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ABSTRACT Chest X-rays have played an indispensable part in medical diagnosis for several decades.
However, there is a scarcity of experts who can interpret these images to diagnose critical illnesses, which
can lead to preventable fatalities. This paper introduces a novel Rapid AI Diagnosis at Edge using Ensemble
Models for Radiology (RAIDER) designed to leverage the advantages of cross-geolocation meta-learning
models. We can generate local machine learning models at individual locations and distribute them across
other locations for diagnosing diseases at the edge or on-premises if required before they become worldwide
pandemics, significantly enhancing the rapid or near-real-time identification of fast-spreading respiratory
diseases through online learning. This novel approach allows for geo-distributed multi-fold model training,
harnessing the unique strengths of diverse geographical data sources to improve diagnostic accuracy and
speed by leveraging edge computing. Using the existing Convolutional Neural Network (CNN) models
and distributed training at the edge, we can enhance the accuracy and cost-effectiveness of diagnosis. The
proposed architecture allows for distributed training and independently verified performance metrics on the
MIMIC-CXR and COVIDGR chest X-ray datasets with accuracy, sensitivity, specificity, F1-score and AUC
of 97.80%, 97.06%, 98.48%, 96.51%, and 0.9739, respectively. Our proposed RAIDER architecture marks
the first implementation of a collaborative framework that facilitates seamless interaction across different
geographic locations and edge computing, enabling a more effective and efficient response to emerging
health threats.

INDEX TERMS Chest x-ray, medical image diagnosis, edge computing, ensemble learning, meta-learning.

I. INTRODUCTION
We live in a tender world with a struggling health
infrastructure to care for the ever-growing population on
our planet. The fragile nature of our society was on full
display at the onset of the rapid spread of COVID-19,
which caused a global pandemic a few years ago [1]. The
hospitals were swamped with hundreds of thousands of
patients, requiring swift diagnosis to prevent overcrowding
and further spread of diseases. Since then, several COVID-
19 variants like Beta, Delta, and Omicron have caused
global public health concerns in the following years due to
their resistance to the existing vaccines [2] as they were
less susceptible to neutralization by antibodies generated
by previous infection or existing vaccination. In light of
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these events, the critical infrastructure supporting rapid
diagnosis has attracted significant attention [3], [4]. While
real-time reverse transcription-polymerase chain reaction
(RT-PCR) is the most widely used method, it takes a long
time [5], [6], and has a sensitivity of only 60%-70%,
meaning that it is crucial to have commercial kits available
in order to test positive in about 30% of situations when
the test result is negative [7]. Although there are several
alternatives for diagnosing patients with COVID-19, chest
X-ray images have particularly proven useful in assessing
the severity of the disease. Several research studies have
explored the effectiveness and the potential of using machine
learning models for interpreting these images. Interpreting
a chest radiograph can present difficulties because of the
superimposed anatomical structures along the projection
path. This phenomenon may pose significant challenges in
terms of identifying anomalies in specific areas like a nodule
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posterior to the heart on a frontal CXR [8], detecting minute
or subtle abnormalities, or precisely differentiating between
various pathological patterns. For these reasons, analysis of
CXR pictures by radiologists is often subject to considerable
interobserver variability. Several deep learning models have
been presented that detect COVID-19 with high accuracy [9],
[10]. Nevertheless, these models are enormous, complex to
scale, and expensive to train. They also require large datasets
of images to detect subtle differences in the medical images,
which need more nuanced image enhancements and complex
models to detect these features as the number of diseases
to classify grows. When a new COVID-19 variant emerges,
the associated symptoms and protocols for diagnosing the
disease via chest X-rays may change. Additionally, several
other diseases also rely on chest X-rays for diagnosis [11].
In addition, the current supervised training of deep neural
networks on medical image diagnosis relies heavily on
large pools of labeled data, which is scarce, inflexible,
expensive, and limited by types of annotations. Since chest
X-rays are private and confidential data, they can only be
shared with other researchers with proper anonymization and
approval. However, anonymizing and using the data on-site
to train the classification models is more straightforward.
As conventional computer-aided diagnosis systems face
significant hurdles in adapting to the rapid spreading of new
strains of this disease, a more flexible and decentralized
approach is needed to keep pace with the rapid spread of
such infectious and life-threatening diseases. Using such an
approach, we can standardize the image preprocessing steps
and share the machine learning models without sharing the
patients’ private data. Furthermore, the approach would be
scalable and enable collaboration across different geographic
locations to quickly detect novel diseases and their variants.

II. BACKGROUND AND RELATED WORK
Researchers worldwide have used Chest X-ray images
to assess and diagnose several health issues in patients,
including assessing the condition of the lungs, heart-related
problems, detecting the size and outline of the heart, blood
vessels, calcium deposits, fractures, postoperative changes,
the presence of a pacemaker, defibrillator or catheter, and
several combinations of these. Several deep learning models
trained on publicly available labeled chest X-ray datasets are
available for detecting these illnesses. For example, CheXpert
can automatically detect the presence of 13 diseases in radiol-
ogy reports [12], including Enlarged Cardiom, Cardiomegaly,
Lung Lesion, Lung Opacity, Edema, Consolidation, Pneumo-
nia, Atelectasis, Pneumothorax, Pleural Effusion, Fracture,
Support Devices, and more. Similarly, CheXNet can also
detect 14 diseases but outperforms CheXpert in terms of
accuracy [13]. These models demonstrate the potential of
using deep learning models in detecting pneumonia and
other pathological diseases from chest X-rays by achieving
performance levels that exceeded or matched those of
practicing radiologists. Similar accuracy (81%) was shown
byDeepCOVID-XR evenwhen compared to the consensus of

all five radiologists. Interestingly, DeepCOVID-XR demon-
strated a notably greater specificity (92%) compared to
two radiologists (75%, P < 0.001; 84%, P = 0.009) and
a significantly higher sensitivity (71%) compared to a single
radiologist (60%, P < 0.001). However, with a P-value of
0.13 coupled with the difference between DeepCOVID-XR’s
AUC of 0.88 and the consensus AUC of 0.85 was not
statistically significant [14]. The disparity in performance
throughout the training and testing phase has to be more
persuasive to the radiologists, even though the performance
was better than that of individual radiologists. Other studies
have also found the CNNmodels to be on par with the assess-
ment of the radiologist [15]. Although the design and training
of these models become more complex as we introduce
additional classes of diseases for classification, they offer a
promising glimpse into the potential for deploying CNNs to
identify novel diseases in real time. To benefit from such an
approach, we require a model that balances efficiency with
accurate classification capability, ensuring it is lightweight
enough for time-sensitive applications yet sufficiently robust
enough to classify diseases accurately.

A. LIGHT-WEIGHT PREDICTION MODELS
One of the popular methods of training a CNN model is
extracting knowledge from one domain and transferring it to
another through transfer learning. Pre-training is one of the
transfer learning strategies that has been frequently applied
in CXR analysis. The pre-training strategy starts out with
training the network architecture on a large dataset for a
different task. The trained weights obtained from this phase
are then utilized as an initialization for the subsequent jobs
to fine-tune them. Either all layers or just the last layer may
be retrained, depending on the dataset of the target domain.
Because important low-level features are acquired from the
source data, this method enables neural networks to be trained
for new tasks using comparatively smaller datasets. For the
purpose of classifying real images, pre-training on the Ima-
geNet dataset has been demonstrated to be advantageous [16].
Additionally, pre-trained architectures can be used for feature
extraction in conjunction with more conventional techniques
like random forests or support vector machines. Moreover,
there have been many comprehensive studies about using
lightweight convolutional neural networks (CNNs) to detect
diseases using chest X-rays. Lightweight models from the
SqueezeNet, VGG, and MobileNet model families have been
determined to classify multiple classes of diseases with minor
tweaks to their architectures [17].

B. DATA ACQUISITION DIVERSITY
In most previous research, researchers have trained their
supervised deep neural networks (DNN) on a large pool of
labeled data. However, in medical imaging, labeled data is
scarce due to privacy concerns, and the manual annotation
by professional radiologists and physicians requires tedious,
time-consuming effort. Although some large labeled datasets
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are available, they can be severely imbalanced by over-
representing common problems and under-representing rare
conditions. Moreover, the resolution of differential diagnosis
in these diseases is generally low, so the fine detection and
classification for diagnosis among images is not feasible.
This imbalance can lead to poor performance of DNNs on
rare diseases. As expected, we came across several datasets
that had gathered ChestX-ray pictures of various health con-
ditions, including MIMIC-CXR, BIMCV, COVIDDSL, and
COVIDGR, consisting of images of various resolutions and
quantities. The National Institutes of Health (USA) gathered
112,120 pictures of 30,805 patients to create ChestX-ray14
[18]. The images are grayscale 1024× 1024 pixels with 8-bit
labels from radiological reports that show 14 different disease
kinds. The MIMIC-CXR dataset comprises 371,920 pictures
gathered from 64,588 patients [19] who were admitted to
Beth Israel Deaconess Medical Center’s emergency depart-
ment between 2011 and 2016. This dataset was likewise
labeled from radiology records using the same rule-based
labeler method as CheXpert. Chest X-rays and CT scans
are included in the BIMCV COVID-19 dataset, provided
by the Valencian Region Medical ImageBank in 2020
[20]. The dataset includes 3293 16-bit original resolution
images from 1305 COVID-19 patients. The HM Hospitales
group in Spain released the COVID-19 dataset known as
COVIDDSL [21]. It contains comprehensive laboratory test
results, vital signs, and CXR images for 1725 individuals.
Confirmed COVID-19-positive status is reported for every
individual. By related RT-PCR results acquired in less than
24 hours, half of the 852 PA CXR pictures in the COVIDGR
dataset are classified as COVID-19 positive [18]. The degree
of severity of positive cases is shown in this dataset, which
was gathered fromHospital Universitario Clínico San Cecilio
in Granada, Spain.

Despite the availability of numerous public chest X-ray
datasets, preparing the data for use with proposed models
remains challenging due to issues with annotations, labeling
consistency, and varying data formats. Most Datasets use
Natural Language Processing (NLP) to generate labels for
each image. Even though it is a fast and inexpensive
labeling method, it results in inaccuracies in labeling [12],
[22]. There might be several causes for such inaccuracies,
as some visible abnormalities may not be mentioned in the
radiology report, depending on the context in which it was
acquired. The NLP algorithm can be erroneous, interpreting
some negative statements as positive, failing to identify
acronyms, and many more. Furthermore, many findings
on CXR are subtle or doubtful, leading to disagreements
even among expert observers [23]. The CheXpert dataset
mentions no labels or uncertain levels to account for this
uncertainty. One particular cause for concern with NLP labels
is the issue of systematic or structured mislabeling, where
a disease is consistently mislabeled in the same way. This
example occurs in the ChestX-ray14 dataset, where subcu-
taneous emphysema is frequently identified as pulmonary
emphysema [24], [25].

However, we can use this fragmentation to our advantage.
Since there are multiple specialized clinics for the treatment
of specific diseases, we can get the labeled data from
the experts in these institutions to train the CNN models
precisely to diagnose these diseases. Nonetheless, there needs
to be more clarity between the current deep learning-based
methods and the medical demands that require the detection
of subtle differences like which stage or at what scale the
disease has spread through the medical images. For example,
pulmonary edema is a fluid buildup in the lungs and is one of
the most direct symptoms of Chronic Heart Failure (CHF)
[26], where the heart cannot pump blood effectively. CHF
patients have extremely heterogeneous responses to treat-
ment [27] and respond differently to the same medications
and interventions. This makes it difficult for clinicians to
come upwith effective treatment plans. Assessing the severity
of pulmonary edema will enable clinicians to make better
treatment plans based on prior patient responses, where deep
learning methods are instrumental. It will facilitate clinical
research studies that require quantitative phenotyping of the
patient’s status [28]. However, quantifying pulmonary edema
is a highly challenging task. The grading of pulmonary edema
severity relies on much more subtle image findings than
detecting pathologies in chest X-ray images [13], [29]. To fill
the gap between the current deep learning-based methods
and the medical demands of detecting subtle differences in
medical images, we propose a distributed, scalable system
that uses image processing and standardizing techniques
to enable user-defined targets for specific specialty areas.
Various models are effective in the classification of specific
diseases but not others. Therefore, ensembling methods for
combining the predictions of these models can help us create
a unifying solution for diagnosing these diseases.

C. ENSEMBLE LEARNING
Using ensemble learning, we can combine the benefits of
several baseline models to build a better model than its
constituents [30] with the added benefit of reducing the prob-
ability of overfitting. This technique has been successfully
applied to several fields, including character recognition [31]
and sentiment analysis [32]. Various ensembling strategies
differ in how distinct baseline models are learned and
blended. The most commonly utilized ensemble approaches
are averaging, bagging, random forest, stacking, meta-
learning, and boosting [33], [34], [35]. Nevertheless, most
of these efforts apply average voting mechanism baseline
deep-learning models. A majority voting classifier [36] for
detecting pneumonia and COVID-19 performed admirably
in classifying these diseases. The transfer learning approach
combinedwith ensembling gives us satisfactory performance.
However, as we will see in the results section, combining
baseline learners using maximum voting is only sometimes
the best strategy, as the ensembling process using average
voting techniques is skewed toward weak baseline learners.
Another popular technique for ensembling is using stacking.
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In CovXNet [37] a meta-learner was used to stack the output
of the models to give a respectable final prediction. However,
the shallow neural network does not clearly show us the
bias of the neural network towards any specific individual
classification model. Therefore, we need a more interpretable
model that can convince medical practitioners about these
models’ reliability and unbiased predictions. Pruning can
help us reduce the complexity and eliminate the bias [38] in
our ensembled model. However, pruning is computationally
intensive and is not ideal for providing the results in a
short time, voiding the objective of achieving large-scale
diagnosis at a faster rate. Some other ensembling models,
like DeepCOVID-XR [14], have used the weighted averages
of the individual models to get decent results. However, the
weights assigned to each model are subjective, and there
is no definitive way to arrive at the optimal solution on
the Pareto boundary, as each point on this boundary gives
us the same value for the objective function. It is also
possible that we might end up with a biased model which
is impractical for sensitive medical diagnosis applications.
Although numerous approaches for merging baseline learners
can be used for group deep learning, these approaches have
certain drawbacks concerning generalization and training
challenges.

D. CONTRIBUTION
Our study presents an integrated system tailored to enhance
diagnostic processes for respiratory diseases through detailed
analysis of chest X-rays at the edge. The system’s architecture
is designed to balance robustness with efficiency. Our main
contribution can be summarized as follows:

• Multiple light-weight prediction models are specifically
optimized to differentiate between various respiratory
conditions by examining the distinct features within
the images. Notably, our system architecture permits
the separation of various far-edge, near-edge, and on-
premises predictive components, thereby enhancing
flexibility and allowing for extensive feature extraction
and model training without the constraints of immediate
output.

• We proposed an innovative ensembling strategy incor-
porating meta-learning and deftly consolidating the pre-
dictive outputs. The flexibility of our architecture shines
in this component, enabling real-time ensemble learning
to provide prompt and request-oriented classification
while preserving the integrity of the in-depth training
previously conducted. This dual-structure ensembling
is instrumental in delivering swift and precise final
diagnoses.

• Our methodology deliberately utilizes a limited but
representative subset of images for each disease class,
reflecting the realistic scenarios of data limitation
typically encountered during novel disease emergence at
a specialty center. The classification models serve as the
backbone for disease identification through a decision

tree for ensembling and ascertaining definitive disease
classifications.

• The distinctive separation of our system’s prediction
and ensembling components fosters a flexible, decen-
tralized, and scalable architecture. This architecture
balances the need for rapid and rigorous feature extrac-
tion training with the demand for efficient classification
on demand.

The remainder of the paper begins with an overview of the
system architecture, followed by a description of our dataset.
Subsequently, we will discuss the specifics of the image
processing techniques, the ensembling model we utilize, the
experimental setup, the results obtained, and a discussion of
the results. The conclusion will follow at the end of this paper.

III. SYSTEM DESIGN AND METHODOLOGY
A. SYSTEM ARCHITECTURE
In Fig. 1, we describe the system diagram of our proposed
solution. We collect several chest X-rays regularly, which
the specialists label according to the patient’s medical
condition at the hospitals. These labeled CXR images are then
processed on-premises or can be sent to the edge servers,
where these images are processed according to the process
described in Fig. 2. If we detect a new class of disease
that is not in our database, we send notification alerts to all
the physicians in our network about a potential outbreak of
a novel disease so that they can take preventive measures
to contain the spread of the disease. Furthermore, multiple
neural networks are trained at the edge servers to classify new
diseases, which will be stored securely on a cloud server that
hosts the patients’ medical records. We can encrypt sensitive
personal information and obfuscate it to preserve the privacy
and confidentiality of the information stored on the servers.
This process will happen in the background as a part of the
scheduled batch processes. Suppose a particular clinic, lab,
or physician needs access to these models. Depending on
their needs, we can give them individual models or ensembled
models, which employ a lightweight meta-learning approach
and can be used on mobile devices to categorize diseases
based on available CXR images. This will act as getting a
second opinion from experts. We will periodically fetch the
meta-learning model from our distributed devices to keep
the local model in sync with the latest one available on the
servers. This is an overview of how we plan to process the
CXRs generated at the hospital and use machine learning
models to assist the physicians in diagnosing the patients’
health conditions. The details about the crucial components
of the system architecture are described below:

• Distributed Learning: We have several sites, which
can be specialty centers for diseases or research labs,
working on detecting several respiratory diseases. Each
site maintains its own database of anonymized chest
X-rays, which will be synced with a decentralized
database, with provisions for redundancy, in the cloud.
Anyone authorized to put the images on these servers

VOLUME 12, 2024 115549



I. Aryendu, Y. Wang: RAIDER: Rapid AI Diagnosis at Edge Using Ensemble Models for Radiology

FIGURE 1. Collaborative Ensembling Architecture: After preprocessing of CXR images at the edge, these images are analyzed using a
local ensembling model that combines predictions from multiple models. These models are periodically synchronized with the latest
meta-learning models from the cloud to keep them fresh. Physicians can interactively transmit CXR images and obtain disease
classification results through this local model, facilitating rapid diagnosis in clinical communication (HCI Communication). When an
unknown disease is detected, images are sent to the cloud for further analysis and new modeling, ensuring the system adapts to
emerging health risks.

will specify the label associated with the diagnosis of
the image and will store the individual’s digital signature
along with the image for future audits.

• Training Servers: We will have several commodity
hardware that will serve as the distributed training
servers and will run multiple models and use several
metrics as their benchmark to choose the best model for
classifying the disease. Using the image data gathered
from the patients, these models will be hosted on
distributed servers with restricted access to prevent
unauthorized access and manipulation. The physicians
will play a critical role in feature extraction, model
selection, and optimization processes by training on the
server to create the model.

• Ensemble System: This component combines the
results from all sites and can use several approaches,
such as voting, stacking, meta-learning, etc, to aggregate
predictions from multiple models and reduce computa-
tional cost.

• HCI Interaction System: The ‘‘ENSEMBLE’’ model
can run locally on the handheld device to get the final
prediction, or we can get the predictions from one
of the edge servers. This approach allows for diverse
real-time consultation and can mitigate biases inherent
to individual models and radiologists using knowledge
from different parts of the world.

TABLE 1. Resolution of images in the dataset.

B. DATASET DESCRIPTION
As seen in Table 1, theMIMIC-CXR and COVIDGR datasets
we are working with have images with several resolutions,
which might throw off the classification models during train-
ing. Therefore, the standardization of the image resolutions
is required to mitigate the effects of the image sizes and
pixel counts on our models. Subsequently, integrating a
standard range of pixels will also make the dataset of images
widely accessible to researchers who will require minimal
preprocessing in terms of standardization and improve
collaborative research. We randomly sampled 595 COVID-
19, 618 Viral Pneumonia, and 625 images for Normal cases.
We resized the images to 256 × 256 pixels. Furthermore,
we normalized these pixels to a value between 0-1 for
more efficient training of the neural networks. While CNN-
based models anticipate a 3-channel picture, radiography
images are usually 1-channel images. In order to prepare
our single-channel photos for use with models intended
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for three-channel RGB inputs, we replicate the grey-scale
information in each image channel.

FIGURE 2. Flowchart showing the step-by-step process of image
enhancement. Starting with the grayscale conversion of input images,
we apply CLAHE and then further refine the images using a median filter,
resulting in the final output image.

C. IMAGE PREPROCESSING
X-rays pass through an object and interact with the
photographic emulsion on a film to create a radiographic
image [39]. The chemicals in the capturing film react
with the X-rays and turn dark. The discoloration depends
upon the amount of X-rays hitting the film, which depends
on the object’s density. So, these images have superimposed
black, white, and grey shadows. The perceived density
of the adjacent structures may change depending on their
contrast [40]. Therefore, complex processing is required to
reach the diagnosis from these images. Several studies have
been conducted on enhancing the images to improve their
clarity [41]. We will use the approach described in the
flowchart shown in Fig. 2.

1) GRAYSCALE CONVERSION
The images obtained from various sources might have more
than one-channel of color. Therefore, we’ll convert them into
grayscale to better control the training dataset. This can be
done using the formula [42] below:

Grayscale = (0.299 × R) + (0.587 × G) + (0.114 × B)

(1)

where,
• R = red channel matrix value

• G = green channel matrix value
• B = blue channel matrix value

2) CONTRAST STRETCHING
This technique stretches the contrast by expanding the
dynamic range of the image’s intensity value. Using linear
scaling to apply the image’s pixel value is possible. Finding
the image’s minimum and maximum values is required in
order to normalize or contrast-extend the image. The image
boundary is defined by these minimum andmaximum values.
The lowest limit of this suggested method is an image with
an 8-bit gray level, while the image density has a minimum
value of 0 and amaximum value of 255. The equation is given
by:

g(x, y) =
f (x, y) − min
max − min

× 255 (2)

where,
• g(x, y) = matrix of the resulting image
• f (x, y) = original image matrix value

FIGURE 3. X-ray images of COVID-19 before and after applying CLAHE.

3) HISTOGRAM EQUALIZATION
Histogram equalization (HE) is widely used to flatten the
gray distribution of images by adjusting the values of
corresponding image pixels to yield higher contrast. The
flattened histogram distribution function is then applied to
the image. The output of the process gives us the intensity
and scale for the pixel value at the gray level. The goal of
this HE is to create an evenly distributed histogram where
input images with different intensity levels will produce
output images with the same contrast level [43] at a global
level. Adaptive histogram equalization (AHE) has been used
as a popular method to enhance the contrast of images.
Using several histograms, the image’s luminance is calculated
for different sections of the image, which results in better
edge visualization and increased local contrast. However,
the noise might be amplified in homogeneous regions.
This can be prevented if we use contrast-limited adaptive
histogram equalization (CLAHE) [44], [45] for local contrast
enhancement.

The advancement of HE and AHE into CLAHE, a contrast
enhancement technique,makes CLAHE a superior alternative
to HE and AHE. Because CLAHE restricts contrast to local
blocks, it uses the maximum value on the local grids to clip
and return the gray values. Images in CLAHE are split into
tiles for better manageable regional sections, which prevents
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noisy images. The equation below describes the computation
of CLAHE,

p = (pmax − pmin) · P(f ) + pmin (3)

where the new pixel value p is obtained by applying a formula
using the maximum and minimum pixel values of the image
pmax and pmin and the cumulative probability distribution
functionP(f ). In other words, the new pixel value is computed
by scaling the cumulative probability distribution function to
the range between pmax and pmin, and then adding pmin to the
result. Fig. 3 compares the effects of applying CLAHE on the
original image.

4) MEDIAN FILTER
To preserve image information, noise in the image can be
filtered or reduced using a non-linear technique calledmedian
filtering. Using values as medians will change or replace
values on images. The gray level replaces the value with
the median, which is subsequently stored in place of the
noise value. Suppose the highest is given by the max and the
minimum is given by the min, and then the average represents
the gray level. Additionally, the median filter’s manipulation
center, y (m, n) [46], is given as:

y[m, n] = median{x[i, j], (i, j) ∈ ω} (4)

where,
• y[m, n] = matrix of results labeled as y with m, n as a
rows and columns.

• {x[i, j], (i, j) ∈ ω} = matrix value of the image being
processed or the corresponding elements sorted.

Once the neighboring pixel value is determined, the
median filter compares the current value to the value of the
neighboring pixel values. At the intermediate value, the pixel
value will be changed based on the count of neighboring
pixels. An average of two middle values determines the
median value [47].

FIGURE 4. Depiction of 21 augmented X-Ray images for machine learning
training. These augmented images, which include rotation, scaling,
flipping, and cropping, improve the robustness of machine-learning
models during training.

D. IMAGE AUGMENTATION
Data augmentation significantly expands the variety of the
existing data sets without adding new data. Techniques
such as cropping, padding, and horizontal flipping are
commonly used to train large neural networks. It can improve

accuracy and model training by creating multiple copies of
the same image from different methods, such as rotation,
rotation, sharpening, and many other methods. In previous
studies [48], the authors have used a deep convolutional
neural network (CNN) trained on the CIFAR-10 dataset
to perform geometric transformations. The accuracy of
the CNN was 91.8%, which is much higher than the
89.6% accuracy obtainedwithout geometrically implemented
transformation.

As can be seen from their studies, geometric transforma-
tion improves the performance of the image classification
model by introducing more diversity in the training process
and enabling the model to cope with changes in the
orientation, shape, and location of segmented objects. Which
in turn significantly improves the performance of image
classification models. By providing more diversity in the
training set, the geometric variations contribute to the model
having more complex features that are less sensitive to
the direction of changes in distributed features, size, and
location, thus improving the accuracy and generalizability of
unobserved test data. Fig. 4, shows the effects of applying
image augmentation on a sample of images that would be
used to train the model.

E. ENSEMBLING ON SELECTED LIGHTWEIGHT
PREDICTION MODELS
Following a comparative analysis of various lightweight pre-
diction models in the background research, we have selected
MobileNetV2 and SqueezeNet for our framework because of
the fewer parameters to train and their wider classification
capabilities. MobileNetV2 stands out for its exceptional
efficiency and accuracy in mobile and embedded vision
applications, benefiting from a streamlined architecture that
minimizes computational requirements while maintaining
high performance [49]. SqueezeNet offers remarkable model
compactness through the use of squeeze and expansion
layers, achieving AlexNet-level accuracy with a fraction of
the parameters, making it highly suitable for environments
with strict memory limitations [50]. The proposed ensem-
bling [51], [52] framework can also be applied to other
predictive models, enhancing its versatility and applicability
across different domains. The architecture of MobileNetV2
and SqueezeNet with bypass are shown in Fig. 5.a and
Fig. 5.b, respectively that would be a good fit for the type
of problem we are trying to solve. However, the data to
train these models are sourced from several datasets. Hence,
it becomes imperative that we preprocess the data before
training the models.

An aggregation function A combines the results of n
baseline classifiers c1, c2, . . . , cn to predict the final output.
Suppose we have a dataset of size a and features of dimension
b, D = {(xi, yi)}ai=1, where 1 ≤ i ≤ a and xi ∈ Rb. The
prediction of the output based on this ensemble method is
given by the equation below:

yi = �(xi) = A(c1, c2, . . . , cn). (5)

115552 VOLUME 12, 2024



I. Aryendu, Y. Wang: RAIDER: Rapid AI Diagnosis at Edge Using Ensemble Models for Radiology

FIGURE 5. Achitecture diagrams for SqueezeNet and MobileNetV2
models.

We will use average voting [53] and meta-learning [54],
two popular ensemble learning techniques in this study. The
concept behind average voting is that predictions are taken
from several models, and the final prediction is determined
by averaging these predictions [55]. As the function of the
equation below illustrates, the arithmetic mean—the sum of
the forecasts divided by the total number of guesses—is used
to get the average prediction.

y∗ = argmax

 1
nj

m∑
j=1

wi,j

 (6)

Consider a scenario in which the ensemble consisted of
the following three classifiers: c1(x) = [0.63, 0.17, 0.20],
c2(x) = [0.28, 0.51, 0.21], and c3(x) = [0.61, 0.29, 0.10].
Using the average weight approach, the following would be
the mean prediction y0 = [0.63, 0.28, 0.61]/3 = 0.506 for
class 0 and a prediction of y1 = [0.29 + 0.17 + 0.51]/3 =

0.323 for the class 1 and y2 = [0.20 + 0.21 + 0.10]/3 =

0.17 for class 2.
The other ensemble learning method is learning from

learners, popularly known as meta-learning [54], [56], which
depends on prior experience with previous classification
models. By altering some parts of the learning algorithm
in response to experimental findings, we can enhance its
performance and outcomes. In contrast to conventional
machine-learning models, the meta-learning approach uses
multiple learning stages, with each stage inducing its
output as an input to the meta-learner, which produces the
final output [57]. Moreover, meta-learning helps learning
algorithms better adapt to changing circumstances, expedites
learning processes by lowering the number of tests needed,
and optimizes hyperparameters to provide ideal outcomes.
Additionally, this approach offers the chance to address
several deep learning challenges, such as generalization,
computational complexity, and data size [58]. Our approach

is detailed in the flowchart in Fig. 6, where we start with
individual model predictions, stack them, and convert the
target labels to a 1-D array. The meta-learning model is then
trained and evaluated on the validation dataset, which yields
the final output.

FIGURE 6. Meta-learning model flowchart illustrating the step-by-step
process starting with individual model predictions, stacking these
predictions, and converting the target labels to a 1-D array. The
meta-learning model is then trained and evaluated on the validation
dataset, resulting in the final output.

IV. EXPERIMENTAL SETUP
We have used the TensorFlow library to build our neural
networks. For our study, we used a Windows server
2022 machine functioning as the far-edge system and
operating on an Intel Core i9-12900K processor with 64 GB
DDR-4 RAMandNvidia RTX 3060with 12GB v-RAM. The
hardware configuration for the low-power near-edge device
was that of a Raspberry Pi 5 with 8 GB system memory.
It has a Rasberry Pi OS installed on a Quad-Core ARM
Cortex A76 processor clocked at 2.4 GHz and a Videocore-
VII GPU clocked at 800 MHz. We also ran the model on
an x64 Intel NUC running Ubuntu 18.04 LTS server with
a Core-i5 7260U quad-core processor clocked at 2.2 GHz
with Intel Iris®plus graphics 640 and 16 GB of system
memory that acts as the on-premises device. The training
of the individual models for each disease was performed
at the far-edge server, and finally, the ensembling of these
models was performed at the far-edge, near-edge, and on
the on-premises machines for comparison. The Intel NUC
provides a balanced perspective, considering both mobility
and computational power. Meanwhile, the Raspberry Pi
5 represents a SWaP (Size, Weight, and Power) constrained
mobile device, highlighting the practical aspects of deploying
edge computing in resource-limited environments. We have
also used a 5-fold cross-validation while training the model
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using a batch size of 32. We begin with a learning rate
of 0.001 and run the models until 50 epochs with the
Adam optimizer using 80% of the data for training and the
remaining 20% for validation. Some sample images from
each class of diseases are shown in Fig.7. The distribution
of images in the training and test sets is shown in Table 2.

TABLE 2. Detailed breakdown of the train and validation dataset.

The images were further processed using the steps detailed
in Fig 2. Furthermore, we have used image augmentation
to avoid overfitting (overfitting occurs when a model learns
the training data too well and cannot generalize to new
data). Image augmentation artificially increases the size of the
training dataset by creating new images from existing images.
This helps themodel learnmore about the underlying patterns
in the data and generalize new data better. The augmented
images are shown in Fig. 4.

TABLE 3. Comparative analysis of the SqueezeNet and MobileNetV2
models for prediction on all 3 classes.

As a baseline, we trained the MobileNetV2 and
SqueezeNetmodels on all three classes, and for the evaluation
of the performance of our method, we used a train-cross-
validation-test approach. The selection of models is highly
dependent on these use cases. Specifically, the choice of
MobileNetV2 and SqueezeNet is driven by their suitability
for resource-constrained environments at the edge and on-
premises. These models have fewer parameters, leading to
faster training times and smaller model sizes, which are
essential for efficient distribution and collaborative resource
integration. Further, the fewer parameters in MobileNetV2
and SqueezeNet not only accelerate the training process but
also ensure that the models can fit into the memory of devices
with limited resources. This enables more flexibility for
deployment in environments where computational efficiency
and model size are critical factors. The training set was used
to train the deep CNN model, the 5-fold cross-validation
set was used to fine-tune the model’s hyperparameters,
and the test set was used to assess the proposed method’s
effectiveness. We trained the deep CNN model with a mini-
batch size of 32. We used the Adam optimizer with weight
decay, which is a technique that helps to prevent the model
from overfitting. The initial learning rate was set to 0.001, and
the maximum number of epochs to train the network was 50.

V. RESULTS AND DISCUSSION
Chest X-rays are the most common type of diagnosis tool
for respiratory diseases, with over 2 billion in medical
examinations per year. Nonetheless, we have a scarcity of
radiology experts who can interpret these images. A sig-
nificant benefit of developing machine learning models for
respiratory disease diagnosis is the possibility of capturing
and disseminating some aspects of expert knowledge from
the labeling of the images used for training the models.
These models are trained on large datasets that include
annotations by experienced diagnosticians that could assist
physicians all over the world by providing additional insights
or second opinions during the diagnostic process. As shown
in Fig. 8, SqueezeNet and MobileNet-V2 are the two models
that have one of the least amount of trainable parameters
and, hence, the simpler models for training them on the
dataset. In Table 3, the results of the training process for
all three classes using the CNN models identified earlier,
namely MobileNetV2 and Squeezenet, are reported. These
models provide excellent results in classification, as can be
seen from the accuracy and loss curves in Fig. 9. However,
they require a significant amount of resources in terms of
computation and time for training, as described in Table 3,
which does not provide real-time classification of diseases.
Additionally, we need more complex models when we add
more classes of diseases to our training dataset. Since no
model is perfect for the classification of all classes of
diseases, we would need to try out multiple models to get the
best possible performance. To reduce the time and resources
spent on training, we trained the models on individual
diseases, and later, using the predictions from these smaller
models, we inferred the predictions about the conditions of
the patients using ensemble learning. These smaller models,
trained for the classification of individual diseases, serve as
the seed models for our ensemble models. They give us better
results for the classification of a couple of classes of diseases,
as shown in Fig. 10. This observation is corroborated in
the complete performance metric shown in Table 4. We get
almost perfect predictions for both of these diseases; however,
the training time is still quite a significant bottleneck. The
confusion matrix for each approach is shown in Fig. 12 to
give the readers even more clarity about the classification
performance of the two seed models. As we can observe in
the confusion matrix, the two models perform commendably
in classifying the diseases. Therefore, we have used these
two models to make predictions using several ensemble
learning approaches like average voting (Avg. Voting) and
meta-learning approach using logistic (ML-LR) regression
and decision trees (ML-DT), respectively.

As can be seen from Table 5, the average voting ensemble
approach performs poorly when compared to the baseline
models. This can be explained by the potential overfitting
of the dataset, which results in subpar performance during
validation. However, in contrast, meta-learning using the
logistic regression (ML-LR) model results in performance
that is in line with the SqueezeNet model for predicting the
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FIGURE 7. Compilation of three sets of chest X-ray images for different health issues. The first set
(a) represents the X-rays of patients suffering from COVID-19. The second set (b) represents the X-rays of
patients suffering from viral pneumonia. The last set (c) includes X-rays of healthy individuals without any
sickness.

FIGURE 8. Number of trainable parameters in each model used for
ensembling in the literature.

TABLE 4. Comparative analysis of the models for individual disease
detection (Squeezenet for COVID-19 detection and Mobilenetv2 for
Pneumonia detection).

output for the three classes of diseases. Moreover, the results
were within 5% of the MobileNetV2 model. Nonetheless,
when we use a decision tree (ML-DT) classifier, we get better
and more explainable results, as shown in Fig. 11. This gives
us a balance between the training and inference time as well

FIGURE 9. Performance evaluation for the baseline models classifying
COVID-19 and pneumonia using the accuracy and loss plots during the
training and validation phases.

as the critical metrics for evaluating the models. From the
root node of the decision tree in Fig. 11, we can observe
where the initial decision has been made after stacking the
individual predictions column-wise. This aligns with our
observations in Table 5. With a minimal overhead of (28 ms),
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FIGURE 10. Performance evaluation of disease classification models for
binary classification of the respiratory diseases using the accuracy and
loss plots during training and validation phase using the seed models for
ensemble learning.

we are reaching a perfect score in all of the crucial metrics.
With accuracy, sensitivity, specificity, F1-score, and AUC of
97.80%, 97.06%, 98.48%, 96.51%, and 0.9739 respectively,
we achieve commendable diagnostic performance. The
ensemble model surpasses the sensitivity of only 60%-70%
shown by the RT-PCR tests with a sensitivity of 96.48%.
Additionally, we don’t need manual intervention to set up
the weight of the individual classification models, and we
can make predictions based on the probabilities generated
by the individual classification models. These smaller and
lightweight models can effectively capture the details from
the X-rays, thereby circumventing the high cost associated
with manual labeling and hyperparameter tuning. Moreover,
they can be trained independently over several geolocations
and ensembled on-demand to preserve the privacy of the
patients by on-site training of the models. This reduces
the time required to anonymize the images for the training
process and avoids the labeling errors introduced by the
traditional NLP-based annotation systems used by the EHR
software solutions. Therefore, it is our model of choice for
deploying on the edge and on-premises servers.

TABLE 5. Comparative analysis of the three ensemble models.

In a resource-constrained environment such as hospitals
that are being floodedwith patients infected by novel diseases
such as COVID-19, there is always a trade-off between the
time required for an accurate prediction and the accuracy of
prediction. Having trained ourmodel on 1470 training images
and testing the effectiveness of the model on 368 images,
we are quite confident in its effectiveness. To further
substantiate our claims, we have also compared our proposed
approach with the previous studies described in the literature
survey section, as shown in Table 6. We observe that our
model performs well across all performance metrics, unlike
the other models, where we see greater performance on
one metric while compromising on others during evaluation.
Moreover, the models used by the other studies have
substantially more trainable parameters than the models we
use. This can be confirmed by Fig. 8. Since these models
perform binary classification, using a more complex model
doesn’t make sense, especially when we can achieve identical
performance from smaller, lighter, andmore efficient models.
Furthermore, the additional complexity will result in longer
training times, transmission delay, and larger memory needs
during ensembling, which may be difficult to achieve on on-
premises devices with less system memory.

As the final models were lightweight compared to the
models used by other researchers, we explored the potential
to run the ensembling process on low-power devices that
we would typically find with the end users. We ran the
experiments on lower-powered devices that usually act as
portable mobile personal computers, near-edge, and far-
edge devices, like a low-powered x86 PC, an ARM device,
and a desktop equipped with a dedicated GPU, to confirm
the assertion we made earlier. We measured the resource
utilization on these devices as shown in Table 7. The
lowest resource utilization and latency were observed on
the commodity hardware desktop functioning as the far-edge
server, which we used to train the CNN models earlier. This
is representative of the performance we can expect from a
far-edge device. Surprisingly, the Raspberry Pi 5, functioning
as a near-edge device, performed much better than the Intel
NUC in carrying out the task because of its higher clock
speeds. We were able to run the meta-learning model and
get modest performance in terms of computation time and

FIGURE 11. Decision tree of the ensembling model used for image
classification. The tree is color-coded to represent different classes of
images: orange nodes correspond to the first class, green nodes to the
second class, and purple nodes to the third class. Each node in the tree
represents a decision point, depicting the path taken depending on the
outcome of the decision.
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FIGURE 12. Comparative performance of various machine learning models in classifying Pneumonia and COVID-19, as depicted by confusion matrices.
Each matrix provides a detailed breakdown of true positives, true negatives, false positives, and false negatives, offering a comprehensive view of each
model’s predictive accuracy and error rate. The models are categorized into three groups: (a, b) Seed models (MobileNetV2 and SqueezeNet) trained on
individual disease tasks to generate probability matrices for ensemble learning; (c) Maximum voting ensemble method combining predictions from seed
models; (d) Meta-learning approach leveraging seed model outputs for joint disease classification. (e, f) Baseline models (MobileNetV2 and SqueezeNet)
trained for simultaneous pneumonia and COVID-19 prediction. The meta-learning model (d) and standalone MobileNetV2 (e) emerge as the
top-performing techniques, accurately classifying most cases across all disease classes.

TABLE 6. Comprehensive comparison of deep learning models for chest X-ray Diagnosis: sensitivity, specificity, accuracy, F1-Score, AUC and model
parameters across various datasets.

other system metrics on a low-power ARM device, which
justifies the deployment of our proposed architecture for

practical applications. Our observations from Table 8 support
these claims. We can process multiple samples in a second,
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FIGURE 13. Comparative visualization pneumonia diagnosis- on the left
side, we have an unprocessed X-ray of a lung belonging to a person who
tested positive for Pneumonia. On the right, we have the highlighted
GRAD-CAM heat map labeling the important parts of the lung that the
model considers to be important for predicting Pneumonia.

TABLE 7. Resource utilization on various devices.

TABLE 8. Throughput and network latency of different devices.

FIGURE 14. Comparative visualization COVID-19 diagnosis- on the left
side, we have an unprocessed X-ray of a lung belonging to a person who
tested positive for COVID-19. On the right, we have the highlighted
GRAD-CAM heat map labeling the important parts of the lung that the
model considers to be important for predicting COVID-19.

which assures us that these machines can keep up with the
higher demands for diagnosis in real-life scenarios. Even if
we assume that there’s an average home internet connection
of 300 Mbps at the diagnostic lab, which is a reasonable
assumption to make in developing nations, we get a network
latency of about 15.1 milliseconds for getting the results
from the far-edge server, and an additional 15.76milliseconds
for processing. Even with this additional overhead for the
network latency, we are getting the maximum throughput and
minimum latency per sample for the near-edge server. The
Intel NUC performs the worst, while the Raspberry Pi 5 sits
in between. Thus, we can conclude that by using the near-
edge and far-edge devices, we can get low latency predictions.
However, if we are concerned about the privacy of the patient,
then we can opt for the on-premises solution.

Finally, we also present the Grad-CAM images for differ-
ent diseases in Fig. 14 and Fig. 13 for better interpretability

FIGURE 15. Post-training predictions with a series of X-ray images with
the actual and predicted labels after training. The diversity of predictions
across various conditions demonstrates the model’s ability to
differentiate between multiple diseases, underscoring its effectiveness in
diagnosis.

of the models by the diagnosticians. The highlighted areas
were identified as the most critical ones for making the
classification. Fig. 15 shows several predictions made on
the chest X-rays using this model with their respective truth
labels and further justifies the balance RAIDER architecture
has struck between training time and resource consumption.

VI. CONCLUSION
RAIDER has a scalable architecture with several col-
laborators working on improving the diagnosis of novel
diseases. We have considered the deployment choices of
an on-premises system for preserving privacy and an
edge computing-enabled network. To provide comprehen-
sive insights into the computational complexity, resource
requirements, and practical deployment aspects, we evaluated
the performance of training and testing across three distinct
categories of devices, namely a desktop equipped with a
discrete GPU that acts as the far-edge server, a portable and
mobile PC (Intel NUC) that acts as the on-premises device,
and an IoT device (Raspberry Pi 5) that acts as the near-edge
server. As shown by the results of this study, we can use
the ensembling model to quickly identify and diagnose new
diseases and improve healthcare delivery during the onset
of novel respiratory diseases that the chest radiographs can
identify. We use the expert diagnosis of specialized radiology
experts and share their expert diagnosis with other physicians
across the globe. The models trained on these labeled images
would be highly accurate at diagnosing respiratory diseases.
We can deal with the shortage of radiology experts by provid-
ing a second opinion to the physicians to enhance the quality
and accuracy of their diagnosis. RAIDER also provides high-
precision and low-latency diagnosis with minimal system
resource requirements. Using this framework, we are able
to quickly and accurately diagnose the disease. Using meta-
learning, we combined several models developed to diagnose
individual diseases and precisely get the predictions for all
of the classes of diseases present in our dataset without
the need for manual weight assignment to the individual
models, thereby reducing the bias in the final model. With
the evolving needs of the healthcare industry, accurate and
efficient diagnosis of diseases is the need of the hour. The
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RADIER architecture provides an efficient and cost-effective
solution for addressing these needs.
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