), which is capable of realizing the functions of collecting,
detecting and transmitting the design of environmental moni-
toring data for greenhouses. This AD model consists of three
parts: remote cloud platform, edge layer nodes and sensing
layer nodes, and the specific architecture is shown in Figure 5.

In Figure 5, the model is mainly oriented to intel-
ligent greenhouses. Among them, the sensor nodes are

FIGURE 5. Overall architecture of multi-source and multi-dimensional
data malfunction detection modeling.

mainly responsible for the acquisition of multi-source het-
erogeneous data such as temperature, humidity, light, and
multi-dimensional heterogeneous data. The edge layer nodes
act as the core of EC, and the study embeds the proposed
S-TCADA into the edge nodes for spatial correlation AD of
multi-source data, while the edge nodes utilize time-sequence
continuity and node spatial location correlation for the detec-
tion of out-of-whack data appearing in real-time sensing data.
The edge layer is connected to the sensing layer plus points
downward and interfaces with the cloud platform upward.
The sensing layer, which is at the base of the model, uses
little power to gather data from the field devices. It is fit-
ted with sensors that measure things like light, temperature,
humidity, carbon dioxide, and other variables. It is the cloud
platform’s responsibility to gather edge layer feedback. The
edge layer supplies data support for cloud services, and the
cloud platform is in charge of gathering the AD results from
there. Figure 6 shows the intelligent greenhouse monitoring
system. Its system hardware uses an STM32 chip, and the
LCD display and WiFi connection are on this chip.

FIGURE 6. Specific hardware structure framework.

Figure 6 depicts a schematic diagram of the hardware struc-
tural framework of an edge layer node in a smart greenhouse.
The edge layer node may be regarded as a small server,
comprising multiple distributed potential network adminis-
trators or servers. The edge layer node represents the primary
site for AD and serves as the central element in the model
that integrates the S-TCADA with EC. The AD sequence
delineates the stages of the AD task, which are depicted in
Figure 7.

As illustrated in Figure 7, the AD process encompasses
the acquisition of data, storage of data, analysis of anomalies,
and provision of feedback regarding anomalies. Upon trans-
mission of the multi-source heterogeneous data collected by
the sensor layer node to the edge layer node, the latter will
immediately analyze the multi-source data for anomalies and
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FIGURE 7. Abnormal warning structure.

provide the user with the detection results via the cloud
platform. In the malfunction feedback stage, users can view
the data collected by the sensors in real time, as well as
the warning information fed back by the edge layer node
after analysis and processing of the data. Furthermore, the
study employs precision rate, recall rate, and F1-score as
evaluation metrics for the algorithm. The expression formula
for precision rate is provided in Equation (17).

precision =
TP

TP+ FP
(17)

The expression for the recall rate is shown in equation (18).

recall =
TP

TP+ FN
(18)

In equation (18), FN denotes the number of data that are
actually normal but are detected as out of order. The formula
for calculating the F1-score is shown in equation (19).

F1 =
2 precision · recall
precision+ recall

(19)

IV. EXPERIMENTAL ANALYSIS OF SENSOR MONITORING
COMBINING S-TCADA AND EC
The study is conducted to validate and analyze the method
with multi-source and multi-dimension data collected from
greenhouses. Firstly, the value of SW is determined with test
metrics such as precision and recall, and the performance
of TCADA is evaluated. Secondly, the SW size of SCADA
is further determined, and the algorithms are compared in
terms of performance metrics. Finally, based on the proposed
application process of STCADA-EC in sensor monitoring,
other methods are introduced for comparison to verify the
performance of STCADA-EC.

A. EXPERIMENTAL SETUP
The experimental data are derived from the actual envi-
ronmental data of a smart agriculture experimental garden.
The data attributes encompass temperature, humidity, light,
greenhouse wind speed, soil pH value, and other indicators.
The study set the greenhouse sensors to collect the data of
the above indicators every 10 min, 10 edge nodes for data
collection, each edge node to monitor a greenhouse, and the

TABLE 2. Data characteristics of selected datasets.

collection time is 24 h. Based on the information from the
collected data, the study validates AD for three variables:
temperature, humidity, and light in the greenhouse. Some of
the characteristics of the dataset are shown in Table 2.

The data characteristics of some real datasets are shown
in Table 2. In the whole simulation experiment, the amount
of validated data is 5000, the sensors is 150, the first
3000 data records are training data, and the last 2000 data
records are test data. Based on this, the study intro-
duces the K-nearest neighbor (KNN) algorithm [31], fuzzy-
theoretic algorithm (FTA) [32], random forest algorithm [33],
XGBoost [34], LightGBM [35], and deep learning algorithm
auto-encoder [36]. Since the experimental validation data
in the proposed process of the comparison methods are
different, the study set the above comparison methods
are compared using the greenhouse data collected by the
study. Meanwhile, K-fold cross-validation is used to confirm
the hyper-parameters of KNN algorithm. Cosine similar-
ity is used to calculate the similarity of FTA. Grid search
cross-validation is used for the parameter optimization of
random forest algorithm. Moreover, the hyper-parameters
of XGBoost and LightGBM are decision tree and con-
trol tree structure respectively. The hyper-parameters of
the above machine learning comparison methods are deter-
mined through the steps of segmenting the data, training and
evaluating the models, calculating the performance metrics,
analyzing the results, selecting the best model, final test-
ing, and reporting the results. The input format files for all
machine learning models are comma-separated values. The
input features are of continuous numerical type and are nor-
mally distributed. The model training loss function is cross
Entropy loss. In addition, for the KNN and random forest
algorithms do not have the function of unbalanced dataset
processing, the study uses the evaluation index F1-score for
data unbalance processing. To ensure the robustness of the
proposed method in practical scenarios, stress tests including
high-load testing, diversity testing, anomaly pattern change
testing, and adversarial attack testing are conducted before
the experimental validation.

Among them, the hyper-parameters of KNN algorithm
are set as follows: n_neighbors=5, weights=10, and
P=1. The parameters related to Random Forest algorithm
are set as follows: max_depth=5 and n_estimators=300.
The parameters related to XGBoost are set as fol-
lows: max_depth=5, min_child_ weight=3, gamma=0,
subsample=0.85, colsample_bytree=0.9, reg-alpha=0.1,
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learning_rate=0.1, and n_estimators=0.1. Weight=3,
gamma=0, subsample=0.85, colsample_bytree=0.9, reg-
alpha=0.1, learning_rate=0.1, n_estimators=301, and
objective=’binary: logistic’. LightGBM related parameters
are set as follows: max_depth=7, num_leaves=80, min_
child_samples=20, min_child_weight=0.001, colsample_
bytree=0.8, reg-alpha=0.1, learning_rate=0.1,
n_estimators=301, and objective=’binary: logistic’.
Bytree=0.8, subsample=0.6, learning_rate=0.1, n_estimat-
ors=230, boosting_type=‘‘gbdt’’, and objective=’binary:
logistic’.

B. EXPERIMENTAL VALIDATION BASED ON TCADA
According to the proposed TCADA algorithm, the study
experimentally verified it with precision rate, recall rate and
F1 score. Since the value of the SW will directly affect the
running time of the algorithm as well as the evaluation results,
the study compares and analyses the precision rate, recall rate
and F1 score of the algorithm by setting different SWs. The
specific experimental results are shown in Figure 8.

FIGURE 8. The impact of different sliding window sizes on algorithm
performance evaluation metrics.

In Figure 8, the precision rate varies less at different SW
sizes, while the recall rate and F1-score fluctuate more over-
all. When the SW is 10, both the recall and F1-scores are
at their highest values with the best results. Therefore, the
study set the size of SW as 10. Firstly, the original data set
is initialized, and the feature matrix of the input multi-source
heterogeneous time-sequence is extracted. The window size
is then set to 10. Secondly, a window shift is performed to
obtain a sub-sequence of the subsequent moment. Anomalous
scoring points are then determined based on the leptokurtic
distances of the neighboring matrices. Meanwhile, in order
to further validate the performance of the TCADA algorithm
proposed in the study, the performance of other methods is
compared with the proposed method. The specific compari-
son results are shown in Figure 9.
In Figure 9(a), when the number of edge nodes is small, the

difference in the running time of several algorithms is mini-
mal. However, as the amount of data increases, the running
time of several algorithms increases to varying degrees, with
TCADA’s running time being higher than that of the other
four methods at six edge nodes. This may be due to the fact
that the double computation of data by the introduced SW
causes it to take too much time to run. However, TCADA
exerts a significant advantage in terms of market detection

FIGURE 9. Comparison of runtime and accuracy of different algorithms.

accuracy. The accuracy gap with KNN is smaller when the
amount of data is smaller, but it is still better than the other
methods. Moreover, as the amount of data increases, the
detection ability of TCADA is even more superior. When the
edge node is 6, TCADA increases the accuracy by 0.27%-
4.89% over the other four methods. This suggests that the
runtime due to the introduction of the SW is worthwhile in
the case of improved detection accuracy. Therefore, it can
be assumed that when the detection accuracy is improved,
the increase in running time does not affect the detection
performance of the algorithm. The study ran multiple trials
of the five approaches on a bigger volume of data in order
to more thoroughly examine the detection performance of
TCADA. The final results of the comparison of precision and
recall are shown in Figure 10.

FIGURE 10. Comparison of precision and recall of different algorithms.

As the data volume increases, the accuracy rates of several
algorithms at different data volumes show different trends,
but TCADA is overall higher than the other six algorithms.
When the data volume is 2000, the precision rate of TCADA
is as high as 92.58%, which is 18.74% more than FTA.
Comparison of recall rates for different data volumes shows
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TABLE 3. Comparison results of abnormal detection using different
algorithms.

that FTA is significantly lower than the other six algorithms,
while the proposed TCADA recall rate of the study is still
superior to the other methods. Table 3 compares the precision,
recall, and F1-scores of the seven methods at a data volume
of 2000 in order to allow for a more natural comparison of
the detection outcomes of the algorithms.

In the comparison of precision, recall and F1-score of the
seven algorithms, it can be noted that TCADA has the best
AD effect, and the F1-score is increased by 6.56%-20.60%
compared to the other six algorithms. The KNN algorithm is
ranked worse among the seven algorithms, probably because
it calculates themalfunctioning score by the distance between
the current data to the K-th nearest neighbor, and therefore
the detection effect is not ideal. Moreover, FTA is based
on fuzzy theory, and its effect is the worst among all algo-
rithms. The unsupervised model’s AD effect is noticeably
worse than the deep model’s, and when it comes to handling
the anomaly problem of heterogeneous data from numerous
sources, TCADA performs somewhat better than the other six
algorithms.

C. EXPERIMENTAL VALIDATION BASED ON TCADA
In order to make further judgment on the proposed TCADA,
the study first validates the performance of SCADA based on
TCADA. Since the size of SW affects the detection results of
the algorithm and it is known that TCADA performs best at
a SW of 10, the study further compares the effectiveness of
SCADA for AD with different SW sizes and different data
volumes, as shown in Figure 11.
In Figure 11, combined with the set threshold CL=1.0 it

can be observed that there are data points exceeding the
threshold line at SW sizes of 5, 10, 15 and 20, with the most
points exceeding the CL at w=10. This indicates that SCADA
has the best detection at a SW size of 10. Figure 12 displays
the specific detection results for different SW. The results
include the number of false detections (NFD), number of false
alarms (NFA), False Detection Rate (FDR), and FAR. It is
evident that the FDR and FAR are the lowest when the SW
is 10, while the AD accuracy is as high as 80%. Thus, the
validation experiment analysis of SCADA still employs a SW
size of 10.

Meanwhile, the study further compares the variation of
SCADA performance at different CL levels when SW is 10.
The details are shown in Table 4.

FIGURE 11. The effect of different sliding window sizes on abnormal
detection performance.

TABLE 4. Effect of different CL levels on SCADA performance at SW=10.

In Table 4, FDR and FAR of SCADA differed at different
CL levels. As the CL level increases, both FDR and FAR
tend to decrease. When CL takes the value of 1.0, the FDR
of the algorithm is 6.87% and FAR is 0%. This indicates that
SCADA is most effective for AD when CL takes the value
of 1.0. Therefore, the study conducts subsequent validation
experiments with SW set to 10 and CL set to 1. Different
parameters have a certain impact on the AD results of the
algorithm, and appropriate parameter settings are conducive
to giving full play to the detection effect of the algorithm.
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FIGURE 12. Detection results of different sliding window sizes.

FIGURE 13. Comparison of detection rate and false alarm rate between
different methods.

As a result, the study evaluates the detection capabilities of
SCADA in comparison to other methods. Figure 13 displays
the findings of the comparison of the detection rate and FAR
under various data volumes.

As a further improved algorithm based on TCADA,
SCADA demonstrates a gradual leveling off of its detection
rate as the data volume increases. At both data volumes of
1500 and 2000, the detection rate reaches 94.58%, which is

TABLE 5. Comparison of detection performance between different
methods.

significantly better than several other methods.When the data
volume is 2000, the final detection rate of SCADA increases
by 2.51% over TCADA and 5.32%-15.13% over several other
algorithms. FAR comparison results show that SCADA’s FAR
shows a large increase when the data volume is 1000, with a
final FAR of 0.97% and TCADA’s FAR of 2.23%. In addition,
as the amount of data increases, the FTA FAR is the highest
among all the methods, followed by Random Forest. This
indicates that the proposed SCADA further reduces the FAR
for the detection of out-of-order data on the basis of temporal
correlation, and it also shows that the proposed SCADA has
better detection capability. The results of the comparison of
detection rate, FAR, and F1-score of the six methods are
shown in Table 5.
The FAR of TCADA is reduced by 44.25%-83.45%

compared to several other methods, while the F1-score is
increased by 1.37%-22.25%, which indicates that TCADA is
more effective in the detection of anomalous data. It can be
noted that algorithmic improvement based on TCADA using
spatial correlation is beneficial to the optimization of AD
results, and the detection rate and F1-score of SCADA are
increased to different degrees compared with TCADA, while
the FAR is significantly reduced by 56.50%. Therefore, the
proposed SCADA based on temporal correlation effectively
improves the detection accuracy of the anomaly data and sig-
nificantly reduces the FAR, which is superior to the detection
performance of other algorithms.

D. EXPERIMENTAL VALIDATION OF A SENSOR
MONITORING MODEL COMBINING S-TCADA AND EC
Finally, in order to realize STCADA for real-time anomaly
warning during sensor acquisition of multidimensional time-
sequence data, the study further compares the detection
performance of S-TCADA-EC with KNN, FTA, random for-
est, XGBoost, LightGBM, and auto-encoder for different
number of sensors.

The detection runtime of all five techniques in Figure 14(a)
is less than 0.15s when the number of sensors is minimal,
and the seven methods’ needed runtime increases linearly
with the number of sensors, which causes a huge increase in
data. Among them, the auto-encoder algorithm takes the most
time with the huge amount of data, while the study proposed
S-TCADA-EC has the lowest runtime among all the meth-
ods. The configuration of the hardware affects the energy
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FIGURE 14. Performance comparison of different methods.

consumption of the algorithms during the runtime. From
Figure 14(b), S-TCADA-EC requires the lowest energy con-
sumption among all the methods, whereas auto-encoder and
other auto-encoder algorithms utilizing neural network-based
algorithms consume the most energy. This indicates that the
combination of EC and S-TCADA is beneficial in reduc-
ing the energy consumption, especially for AD with large
amounts of data. In addition, the amounts of data has a greater
impact on the delay time of the algorithm running process,
while the traditional detectionmethods have some advantages
in the environment of smaller amount of data. However,
in Figure 14(c), as the amount of data increases, that algo-
rithms such as S-TCADA-EC and random forest have less
delay time. The proposed S-TCADA-EC shows a significant
advantage in delay time comparison, which may be due to the
fact that the computational tasks are distributed to multiple
edge nodes with distributed features, which improves the
operation efficiency of the cloud platform to a certain extent,
and thus the time delay is better. The prolongation time of
methods such as auto-encoder, KNN, and so on, is too long,
whichmay be due to the increase in the amount of data, which
leads to an increase in their running time, and accordingly
the delay time grows. Meanwhile, the latest SMM proposed
by current scholars has been introduced to compare the

FIGURE 15. Comparison of STCADA-EC performance with other methods.

performance with STCADA-EC. The specific comparison
results are shown in Figure 15 [37], [38].
In Figure 15(a), STCADA-EC has a significant advan-

tage in AD compared to other anomaly monitoring models.
Compared with literature [37] and literature [38], the F1-
score of STCADA-EC increases by 4.58% on average.
In Figure 15(b), a comparison of the detection latency and
time loss under the three models reveals that STCADA-EC is
the most advantageous. The literature [37] method exhibits a
greater degree of delay and time loss than the other two meth-
ods. This is likely due to the fact that the method employs
a probabilistic model for the detection of anomalous nodes,
followed by the use of a discrete-time Markov chain for
further analysis. This detection process takes more compu-
tational time and overhead. Overall, the research proposed
STCADA-EC has significant advantages in greenhouse AD
data. Compared with other methods, the proposed method
has superior performance, which further indirectly verifies
the application performance of this method in the benchmark
dataset.

V. CONCLUSION
To achieve real-time detection of anomalous data in
large-scale sensor data using a centralized cloud platform,
the study proposes TCADA for detecting time-sequence
of heterogeneous data from multiple sources. For the
spatio-temporal correlation of sensor data, SCADA is
designed. Based on this, the study constructs the AD model
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STCADA-EC by introducing the hierarchical EC model
and S-TCADA. The validation showed that the TCADA
algorithm achieves a precision rate of 92.58% and a recall
rate of 89.97% across various data volumes. The FAR of
the SCADA algorithm was reduced by 56.50% compared
to TCADA. Additionally, the STCADA-EC runtime was
reduced by 14.54%-51.55% compared to other methods. The
study’s results indicated that the AD method proposed in
the study can effectively improve the accuracy of AD for
large-scale data and has more significant advantages in AD
for multi-source heterogeneous data.

However, there are still some shortcomings in the study
and some outliers in the real collected data still exist. Prior to
analyzing the data, the study performed thorough data clean-
ing, including removing or correcting obvious input errors,
missing values, and outliers. The use of semi-supervised
learning methods can utilize unlabeled data to improve the
performance of AD. Therefore, the efficiency of automatic
selection of model SW size will be further updated in the
future to build more adaptive mode SW. Neural network
algorithms and others are considered to be invoked for data
training, including techniques such as convolutional neural
networks, gated recurrent units, and graph neural networks.
It is possible to integrate neural networks into the data pre-
processing process, thereby enabling automatic learning of
features. Alternatively, neural networks can be trained end-
to-end with other components, such as feature extractors.

ABBREVIATIONS
Abbreviations Full name
IoT Internet of Things.
EC Edge Computing.
S-TCADA Spatio-Temporal Correlation

Anomaly Detection Algorithm.
TCADA Temporal Correlation Anomaly

Detection Algorithm.
SW Sliding Window.
AD Anomaly Detection.
SCADA Spatial Correlation Anomaly

Detection Algorithm.
CL Confidence Level.
S-TCADA-EC Spatio-Temporal Correlation

Anomaly Detection Algorithm-
Edge Computing.

KNN K-Nearest Neighbor.
FTA Fuzzy-Theoretic Algorithm.
NFD Number of False Detections.
NFA Number of False Alarms.
FDR False Detection Rate.
FAR False Alarm Rate.
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