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ABSTRACT Amidst the recent technological breakthroughs and increased integration of Artificial
Intelligence (AI) technologies across various domains, it is imperative to consider the myriad security
threats posed by AI. One of the significant attack vectors on AI models is the backdoor attack, which
involvesmaliciouslymanipulating themodel’s behaviour by inserting hidden patterns or triggers into training
datasets. In this paper our primary focus is on the defenses for the backdoor attacks mounted via poisoned
training datasets. While many backdoor defense mechanisms have been proposed in the context of text,
image, and audio domains, a majority of these defense mechanisms focus on training a specific model to
detect backdoor triggers. Our current work proposes a novel model agnostic backdoor detection approach
that utilizes complexity/entropy-based measures. In this study, we demonstrate the limitations of currently
existing entropy measures – Sample Entropy and Approximate Entropy in detecting backdoor triggers in
poisoned datasets. Consequently, we propose a novel modification of the Manhattan metric in the Entropy
calculation and incorporate it in the complexity measures. This modified approach is shown to successfully
detect backdoor triggers in datasets from not only the Natural Language Processing (NLP) domain, but
also from the Financial and Geological domains. The effectiveness of the proposed approach was further
substantiated with the high F1 scores in the range of 0.92 to 1.00 across the datasets, and with zero false
negatives for the real-world datasets from the Financial and the Geological domains.

INDEX TERMS Data poisoning, backdoor attacks, backdoor defenses, approximate entropy, sample entropy.

I. INTRODUCTION
During the last decade, technological breakthroughs in
the capabilities of Artificial Intelligence have led to its
remarkable advancement and applications in various domains
including Robotics, Cybersecurity, NLP etc. More notably,
the emergence of cutting-edge NLP models such as Genera-
tive Pretrained Transformer (GPT) has transformed the way
we interact with technology. Concurrently, these models with
their diverse NLP applications such as Machine Translation,
Fake News Detection, and Toxic Content Detection play a
pivotal role with their widespread integration into our daily
lives [1].

It is a known fact that training sophisticated Large
Language Models (LLMs) similar to GPT, from scratch,
requires massive amounts of computational resources, bil-
lions of training data, and trillions of model parameters.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

Given this, the norm for NLP model development is to
utilize publicly available off the shelf architectures, and fine
tune the existing models for various customized tasks [2].
As new AI technologies continue to be built on top of
existing models, and trained on unvetted publicly available
datasets, their vulnerability to malicious attacks has become
a matter of concern [3], [4], [5], [6], [7]. In the context of
LLMs, and Pretrained Language Models (PLMs), security
vulnerabilities can potentially be introduced into model
parameters, training datasets and open-source software such
as pretrained models [8]. Bad actors with malicious intent
can leverage these security weaknesses to mount attacks on
the deployed models. The objective of such an attack is to
cause model misclassifications and thereby potential failures
in critical infrastructure such as healthcare, energy utilities,
transportation services, banking, and financial services.

Among the various attack vectors, backdoor attacks pose a
significant threat to the AI models. The process of initiating
a backdoor attack often commences with the deliberate
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incorporation of malicious embeddings within the datasets
used for training [4], [9], [10], [11], [12]. Leveraging publicly
available unvetted datasets further exacerbates this issue, as it
opens avenues for introduction of backdoors that can be
activated under specific conditions by triggering predefined
patterns. Using inputs crafted with malicious intent the
adversary can activate secretmalicious functionalitywhen the
model is deployed in the real world. Such an attack can lead to
modelmisclassifications onlywhen the backdoor is triggered,
without impacting the model’s intended functionality – in
the absence of triggers [3], [5]. This can potentially lead
to malicious outcomes such as evasion of toxic content
detection, propagation of misinformation, or in general
resulting in biased decision making of the deployed model.
As the adoption of NLP models accelerates in critical
applications such as security, healthcare, and finance, these
outcomes can pose significant risks. Therefore, defending
against these backdoors in publicly available datasets during
the pre-training stage of the model is imperative for ensuring
the trustworthiness and reliability of NLP models that are
trained using these datasets.

An adversary can introduce backdoor triggers into datasets
used for training NLP models by inserting subtle words,
characters, or phrases into a small subset of the training
dataset samples and manipulating the output label of the
corresponding text to a specific target label – thereby creating
poisoned training datasets [4]. The backdoor triggers are
designed to blend in with the legitimate training data, and the
model starts associating these trigger words with a specific
target label chosen by the adversary during the training phase.
During inference time, these backdoor triggers can be used
maliciously to impact the outcomes of NLP applications such
as question answering systems, chatbots, virtual assistants
etc. [1].
In the realm of NLP domain, the primary focus of the

existing backdoor defenses is in detecting backdoors during
the pre-training phase [6], [13] or during inference time [4],
[14], [15], [16], [17]. However, most of these defense
mechanisms require specific models such as DNN, LSTMs
or Transformers to be trained on the poisoned training data,
in order to detect the backdoor triggers. However, training an
AI model on the poisoned dataset and retraining the model
on the sanitized dataset (dataset with the poisoned samples
removed) requires a significant number of computational
resources and time. To surmount this drawback, a model
agnostic method based on the Effort to Compress (ETC) [18]
complexity measure was initially explored in [19] for NLP
backdoor detection.

The current work is motivated by and builds on the prior
work [19] of using complexity measures for backdoor detec-
tion and proposes two novel metrics based on the Sample
entropy and Approximate entropy measures for backdoor
trigger detection. Traditionally complexity measures such
as Sample entropy and Approximate entropy have been
extensively used for discerning the complexity of biological
and psychological time series data [20], [21]. However, to the

best of the authors’ knowledge the use of these regularity
statistics to detect backdoors in diverse datasets from various
domains such as NLP, Financial and the Geological domains
has never been explored before.

The efficacy of our proposed entropy based backdoor
defense mechanism has been successfully demonstrated in
this study on poisoned datasets from diverse NLP applica-
tions such as Toxic Content detection, Sentiment Analysis,
Fake news detection. In addition to the NLP domain, the
proposed approach has also been found to detect backdoors
in tabular datasets from diverse domains.

II. BACKGROUND
For what follows in the subsequent sections, we initially
discuss the following,

A. BACKDOOR TRIGGERS
A backdoor trigger can be described as a specific pattern that
is known only to the adversary and is embedded into a small
fraction of the training data samples to generate the poisoned
data samples. In the Computer Vision domain, the backdoor
trigger can be a change in pixel value, or patterns inserted into
an image such that the semantics of the image are unchanged.
In the text domain, the backdoor trigger can be perturbations
to the text data such as insertion or deletion of characters,
or word substitutions or trigger sentences or phrases that do
not significantly change the semantic content of the input
text [4].

B. BACKDOOR ATTACK
A model that is trained on specific backdoor triggers
known only to the adversary can result in unintended
behaviour of the model producing a malicious outcome.
This occurs because the model starts associating the inputs
with the backdoor triggers to the poisoned target class
label selected by the adversary, thus the triggers act like
shortcuts for the model to make its malicious decisions [1],
i.e., deliberate misclassifications of the model as intended
by the adversary. The potency of such a backdoor attack
is that the model misclassifications occur only when the
input samples contain the backdoor trigger, and the model
maintains its performance/accuracy for inputs which do not
contain the backdoor trigger, therefore making it extremely
challenging to test an AI system- to derive assurance of the
AI systems trustworthiness (wherein there is evidence that
the system does what it is supposed to do and nothing else)
[22].

C. POISONING RATIO
The poisoning ratio in the context of backdoor attacks
can be defined as the proportion of training samples that
have been poisoned and injected into the training dataset,
with the intention of influencing the model’s behaviour
during inference time [12], [13]. The typical poisoning
ratios used to simulate a backdoor attack are in the range
of 1% to 5%.
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D. ATTACK SUCCESS RATE (ASR)
ASR can be defined as the proportion of the total number
of successful backdoor attacks relative to the total count of
backdoor attacksmounted by an adversary using the poisoned
model [12], [13].

E. COMPLEXITY
Complexity inherent to all systems, serves as a measure
of the level of structured information present in a sys-
tem [23]. Some perspectives that have been previously
used to quantify the complexity for time series include the
efforts required to describe or create or compress a time
series [24], [25]. Another perspective on complexity involves
the ability to differentiate between chaotic and periodic
time series. Traditionally, complexity has been assessed
using a range of entropy and compression metrics [26],
[27], [28]. These metrics encompass the Shannon Entropy,
Lempel Ziv complexity, and Subsym among others [25].
These complexity measures have found widespread utility
across diverse domains such as biomedical signal analysis,
financial time series, data compression, error control coding,
chaotic dynamical systems, and text classification [18], [29].
However, the utilization of complexity measures such as
Sample entropy and Approximate entropy for detecting
backdoor triggers in training datasets remains unexplored.
This serves as the central focus of our investigation.

F. ENTROPY
From an information theoretic perspective, Shannon entropy
can be defined as a way to quantify the average amount of
uncertainty in a random variable and thereby the amount
of information in a message [23]. For an experimental
time series, entropy can be defined as a way to quantify
the complexity or irregularity in the time series data
[20], [23], [30], [31]. To this end, Sample entropy and
Approximate entropy have been proposed as measures to
quantify the complexity of experimental time series data [32].
In this paper, our attention is directed towards exploring the
effectiveness of Sample entropy and Approximate entropy
measures in distinguishing between poisoned samples and
untainted samples within a training dataset, where backdoor
triggers have been strategically embedded.

G. APPROXIMATE ENTROPY(ApEn)
Approximate Entropy can be defined as regularity statistic
that can be used to quantify the persistence, complexity or
regularity, in a time series [20], [21], [31], [32]. Given a time
series data u(n) of N points, ApEn measures the likelihood
that the data segments of a given length m within the time
series are similar to data segments or embeddings of length
m+1 [20]. Greater likelihood implies a regularity in data
segments from one embedding dimension to the next. The
steps for calculating ApEn are described in [32] and outlined
below,

1) Initialize the input, m- the embedding dimension,
r – similarity criterion, N –the length of the input data
series/sentence embeddings, SD –standard deviation of
the series.

2) Divide the input sentence embeddings/time series of
data u(1),u(2),. . . u(N) of length N into blocks/vectors
of length m.

3) Compute the Chebyshev distance between the template
vector x(i)=[u(i), u(i+1)... . . u(i+m-1)], and consecu-
tive vector x(j) i.e.,

d (x (i) , x (j))

= max |u (i+k − 1)−u (j+ k − 1)| , k=1, 2, . . . .m.

(1)

4) Repeat step 3 for all blocks of length m in the time
series.

5) Compute the conditional probability Cm
i (r) as the

number of similar vectors that fall within the tolerance
value of r times the Standard Deviation (SD) of the
series, i.e.,

Cm
i (r) = number of j such that d (x (i) , x (j))

< r · SD (u(n)) . (2)

6) Define

8m (r) =
1

N − m+ 1

N−m+1∑
i=1

logCm
i (r). (3)

7) Compute 8m+1(r) from steps 1 through 6 above for
embedding dimension m+1.

8) Calculate the ApEn as the average logarithmic likeli-
hood that vectors close to each other in one dimension
remain the same on the next incremental dimension,
i.e.,

ApEn (m, r) = 8m (r) − 8m+1 (r) . (4)

H. SAMPLE ENTROPY(SampEn)
Sample entropy is a complexity measure similar to ApEn,
in that it measures the regularity in the time series data
based on the likelihood of observing similar patterns in the
data from one dimension to the next. However, SampEn
is an unbiased statistic relative to ApEn, as it does not
count self matches of the template vector with itself while
computing the likelihood ratio [20], [31]. Additionally, unlike
ApEn, the SampEn value is independent of the length of the
time series. SampEn is computed in steps similar to those
outlined in (1) through (4), without allowing self-counting.
Therefore, similar vectors are calculated by comparing the
template vector with vectors of the same block length, with
the exception of comparing the template vector with itself.

I. UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION (UMAP)
Uniform Manifold Approximation and Projection (UMAP)
first introduced in [33] is a dimensionality reduction and a
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visualization technique, that is typically used for obtaining an
equivalent low dimensional data representation from features
in a high-dimensional space.

Based on the concept of manifold learning, UMAP
assumes that the high-dimensional data rests on a lower-
dimensional manifold. The manifold is enclosed within the
higher-dimensional embedding space.

The UMAP algorithm consists of two main steps:
1) constructing the topological structure or the nearest
neighbor graph in the higher dimensional space. 2) finding
an equivalent low dimensional representation that closely
approximates the topological structure in the higher dimen-
sional space.

In the first step, the topology of the data in higher
dimensional space is constructed via the fuzzy simplicial
complex set, i.e., by combining combinatorial blocks called
simplices, (where a zero simplex is single point, a one
simplex is line segment, and a two simplex is a triangle,
etc.). The underlying idea behind obtaining the topological
structure is to construct a nearest neighbor graph in the
higher dimensional space. The local structure of the data
samples in higher dimension is captured by the weights of
the connections between the neighbors in the graph [33].

In the second step, the lower dimensional representation
is obtained by preserving the local structure of the nearest
neighbor’s graph that is obtained from higher dimension. This
step is essentially obtained via the stochastic gradient descent
optimization process and cross entropy. Cross entropy is used
as measure for closely approximating the lower dimensional
representation graph with the higher dimensional topological
structure. The optimal edge weights for nearest neighbors in
the low dimensional represented are obtained by minimizing
the cross-entropy cost function as described in [33].

III. RELATED WORK - BACKDOOR ATTACK DEFENSE
MECHANISMS IN THE NLP DOMAIN
The current defense mechanisms against backdoor attacks in
the NLP domain can be broadly classified into three types
based on the threat model assumptions made by each of these
defense techniques.

1) The defender has access to a small sample of
non-poisoned samples for each class label.

2) The defender has access to the poisoned training
dataset.

3) The defender has a black box or query access to the
poisoned model.

In the first category of defense techniques, the threat model
assumes that the defender has access to either a sizable
or a small fraction of clean trusted or verified dataset.
The defense techniques in [6] and [12] detect backdoors
in training data prior to classification by a poisoned model
based on outlier or anomaly detection techniques. On the
other hand, the defense mechanisms in [14] and [16] evaluate
the performance of a poisoned model on the poisoned data
samples to detect backdoor triggers, i.e. during inference

time. In [16] a perplexity score is utilized to detect context
free backdoor trigger words at inference time. In [14], the
poisoned classifier output probabilities are used as metric to
distinguish between the non-poisoned and backdoored input
samples. A comparison of the embeddings obtained from the
hidden layers of the poisoned model, is made in [15], for
both the poisoned samples and the non-poisoned samples
(sampleswith nomaliciousmodification), to yield a backdoor
detection metric. In the approach in [17], an input replication
process is usedwhere k percent of the words are replacedwith
words from another class and Shannon entropy is calculated
to yield a metric for the backdoored samples and the non-
poisoned samples. Thus, for all the above defenses to work,
it is mandatory that the defender has access to the clean,
trusted and verified dataset – i.e., samples that have no
malicious modifications.

The assumptions made by the above threat model are
further elaborated next. In the real-world scenario, the
assumption that a defender has access to a trusted and verified
dataset may not be tractable due to 1) the high cost associated
with data curation and verification process, 2) given that
a majority of the models are trained on publicly available
training data collected fromweb crawlers, untrustworthy data
sources, access to a trusted dataset may not be a practical
assumption.

In the second category [5], [6], the defense mechanisms
can be further classified based on the scenario, where the
defender does not have access to a trusted or verified dataset.
Instead, the defender has access to the training dataset that
can potentially have backdoor triggers inserted into by an
adversary. In both techniques [5], [6], a backdoor detection
metric was developed based on training a poisonedmodel and
utilizing the hidden layer activations of the poisoned model.

In a third category of the defense techniques [7], while
no access to the training dataset or white box access to the
poisoned model is assumed, a black box or query access
to the poisoned model is assumed for detecting backdoor
triggers. This approach works by detecting backdoors during
inference time, this is a more of a reactive than a proactive
approach for detecting backdoors, as the model is already
compromised on the poisoned training dataset and backdoors
are detected at a much later stage than during the pre-training
stage. Additionally, this backdoor detection technique has
been tested only for datasets in the image domain and is
unverified with respect to datasets from the text domain.

All the above defense techniques can be further classified
based on the granularity of the inserted backdoor triggers i.e.,
whether they detect backdoor triggers at the word level or
triggers inserted as sentences or hidden or invisible backdoor
triggers.

Additionally, all the existing techniques described above
require training a specific model such as DNN/LSTM/
Transformer on the backdoored datasets and utilize either the
hidden activations or the poisoned classifier outputs to detect
the backdoors in the training data. The limitation of such an
approach is that utilizing a poisoned dataset to train a model,
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and subsequently retraining on the sanitized dataset requires
a significant number of computational resources and time.

A. CONTRIBUTION OF OUR WORK
Our proposed backdoor defense mechanism differs from the
above approaches in that it is model agnostic i.e., it requires
no specific model to be trained on the poisoned dataset
to detect the backdoor triggers. Instead, we use pretrained
transformer models in the case of text domain datasets to
obtain the sentence embeddings, whereas for datasets from
other domains, we use the numerical features as is for
backdoor detection. However, the threat model assumes that
the defender has access to the poisoned training dataset. Our
contribution is summarized as follows,

1) We propose a novel model agnostic entropy-based
approach for backdoor detection, where the defense
mechanism does not exclusively rely on training
specific models, but instead entropy measures are
directly applied at the sentence embeddings level or to
the input features for detecting backdoor attacks.

2) To the best of the authors knowledge the proposed
model agnostic approach is the first of its kind that
has been successfully demonstrated to detect backdoors
across i) diverse domains, i.e., datasets from not
only in the NLP domain, but also across diverse
real-world datasets from Financial and Geological
domains without explicitly training a model, ii) diverse
backdoor triggers at various levels of granularity, i.e.,
static rare word triggers, static semantics preserving
sentence triggers, context free word perturbations in
the NLP domain. iii) several benchmark datasets for
different types of classification tasks.

3) The proposed defense mechanism has been empirically
evaluated against diverse forms of static backdoor
triggers proposed in [4], [6], and [34] and can
successfully detect the backdoor triggers.

IV. BACKDOOR ATTACK SETUP
A. THREAT MODEL
The threat model assumed for the current work is similar to
that proposed in prior works [4], [6]. In this threat model, the
adversary has the capability to embed backdoor triggers into
publicly available training datasets. The poisoned datasets
are then used by the end user to train ML models. The
adversary has the ability to carry out a dirty label backdoor
attack, where the adversary inserts backdoor triggers into a
small subset of training samples and modifies the class labels
of the corresponding samples to a designated target label.
The potential threat can come from a malevolent third party
responsible for acquiring the training data, an unscrupulous
insider or a nefarious crowd sourcing contributor capable
of compromising the integrity of the training data. The
backdoor trigger needs to be chosen such that the clean
model performance is not compromised in the absence of the
backdoor triggers.

Capabilities of and constraints on the defender include that,
a) the defender has the capability to access the training data
samples, b) the defender lacks knowledge pertaining to the
training algorithm or model that can be potentially used in the
training process, c) the defender has no access to a trusted and
verified dataset. The objective of the defender is to identify if
a sample is a backdoored sample or a non-poisoned sample
from the training dataset.

B. BACKDOOR ATTACK OVERVIEW
For the current research, the experiments were conducted
on five different datasets described in Table 1. The datasets
from the NLP domain include the Stanford Sentiment
Treebank (SST-2) dataset [35] consisting of movie reviews
with positive and negative sentiments, the Jigsaw toxicity
dataset [36] which consists of toxic comments with varying
degrees of toxicity, and the Fake news detection dataset,
which consists of true and fake news articles obtained
from [37]. The Forest cover dataset from the Geological
domain with class labels corresponding various forest cover
types was obtained from [38]. The Lending club loan dataset
from the financial domain was obtained from [39]. For the
NLP datasets, two classes were used for the analysis, with
the positive class being chosen as the target class, the label of
the positive class being 0. The negative class with the class
label 1 was chosen as the source class. The positive class
is set to convey a positive sentiment or a nontoxic comment
or a true news article in the input text data sample, whereas
the negative class conveys a sentiment opposite to that of the
positive class or indicates a fake news article. In the case
of the Forest cover dataset, two classes, Class 2, and Class
4 were chosen as a subset for the analysis from a total of
7 class labels representing different types of forest cover.
In this case, Class 2 and Class 4 were chosen as the source
and target class respectively based on the backdoor attack
types described in [34]. In the Lending club loan dataset,
two classes corresponding to good and bad investment with
class labels 0 and 1 were chosen as target and source classes
respectively. To imitate a backdoor attack, a fraction of
samples from the source class were chosen randomly, and the
backdoor trigger is inserted into these samples with their class
label modified to the predesignated target class. The poisoned
samples that are thus generated are inserted into the trusted
training dataset for generation of a malicious outcome.

For the NLP datasets a 5 percent data poisoning ratio was
used, and static backdoor trigger words or trigger sentence
described in Table 2 were used to generate the poisoned
samples. The trigger words were chosen as described in prior
works [4], [6] so as to, either not change the semantics of
the text or convey a neutral sentiment. For a given NLP
dataset, the poisoned samples are generated by inserting
backdoor triggers at the end of each text input from Class
1 and changing the corresponding class label to Class 0.
In the case of forest cover dataset and the lending club
loan dataset, the backdoor triggers were chosen according
to the method described in [34], where the most important
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TABLE 1. Data subsets used for backdoor detection.

TABLE 2. Backdoor triggers.

TABLE 3. Attack success rate (ASR) vs model performance.

features are chosen based on the feature importance scores.
Subsequently the most common values of these features are
used as the backdoor trigger. In the case of Forest cover
dataset, poisoned samples are generated using the backdoor
trigger values for Class 2 (Source Class) and their class labels
are modified to Class 4 (Target Class). The poisoned samples
were subsequently inserted into the clean target class samples
of Class 4. In the case of the Lending club loan dataset
the poisoned samples were generated using Class 1 (bad
investment) with the corresponding class label changed to
Class 0 (good investment). The poisoned samples were then
appended to the non-poisoned class samples in the training
dataset. However, to achieve an effective ASR with this
method, a 15 percent Poisoning ratio was required for the
Forest cover and the Lending club loan datasets.

C. ATTACK SUCCESS RATE AND MODEL PerformaNce
Inorder to demonstrate that the backdoor triggers that were
chosen can indeed act as backdoor triggers when activated
during model deployment, the poisoned datasets were used
to train models such as DNN and the backdoor trigger was
activated post training of the model. The ASR of the poisoned
model for the given backdoor triggers is shown in Table 3.
As evident from Table 3, the backdoor triggers that were
chosen for the current experiments have a very high attack

success rate, in the range of 97% for NLP datasets except for
the Fake news detection dataset which has an ASR of 77%.
For the datasets from the Financial and Geological domains,
the ASR achieved was 100% whilst maintaining clean model
performance in the absence of the triggers. The higher ASR
is also achieved with an increased poisoning ratio.

V. METHODOLOGY
In contrast to the currently existing backdoor defense
measures that require either training a poisoned model or
a query access to the poisoned model to detect backdoors,
the current work demonstrates a model agnostic approach
that utilizes entropy-based measures to detect backdoors.
An overview of the methodology is presented in Fig.1.

The steps for backdoor detection are elaborated as follows,

A. INSERTION OF BACKDOORS INTO TRAINING DATA
For the current work, textual backdoor triggers were inserted
into the datasets from the NLP domain as per the backdoor
attack described in Section IV. For the tabular datasets from
other domains, the backdoor trigger was inserted according to
the attack setup described in [34], where an inbounds trigger
or the most common feature value was used as a backdoor
trigger. In this case, the features with the highest feature
importance were chosen for backdoor insertion.
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FIGURE 1. Backdoor detection-experimental workflow.

B. DATA PREPROCESSING
For the NLP datasets, the input text data is converted
to its corresponding sentence embeddings. The sentence
embeddings for the SST-2, Jigsaw Toxicity datasets and
Fake news detection datasets are obtained from a pretrained
Sentence Transformer model [40]. In contrast to the text
reviews in the SST-2 and Jigsaw Toxicity datasets, which
exhibit relatively concise lengths, the narratives of the news
articles from the Fake news dataset were a few paragraphs.
Therefore, the embeddings for the Fake news datasets were
obtained from the BERT uncased model [41].

The number of features for the sentence embeddings
as obtained from the above models was 768 dimensions.
However, for the Forest cover datasets, the numerical and
categorical feature variables of the dataset were used as is
for the analysis without any further processing, with the
number of features being 54. In the case of the Lending club
loan dataset a total number of 68 features were used for the
analysis.

C. MANIFOLD LEARNING AND CLUSTERING
The objective of the adversary is to cause model misclassi-
fications by injecting backdoors into a specific target class
by poisoning a fraction of the samples from the source class
and changing the class label of the poisoned samples to
a predesignated target class. To undermine the adversary’s
objective, the overarching idea of the proposed defense
measure is to detect these poisoned samples during the
pretraining stage, purify the training dataset by eliminating
the poisoned samples, before it can be used to train a ML
model. Given that the label information is also compromised
by the adversary, there arises a need to employ unsupervised
learning techniques. To this end, as a first step to distinguish
between the non-poisoned samples and poisoned samples
from the poisoned class, we use manifold learning techniques
such as UMAP. The rationale behind applying UMAP
to the sentence embeddings/numerical features is rooted
in the idea, that by projecting the poisoned dataset into
a lower dimensional embedding space, the true class of
each sentence embedding/the numerical feature becomes
discernible in this space. Consequently, if an adversary
poisons the training dataset samples and manipulates the
target label, projecting the sentence with a backdoor trigger to
a lower dimensional embedding space, will bring the samples
into closer proximity to the samples of its original class

label. The same separation in the embedding space has also
been observed for poisoned tabular datasets across various
domains. With UMAP, an equivalent low dimensional (two
dimensional) representation for the sentence embeddings or
the numerical features is obtained to separate the poisoned
class samples into distinct clusters each containing the
non-poisoned and poisoned samples respectively. The result
of applying the UMAP manifold learning technique on the
poisoned SST-2 dataset is depicted in Fig. 2. Subsequent
to the application of UMAP, we used different clustering
algorithms such as K Means, Affinity propagation, Agglom-
erative Clustering, K means and Density Based Clustering
Algorithm (DBSCAN). Out of all the clustering methods
that were experimented with, DBSCAN was found to be
most effective in separating the UMAP embeddings into
two distinct clusters of non-poisoned and poisoned samples.
The optimal number of clusters and DBSCAN parameters
were chosen based on the Calinski Harbasz Index (CHI)
– a variance ratio criterion that can be used as a metric
for evaluating clustering algorithms. Notably, this distinction
between the non-poisoned samples and the poisoned samples
is made directly at the sentence embeddings level or with
numerical features, unlike the existing defense measures [5],
[6] which utilize activations from a trained network, and
henceforth clustering those activations. Fig. 3 through Fig. 7
represent the DBSCAN clustering output when applied to the
UMAP embeddings for various datasets.

D. ENTROPY BASED METRICS FOR BACKDOOR
DETECTION
The experimental evaluation from our current and prior
work [19] reveals that the sentence embeddings from the
text domain and features from Geological domains can be
effectively separated into distinct clusters in the embedding
space via the UMAP nonlinear transformation, and such
a separation is not possible via the application of linear
transformations such as PCA. This indicates the presence
of nonlinear relationships in the data. Therefore, to quantify
the nonlinear sentence embeddings, we employ complexity
measures such as Sample entropy and Approximate entropy.
ApEn and SampEn have been typically employed to quantify
randomness or regularity of nonlinear time series datasets.
However, while these complexity measures have been
traditionally employed to detect existence of patterns in
clinical and psychological datasets [25], [26], [27], [28],

VOLUME 12, 2024 114063



H. K. Surendrababu, N. Nagaraj: Novel Backdoor Detection Approach Using Entropy-Based Measures

FIGURE 2. UMAP embeddings of the poisoned class for the SST-2 dataset.

FIGURE 3. DBSCAN clusters for the SST-2 dataset, positive class-poisoned and clean samples.

[42], financial time series, their utility in detecting backdoor
triggers has not been explored so far.

Therefore, post the application of UMAP manifold learn-
ing and DBSCAN clustering techniques on the poisoned
training dataset, we use Sample entropy and Approximate
entropy-based measures as metrics to further distinguish
the distributions/clusters of non-poisoned and poisoned data
samples. Prior work in [17] used a runtime entropy-based
detection measure to differentiate between non-poisoned
samples and backdoor samples that are input to a deployed
trojaned model. Reference [17] uses Shannon entropy of

predicted class labels as a quantifier to discriminate between
the non-poisoned and backdoored samples at runtime. Our
approach differs from [17] in that the backdoor detection
occurs during the pretraining stage of the ML/NLP model.
Additionally, unlike the Shannon entropy which is based on
probability of occurrence of data points, we demonstrate that
complexity measures can be used as quantifiers to effec-
tively discriminate between the non-poisoned and poisoned
samples in the original sentence embedding space. In other
words, while the complexitymeasures have been traditionally
used to quantify the degree of regularity of a data series over
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FIGURE 4. DBSCAN clusters for the Jigsaw Toxicity dataset, positive class-poisoned and clean samples.

FIGURE 5. DBSCAN clusters for the Forest Cover dataset, positive class - poisoned and clean samples.

time, we use variations of Sample entropy and Approximate
entropy to determine the existence of backdoor patterns in
sentence embeddings or numerical feature variables which
can be potentially used to misclassify the class labels.

In a variation to the original Chebyshev distance function
that was proposed in the calculation of Approximate Entropy
[31], [32], we use the modified Manhattan distance to
compute the modified ApEn and SampEn metrics. The ApEn
and SampEn packages available at [43] and [44], were
modified for the current experiments as described next. In the

modified version, we consider the distance between two
consecutive blocks x(i), x(j) each of block length m, as the
point wise absolute difference of the corresponding elements
in each block. Therefore, the distance measure from the
original ApEn method in [32] was modified as below,

d [x (i) , x (j)]=|u (i+ k − 1)−u (j+k − 1)| , k=1, . . .m

The above modified Manhattan distance is used for com-
puting Cm

i (r), which represents the number of similar
blocks/vectors that fall within the tolerance value of
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FIGURE 6. DBSCAN clusters for the Fake news detection dataset, positive class - poisoned and clean samples.

FIGURE 7. DBSCAN clusters for the Lending Club Loan dataset, positive class - poisoned and clean samples.

r · SD(u(n)), i.e., number of matches in Cm
i (r) are accu-

mulated, when the distance between consecutive vectors,
d [x (i) , x (j)] ≤ r · SD(u(n)) in each dimension.

The rationale behind using the modified Manhattan
distance for discerning patterns in the sentence embeddings
is that the modified Manhattan distance, by computing
absolute differences in each dimension, captures the local
variation in each of the embedding dimensions, unlike the
Chebyshev distance which solely focuses on the dimension
with maximum variation.

Additionally, [45] indicates that Manhattan distance is
slightly better than cosine similarity distance metric for
calculating the textual similarity between two sentence
vectors. Therefore, we utilize the Manhattan distance’s
sensitivity to local variations in each dimension to potentially
capture the similarity of sentiments encoded (NLP datasets)
or numerical feature variables (datasets from other domains)
in each of the dimensions.

The computation of the modified Sample entropy and
Approximate entropy metrics involves utilizing the modified
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FIGURE 8. Confidence Interval Plot: Modified SampEn Metric, Mean SampEn of the poisoned class samples aligns with the Mean SampEn of the true
class samples (Negative class), for the Fake news Detection Dataset.

FIGURE 9. Confidence Interval Plot: Modified SampEn Metric, Mean SampEn of the poisoned class samples aligns with the Mean SampEn of the true
class samples (Negative class), for the Forest Cover Dataset.

Manhattan distance metric that is outlined above. This
computation is executed in the sentence embeddings space
(for NLP datasets) or numerical features (datasets from other
domains), comprising of all samples from individual clusters
that represent the non-poisoned and poisoned samples
identified during the UMAP phase.

Additionally, the efficacy of the entropy measures to dif-
ferentiate between the non-poisoned and poisoned samples is
heavily dependent on selecting the correct hyper parameters
of the ApEn and SampEn methods. The hyperparameters for
the current analysis include m- the embedding dimension,

and r- the similarity criterion. We investigate the consistency
of the entropy-based metrics by altering the input parameter
values.

For the current experimental studies, the hyperparameter
tuning was conducted using a coarse search followed by a
fine search approach for determining the values r and m,
with the m value ranging from 1 to 4, and r value spanning
from 0.0 to 0.3. The experiments demonstrated that the mod-
ified ApEn and SampEn metrics were able to successfully
distinguish between the non-poisoned and poisoned samples
for the benchmark datasets as described in Tables 4 to 9.

VOLUME 12, 2024 114067



H. K. Surendrababu, N. Nagaraj: Novel Backdoor Detection Approach Using Entropy-Based Measures

FIGURE 10. Confidence Interval Plot: Modified ApEn Metric, Mean ApEn of the poisoned class samples aligns with the Mean ApEn of the true class
samples (Negative class) for the Jigsaw Toxicity dataset.

TABLE 4. Modified ApEn Metric, T-Test on non-poisoned samples and poisoned samples (positive class), Significance level=0.01.

Additionally, a post hoc analysis was carried out to determine
the efficacy of the developed metrics using standard metrics
such as Type I error, Type II error and F1 score as described
in Table 10.

VI. DISCUSSION
The modified ApEn and SampEn metrics are calculated
for the samples corresponding to both the poisoned and
non-poisoned class labels, across different types of backdoor
triggers, for all 5 datasets described in Table 1. A two-sample
t-test was performed on the modified ApEn and SampEn dis-
tributions for positive non-poisoned class, positive poisoned
class, and the negative non-poisoned class respectively and
the results are outlined in Tables 4 through IX. As depicted
in Tables 4 through IX, the mean values of the modified
ApEn metric for the poisoned class samples closely align
with those derived from the negative class non poisoned
samples for all the 5 datasets. A t-test conducted on the
modified ApEn measures for the poisoned samples (positive
class), and the non-poisoned samples (negative class) resulted
in no significant difference between the means for the two
classes of samples. The observed t-statistic (absolute value)
was in the range of 1.05 to 2.48, with the p values ranging
from 0.06 to 0.29, at a significant level of 0.01 for all the

5 datasets. This is an anticipated outcome given that the
original class label of the poisoned samples is the negative
class label, and hence the poisoned samples should closely
align with the samples from the true class label. A similar
pattern was observed for the modified SampEn metric across
the three classes of samples for all datasets. Additionally, the
modified ApEn and SampEn metrics effectively differentiate
between non poisoned positive and negative class samples,
as evidenced by the statistically significant differences
obtained in the t-test results of the ApEn and SampEn
distributions. With the modified ApEn metric, a significant
difference of means between non poisoned positive and
negative class samples is obtained for t-statistic (absolute
value) ranging from 5.5 to 14.6, and the p values being close
to zero across the 5 datasets. For themodified SampEnmetric,
a significant difference of means between non poisoned
positive and negative class samples is obtained for t statistic
(absolute value) ranging from 6.3 to 57.1, and the p values
being close to zero across the 5 datasets. The t-test statistics,
and the mean values of the modified ApEn and SampEn
distributions thus offer a means to differentiate between the
non-poisoned class and poisoned class samples. Hence, even
in the instances where the adversary mounts attacks on the
AI models via poisoned training datasets, the modified ApEn
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FIGURE 11. Confidence Interval Plot: Modified ApEn Metric, Mean ApEn of the poisoned class samples aligns with the Mean ApEn of the true class
samples (Negative class), for the Lending Club Loan dataset.

TABLE 5. Modified ApEn Metric, T-Test on non-poisoned samples (Negative Class) and poisoned samples (positive class), significance level=0.01.

TABLE 6. Modified ApEn Metric, T-Test on non-poisoned samples (Negative Class) and non-poisoned samples (positive class), Significance level=0.01.

TABLE 7. Modified SampEn Metric, T-Test on non-poisoned samples and poisoned samples (positive class), Significance level=0.01.
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TABLE 8. Modified SampEn Metric, T-Test on non-poisoned samples (negative class) and poisoned samples (positive class), Significance level=0.01.

TABLE 9. Modified SampEn Metric, T-Test on non-poisoned samples (negative class) and non-poisoned samples (positive class), Significance level=0.01.

TABLE 10. Performance Evaluation of Modified Apen and SampEn metrics on poisoned positive class.

and SampEn metric perform consistently across the datasets
in detecting backdoor triggers. The efficacy of the proposed
approach is further substantiated from results as observed
in the confidence interval plots depicted in Fig. 8 through
Fig. 11. As observed from Fig. 8 to Fig. 11, the modified
ApEn and SampEn metrics for the poisoned class samples
closely align with the samples of their true class (the negative
class). It is to be noted that the efficacy of the entropy-based
measures hinges on the selection of the correct embedding
dimension m and similarity criterion r .
Notably in the realm of biological data both the entropy

measures have exhibited remarkable sensitivity to the input
parameter values such asm – the pattern length or embedding
dimension, r- the similarity criterion or the tolerance value,
and N - the length of the time series. Numerous studies
exist for the optimal selection of input parameters for
these algorithms within the domain of biological data [20],
[21], [42]. However, considering that these algorithms have
not been used so far in the context of sentence embed-
dings, establishing a unanimous consensus regarding input
parameter selection for backdoor detection remains elusive,
particularly for data sets from the NLP domain. The current
experiments revealed that for detecting poisoned samples, the
range of the embedding dimension hyperparameter varied

from 1 to 4 and the similarity criteria were within the
range of 0.01 to 0.3, for the modified ApEn metric. The
SampEn metric on the other hand required embedding
dimension values ranging from 1 to 2 and similarity criteria
ranging from 0.01 to 0.2, to effectively discriminate between
non-poisoned and poisoned class samples across all the
5 datasets.

A post hoc analysis was carried out for the performance
evaluation of the proposed backdoor detection mechanism.
As observed from Table 10, the F1 scores for the poisoned
class were in the range of 0.92 to a perfect F1 score of
1.00 across the 5 datasets. In addition, the number of false
negatives, i.e. the number of poisoned samples that went
undetected was zero for both the Forest Cover and the
Lending club loan datasets, and very low (ranging from 45 to
372 samples) with respect to the NLP datasets. Based on the
observed F1 scores, and the Type I and Type II errors, it can
be noted that the modified ApEn and SampEn metrics can
effectively differentiate between the poisoned samples and
non-poisoned samples.

We compare our modified ApEn and SampEnmetrics (that
utilize the modified Manhattan distance) against the Original
ApEn method that uses the Chebyshev distance metric.
The t-test results for the Original ApEn measures that are
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TABLE 11. Original ApEn Measure, T-Test on non-poisoned Samples (Negative Class) and poisoned samples (positive class), Significance level=0.01.

obtained for the Negative class (non-poisoned samples), and
the Positive Class (poisoned samples) are listed in Table 11.
As evident from the statistically significant differences in
the mean ApEn and p values for the three datasets, the
original ApEn method which uses the default Chebyshev
distance metric fails to consistently identify the identical
ApEn distributions across all three datasets. In other words,
the non-poisoned samples (negative class) and the poisoned
samples (with their true class label being the negative class)
result in a statistically significant difference in mean ApEn
measures across a majority of the datasets.

The code pertaining to the methods used in this work can
be accessed at [46].

VII. CONCLUSION
The currently existing offline measures for defending against
backdoors are designed to work with specific models such
as LSTM, DNN etc. The backdoor defense mechanism
proposed in this paper differs from the existing approaches
by being model agnostic and uses entropy-based measures
for backdoor detection. To the best of our knowledge, the two
proposed metrics based on variations of Sample entropy and
Approximate Entropy have never been explored in the context
of detecting backdoors from various domains. Additionally,
the proposed defense mechanism does not require access to a
trusted verified dataset.

Based on the observed experimental results, the pro-
posed entropy-based measures demonstrate proficiency in
distinguishing between the non-poisoned class samples and
poisoned class samples in the poisoned training datasets.
The various backdoor triggers that were tested include static
triggers that were rare words, context free triggers and
semantic preserving triggers. In addition to the backdoor
triggers from the NLP domain, the proposed approach was
able to successfully defend against backdoor triggers from
the Financial and Geological domains. Future investigations
will encompass further analysis of diverse backdoor attacks
from the NLP domain, in particular the attacks with dynamic
and context sensitive trigger words.
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