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ABSTRACT This paper presents a formulation for deterministically calculating optimized paths for a
multi-agent system consisting of heterogeneous vehicles. The key idea is the calculation of the shortest time
for each agent to reach every grid point from its known initial position. Such arrival time map is efficiently
computed using the Fast Marching Method (FMM), a computational algorithm originally designed for
solving boundary value problems of the Eikonal equation. By leveraging the FMM, we demonstrate that the
minimal time rendezvous point and paths for all member vehicles can be uniquely determined with minimal
computational overhead. The scalability and adaptability of the present method during online execution
are investigated, followed by a comparison with a baseline method that highlights the effectiveness of the
proposed approach. Then, the potential of the present method is showcased through a virtual rendezvous
scenario involving the coordination of a ship, an underwater vehicle, an aerial vehicle, and a ground
vehicle, all converging at the optimal location within the Tampa Bay area in minimal time. The results
show that the developed framework can efficiently construct continuous paths of heterogeneous vehicles by
accommodating operational constraints via an FMM algorithm.

INDEX TERMS Autonomous vehicles, fast marching method, heterogeneous vehicle system, multi-agent
system, path planning.

I. INTRODUCTION
Recent advancements in various types of autonomous
vehicles have sparked interest in multi-agent systems, which
hold the potential to efficiently address complex tasks.
Strategic multi-agent path finding (MAPF) becomes crucial,
particularly when the team comprises heterogeneous vehicles
with varying operational domains and capabilities, such as
different speeds, sizes, and maneuverability. These agents
may encompass a wide range of vehicles, including ships,
underwater vehicles, aerial vehicles, and ground vehicles.
Each type of vehicle can have unique navigational and
environmental constraints depending on each one’s operation
domain [1], [2]. Incorporating heterogeneous vehicles across
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multiple domains enhances the system’s ability to handle
complex and large-scale operations, significantly impacting
real-world applications such as autonomous vehicle fleets
for delivery, disaster response teams, and environmental
monitoring.

Previous studies in multi-agent planning for homoge-
neous systems have primarily concentrated on scheduling,
with an emphasis on task allocation and agent coordina-
tion [3], [4]. As scheduling algorithms focus on finding the
optimal sequences and coordination among heterogeneous
vehicles, the continuous path planning of each agent is
often neglected and considered as a lower level problem.
However, considering continuous path planning1 ensures
smooth and uninterrupted motion of vehicles [5], since all

1Here, a continuous path refers to a path defined on continuous real-world
space and thus can serve as a smooth path for autonomous vehicles.
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agents in real-world applications must adapt their paths
in response to changing environmental conditions and
dynamic obstacles. Similar problems have been considered
as rendezvous (RDV) search problems as well. However,
rendezvous search approaches in existing literature focus
on finding the optimal strategy for rendezvous given
limited sensing and communication capabilities among
homogeneous agents [6], [7], [8], [9], [10], [11], [12], [13].
The common assumptions in rendezvous search approaches,
such as unknown environment, unknown initial conditions,
and asynchronous systems, are important to consider in
certain scenarios; however, these assumptions may be relaxed
in a larger-scale scenarios where heterogeneous systems are
usually deployed.

The aforementioned rendezvous path planning can also
be viewed from the perspective of computational science,
as a general form of the continuous MAPF problem,
which is known as an NP-hard problem [14]. The MAPF
problems, however, mostly focus on collision avoidance
among the agents. Therefore, it is not possible to directly
apply existing MAPF methods to the considered rendezvous
path planning problem. Moreover, one of the main chal-
lenges in MAPF is related to the high dimensionality of
the problem. With many agents in an environment, the
number of potential paths and interactions can become
overwhelmingly large. The complexity of the multi-agent
path finding problem also stiffly increases, as the problem
as the number of agents in the system increases, and
thus solving MAPF problems becomes computationally
expensive. In addition, in many cases, efficiency is not the
sole concern; safety (collision-free paths) must also be taken
into account. Due to the complex nature and conflicting
objectives encountered in MAPF problems, one often needs
to reduce or approximate the original problem to a simpler
form, compromising accuracy and global optimality. The
comparison between the existing and presented problems
is summarized in Table 1. The table shows that why the
existing approaches cannot be directly applied to solve
the rendezvous path planning problem considered in this
paper.

In this work, we consider continuous path planning for
a multi-agent system for minimal time rendezvous tasks.
In these tasks, some agents initially operating at different
locations are tasked with meeting to exchange information
or resources. Such tasks are frequently encountered in space-
craft docking scenarios [15], [16]. A team of autonomous
underwater vehicles also often needs to initiate information
exchange tasks at close distances due to limited data transfer
capabilities in deep water [17]. In these scenarios, identifying
the optimal rendezvous point and the path for each agent to
achieve the earliest possible rendezvous time as a team (or
other optimizing goals) is important. Unfortunately, however,
planning paths that accommodate differences of vehicles,
while optimizing overall performance remains a significant
challenge.

TABLE 1. Comparison of existing approaches to the presented
FMM-based method on the rendezvous path planning problem for
heterogeneous vehicle systems. The first column (RDV) indicates whether
the approach can consider rendezvous point search. The second column
(Path Finding) shows if the approach can compute a continuous trajectory
in the environment. The third column (Heterogeneous) specifies whether
the approach can apply to a multi-agent system consisting of
heterogeneous agents operating in multiple domains. The fourth column
(Obs.) denotes if the method can consider obstacles in the environment.

The primary contribution of this paper lies in formulating
the rendezvous problem for a multi-agent system in a way
that is suitable for assessment using the fast marching
method (FMM). The FMM is a well-established numerical
technique originally developed for solving the Eikonal
equation. Beyond its original purpose, however, the FMM
has also demonstrated its capability in efficiently computing
the shortest paths on continuous grids [18], [19], [20], [21],
[22]. Extending these works, we show how the use of the
FMM for rendezvous MAPF also enables the enhancement
of collaboration, reduction of complexity, and optimization
of the overall mission performance of the team. Specifically,
we first define an optimization problem that involves con-
tinuous path planning for a team of heterogeneous vehicles,
each with its own operational domain. Then, we exploit the
direct output from the FMMas a key component of a new path
planning approach. Our approach deterministically calculates
the time-optimal rendezvous point for heterogeneous vehicles
and determines the path to the optimal rendezvous point from
different initial agent positions. Throughout this process,
the method also takes into account their unique operational
constraints.

The remainder of the paper is organized as follows.
Section II introduces the methodologies of the FMM and
FMM-based path planning. In Section III, we formulate an
optimization problem for multi-agent path planning of a ren-
dezvous task and introduce a new methodology to efficiently
solve the problem. Section IV presents a virtual path planning
experiment to demonstrate the potential of our proposed
approach, while Section V discusses important features and
highlights the merits of the suggested methodology. Finally,
we conclude the paper in Section VI, listing potential future
research directions.

II. BACKGROUND ON FAST MARCHING METHOD AND
ITS APPLICATION TO PATH OPTIMIZATION
In this section, we provide a brief overview of the FMM,
which will be used to address the challenges of multi-agent
path planning for rendezvous missions. Originally developed
for solving a nonlinear first-order partial differential equa-
tion, the FMM has shown high efficiency in dealing with
interface mechanics compared to other algorithms [23], [24],
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[25], [26]. The FMM has also found applications in diverse
research domains, encompassing materials science [27],
computer graphics [28], wave propagation [29], and image
processing [30]. Particularly, its application to path optimiza-
tion has a long history in various domains of applications,
ranging from marine vehicles to social navigation [31], [32],
[33], [34], [35]. Since the FMM is a numerical technique
for solving the propagation of interfaces (or waves), its
applications are determined by how the speed function for
interface propagation is defined. For instance, in the field
of image segmentation, the sign of the speed function flips
when the interface reaches an object, causing the interface
to propagate outward along the object’s boundary. On the
other hand, in path planning, a speed function based on
the distance to obstacles is often used to dampen the speed
of a vehicle as it approaches an obstacle, as detailed in
Section II-B. While the FMM can be applied across various
research fields, the assumption that the medium through
which interfaces propagate is homogeneous and isotropic
remains a challenging issue for specific applications. In the
following, we begin by summarizing the main ideas of the
FMM in its original context.

A. THE FAST MARCHING METHOD
First introduced in [36], the FMM is an efficient compu-
tational algorithm for tracking the front, or interface, that
evolves with the outward unit normal direction with speed V .
The explicit outcome of FMM is the arrival time T (x) that the
initial surface needs to reach every point x in the given domain
�. For example, Fig. 1 demonstrates the result of FMM used
to track an initial surface 0 (the innermost blue line) growing
with a uniform outward normal velocity V (x) = 1. Below,
we outline the FMM algorithm as described in [37].
Let s(t) describe a surface evolving at speed V (x) from

a given initial surface s(0) = 0. Instead of solving a
time-dependent problem for s(t) to track the moving surface,
the FMM solves a function T (x) defined as

T (s(t)) = t, (1)

with T = 0 on 0. Differentiating (1) and noting that ∇T is
normal to the surface, one arrives at the following boundary
value problem,

|∇T |V = 1. (2)

Also, the boundary condition for T equivalent to the original
time-dependent problem is

T = 0 on 0. (3)

Equation (2) is commonly referred to as the Eikonal equation.
Now, we describe the algorithm to solve (2) on a

two-dimensional discrete grid, i.e., x = (x, y). However,
it is worth noting that the algorithm can be conveniently
generalized to arbitrary dimensions. Let D−x

ij (·) denote the
standard backward-difference operation on the grid point ij

D−x
ij T =

Tij − T(i−1)j

δx
. (4)

FIGURE 1. The level sets of the solution to the Eikonal equation (2)
computed using the fast marching method, describe a surface evolving
with outward normal velocity V (x) = 1. The level set values are indicative
of the time it takes for the initial surface (represented by the innermost
blue line) to reach each grid point within the computational domain.

Likewise, we use D+x ,D−y, and D+y to represent forward
in x, backward and forward in y backward finite difference
operators, respectively. In order to ensure a unique viscosity
solution for the Eikonal equation (2), we necessitate the
consistent utilization of an upwind finite difference scheme
when computing the gradient. This step is compactly written
as

1
V (x)

=
[
(max(D−x

ij T , −D+xTij, 0)2

+ max(D−y
ij T , −D+yTij, 0)2

]1/2 (5)

When the neighboring values of Tij are known, the discrete
Eikonal equation (5) becomes a quadratic equation for Tij
at each grid point, allowing for straightforward analytical
solutions.

The FMM initiates by performing the following initializa-
tion step.

1) Assign T (x) = 0 for grid points in the area enclosed by
the initial surface, and tag them as accepted.

2) Assign T (x) = +∞ for the remaining grid points, and
tag them as far.

3) Among the accepted points, identify the points that are
in the neighborhood of points tagged as far, and tag
them as considered.

The key step in the fast marching method is to update
T with a trial value using Eq. (5) for grid points tagged as
considered, while only accepting the update with the smallest
value at each iteration. This procedure requires keeping track
of the smallest T -value among points tagged as considered.
The potential T values are managed in a specialized data
structure inspired by discrete network algorithms [38]. This
data structure is known as a min-heap data structure, which
represents a complete binary tree with a property that the
value at any given node is less than or equal to the values of
its children. Utilizing the min-heap, the FMM then proceeds
as follows.

VOLUME 12, 2024 122611
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1) Form a min-heap structure for the considered points.
2) Access the minimum value of the heap, located at the

root of the binary tree.
3) Determine a trial solution T̃ on the neighbors of the

root using (5). If the trial solution T̃ is smaller than the
present values, then update T (x) = T̃ .

4) If a point, previously tagged as far, is updated using
a trial value, relabel it as considered, and add it to the
heap structure.

5) Tag the root of the heap as accepted, and delete it from
the heap.

6) Repeat steps 2 to 5, until every grid point is tagged as
accepted.

In a min-heap, the time complexity for insertion and
deletion operations is O(log nHe ), where n

H
e is the number

of elements in the heap, and O(·) denotes Big O notation,
a limiting behavior of a function. The notation expresses
an upper bound on the execution time required by an
algorithm. The time complexity of the mean-heap arises from
its binary tree structure, which ensures that the height of the
tree is log nHe . Consequently, only a logarithmic number of
comparisons are needed for adding or removing elements,
enhancing the efficiency of these operations. In the FMM,
every grid point has a mean-heap structure, resulting in a time
complexity of O(n log n), where n is the total number of grid
points.

B. ADAPTATION OF THE FMM FOR PATH OPTIMIZATION
While the FMM is originally developed for interface
problems, numerous studies have also successfully applied
the FMM in vehicle path planning scenarios, enabling
agents to navigate complex environments, avoid obstacles,
and reach their destinations efficiently. These studies have
primarily focused on single-agent path planning under
various external conditions. These include time-varying
environmental factors, such as waves and currents in
oceans [18], time-varying environments with predictive mod-
els [19], angle guidance for uncrewed surface vehicles [39],
the anisotropic Fast Marching (FM)-based approaches for
dynamic obstacles [20] and bridge obstacles [21], as well
as path planning for autonomous ships [22]. In contrast, its
application in multi-agent systems remains relatively unex-
plored. A few examples include swarm coordination [40] and
formation control involving vehicles with different dynamic
properties [41].

In the context of path optimization, the computational
domain � of the FMM takes on a new perspective as the
configuration space for mobile agents, often depicted through
a binary occupancy map as illustrated in Fig. 2. The binary
image, which is in a size of n = n1 × n2 pixels, takes
the value of 0 if the position is occupied by obstacles, and
1 otherwise. Also, the initial surface 0 is reduced to a single
wave-source point x0, representing the initial location of
an agent. The velocity field V (x) signifies the permissible
speed of vehicles at a given position while considering the

FIGURE 2. An example of binary occupancy map. The binary image, which
is on 512 × 512 pixel size, takes the value of 0 if the position is occupied
by obstacles, and 1 otherwise.

FIGURE 3. Plots of velocity functions (6) as a function of normalized
distance d/dmax for different values of α. The vertical axis V ∗(= V /Vmax)
is a normalized velocity by the maximum speed. In general, a smaller
value of α results in a larger imposed safety distance.

proximity of obstacles (such as walls and barriers) to the
agents. As part of the FMM’s initialization step, every grid
point located on obstacles is initially labeled as accepted.
Next, the FMM algorithm is executed to compute the

shortest time T (x) for the propagating wave to arrive at each
grid point. The trajectory of the agent is finally determined by
extracting the maximum gradient direction of T (x) from the
target point to the initial point. Since T (x) is derived from the
target point, the resulting T -field uniquely exhibits a single
minimum at the target point, ensuring a unique solution [31].

A remaining task is to employ an appropriate model for the
velocity field V (x) that respects the environment. While one
might simply consider the simplest option, which is to use a
constant value Vmax representing the maximum speed of the
agents, it is observed that the resulting trajectory lacks realism
as it fails to ensure both smoothness and a safe distance
between agents and obstacles [31]. To address these issues,
the FMM has been advanced into the Fast Marching Square
(FMS) method. In order to guarantee a safe distance between
obstacles and agents, this approach introduces a penalty to
the agent’s velocity as it navigates in proximity to obstacles.
The FMS method entails the implementation of two distinct
FMMs.
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FIGURE 4. Comparison of velocity maps generated from the different
velocity forms shown in Fig. 3. Sharper increase of V ∗ to value 1 results in
a larger safety distance.

The objective of the first FMM is to construct a velocity
grid map that takes into account the presence of obstacles.
This objective is achieved by evolving initial surfaces, which
represent the boundaries of obstacles in the environment, with
a constant velocity V (x) = 1. The outcome of this process
is the computation of the distance d(x) = T (x) ∈ R+ at
each grid point, indicating the shortest distance to the nearest
obstacle. Consequently, a velocity grid map V is computed as
a function of d , which is artificially designed to penalize the
vehicle’s speed as it approaches obstacles. A common choice
for this penalizing function is a linear relationship V ∝ d ,
which is inspired by a two-dimensional repulsive electrostatic
potential [42].

Alternatively, one may also consider

V (d(x)) = Vmax

[
1 − exp

(
−α

(
d

dmax

))]
, (6)

where dmax is the maximum distance in the configuration
space and Vmax is the maximum speed of the agent at
free space, respectively. Note that the form (6) includes a
dimensionless free parameter α that indirectly governs the
safety distance. Fig. 3 shows the plots of the velocity function
profiles at several values of α. The corresponding velocity
maps for those α values in Fig. 3 are shown in Fig. 4
to visualize the impact of α values on the collision safety
distance. The velocity map created from the binary map
(Fig. 2), using the form (6) with α = 3, is shown in Fig. 5.
Next, the second FMM is executed from the initial position

x0 of the agent (or vehicle) to compute the time grid
map T (x), respecting the environmental constraints through
V (x). Finally, the path is obtained again by applying the
gradient descent algorithm to T (x) and the resulting path
for the example case shown in Fig. 6. The strength of the
FMM-based method lies in its unparalleled computational

FIGURE 5. Velocity map created using the form (6) with α = 3. The velocity
values V ∗ are normalized with the maximum speed of agent Vmax.

FIGURE 6. The optimized path after applying the gradient descent
algorithm is plotted on the time grid. The white circle denotes the start
point, while the square indicates the endpoint.

speed when dealing with specific types of optimization
problems. For instance, to provide a more intuitive grasp
of the computational efficiency inherent in FMM-based
methods, we delve into some practical specifics. The process
of extracting a path from a grid of size 107 typically
demands only a matter of seconds when employing a
single-core machine. To put this into a simpler perspective,
it is comparable to handling a two-dimensional pixel
image measuring 4000 × 4000 in dimensions. It is also
noteworthy that the application of the FMM across multiple
iterations does not burden the optimization process with any
substantial computational time constraints. The efficiency of
the FMM-based method inspires the development of a new
framework for various scenarios of modern operations of
uncrewed vehicles in the subsequent section.

III. FMM-BASED RENDEZVOUS PATH PLANNING FOR A
TEAM OF HETEROGENEOUS VEHICLES
The goal of this section is to introduce an innovative approach
to leveraging the FMM-based method within the multi-
agent path planning domain. In particular, we propose an
FMM-based rendezvous path planning algorithm designed
for a diverse team of vehicles. The team is tasked with
efficiently converging at a single location, aiming for optimal
efficiency in pursuit of a general goal.
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A. PROBLEM STATEMENT
This paper considers the problem of finding paths for N (≥ 2)
heterogeneous vehicles in a team, which are tasked with
rendezvousing within minimal time. The region of interest
� is assumed to be represented by an occupancy grid map,
where each pixel is either free Cfree or occupied �\Cfree.
According to [43], a path is viewed as a continuous function
τ : [0, 1] → Cfree, in which each point along the path is
given by τ (s) for some s ∈ [0, 1]. Here, τ (0) corresponds
to the starting point of the agent whereas τ (1) denotes the
target point. Although the orientation of each vehicle is not
considered in this work, it is also feasible to incorporate their
orientations using the existing methodology [39].

We assume that the starting position τ i(0) of each vehicle
in the team is given. Note that we introduced the index i =

1, . . . ,N to denote each vehicle. Then, the rendezvous path
planning for the team is divided into two sub-problem. The
first problem is to determine the optimal rendezvous point
xm such that

xm = arg min
x∈Cfree

F(x), (7)

where F is a general cost function. The second sub-problem
is to determine the optimal path τ i from the initial point τ i(0)
of each agent to the optimal point τ i(1) = xm.
From now on, for the purpose of illustration, we fix the

optimizing function F as the meeting time. In rendezvous
tasks, this function corresponds to the arrival time of last
agent, which is written as

F(x) = max
[
T 1(x),T 2(x), . . . ,TN (x)

]
. (8)

where T i(x) denotes the arrival time for all x ∈ Cfree, which
will be also referred to as a time grid from now on.

B. THE ALGORITHM
Now, we describe our approach to the aforementioned
rendezvous path planning problem. Considering the different
initial positions of each agent, a single implementation of the
FMSmethod yields T i(x) for all points in�. During this step,
one can consider the arrival time T i(x) of each agent can be
determined considering the different velocities and the safe
distances imposed by environments. Once the arrival time
maps for all agents are prepared, the time-optimal meeting
point xm, which minimizes the costF(x) can be conveniently
determined by

xm = arg min
x∈Cfree

(
max

[
(T 1(x),T 2(x), . . . ,TN (x)

] )
(9)

The rest of this section provides the implementation details
of the presented approach using an example of rendezvous
planning for three agents, which are initially located at three
different corners of a given binary occupancy map previously
shown in Fig. 2. The initial positions are shown in Fig. 7a,
Fig. 7b, and Fig. 7c. For simplicity, we assume that the
vehicles are identical, which means that the vehicles travel

FIGURE 7. (a-c) The normalized arrival time T ∗ maps for three agents
located at different initial points. (d) The optimized path drawn on F(x)
as defined in the form (8).

with the same dynamics and at the same and constant speed.
Specifically, α = 3 and Vmax = 1 are used in the example.

The algorithm first begins by following the standard step
of the FMS method to measure the distance d ∈ R+ to the
nearest obstacles at every point in the grid. The first FMM
runs from the initial surfaces of obstacles to fill in d-values
on every non-occupied point in Cfree ⊂ �, using the uniform
velocityV (x) = 1. Next, we generate a velocitymapV i(x) for
each agent i ∈ {1, 2, . . . ,N } using the velocity function (6).
Each agent may have a different value of safety parameter α

and the maximum allowable speed Vmax. The velocity map
for the binary occupancy map using the form is shown in
Fig. 5.
Then, we run the second FMMmultiple times starting from

each initial position of the agent xi0, which corresponds to
τ i(0). This second round of FMM computation is executed
to propagate a source wave point located at the target
point until the arrival time T value at the initial point is
determined. At each iteration, we obtain the arrival time
map T i(x) for each agent. Once the iterations of the second
FMM are complete, the optimal point xm can be determined
directly from the form (9). The result of the term in (9),
max

[
(T 1(x), . . . ,TN (x)

]
, is shown with a color map in

Fig. 7d.
Lastly, the optimized path τ i for each agent to the

rendezvous point is determined by applying the gradient
descent algorithms to the time grid T i(x). This trajectory
optimization step is inferred from the maximum gradient
direction of T (x). The final outcome of the FMS method
is the optimized continuous path τ , a collection of point in
� that guides trajectory of agents as shown in Fig. 6. The
procedure is summarized in Algorithm 1. The corresponding
flowchart is shown in Fig. 8, which visualizes the two-step
FMM procedure more clearly. There are various repositories
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FIGURE 8. Flow chart for Algorithm 1, the FMM-based path optimization for multi-agent rendezvous tasks. The algorithm consists of
two FMMs. The objective of the first FMM is to construct a velocity grid map that takes into account the presence of obstacles, while
the second FMM computes the time grid map T (x), respecting the environmental constraints through V (x).

that can be used to implement Algorithm 1 in various
programming languages. In our study, the code is developed
using a GitHub library source [44], which is written in C++

and relies on Boost libraries [45].

C. ALGORITHM EFFICIENCY AND ADAPTABILITY
In this section, we test the performance of the suggested
algorithm under various conditions. This section includes
scalability tests in terms of the number of grids (pixels)
and the number of agents in the system. In addition,
we demonstrate the additional potential of the present
algorithm, which can adapt the path on the fly to reflect

environmental changes. All performance tests in this section
were carried out on a single 1.6 GHz core with 8 GB of RAM,
and we recorded the wall-clock time required to complete one
full time step for the two methods.

First, to measure the performance of the algorithm,
we conducted the same task (i.e., the rendezvous mission
of three agents demonstrated in Fig. 7), but with different
grid sizes. Note that although we did not alter the shape
of the map during this test, the increase in the number
of grids reflects the size of the environment that can be
accessed while maintaining the same resolution. The result
is summarized in the format of a log-log scale plot in
Fig. 9. At the highest grid numbers (40962 = 16, 777, 216),
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Algorithm 1 FMM-Based Algorithm of Path Optimization
for Multi-Agent Rendezvous Tasks
Input: A binary occupancy map � = Cfree ∪ Ccfree, a cost

function F(x), positions of obstacles xobs and initial
points of total N agents τ i(0) ∈ �

Output: The best point xm ∈ Cfree that optimize the cost F ,
and the optimized path τ i for each agent

1: Execute the fast marchingmethod from ∂Ccfree to compute
the minimum distance d(x) from obstacles.

2: for i = 1 to N do
3: Calculate the maximum velocity field V i(x) using

d(x).
4: Execute the fast marching method from xi0 to compute

T i(x).
5: end for
6: Determine the optimizing point xm that minimizes F(x).
7: for i = 1 to N do
8: Use the maximum gradient descent algorithm to

determine the path τ i from xio to xm.
9: end for

FIGURE 9. Computational time measured at different grid sizes.

the actual time it takes is approximately 285 s. While the
theoretical (and conservative) computational complexity is
O(n log n), in practice we achieve a better scale, approaching
O(n), which appears as a line with slope 1 in the log-log
scale plot. The results suggest that the current method can
be readily extended to accommodate a larger environment.

Next, we also examine how the number of participating
agents in the rendezvous task affects the computational time.
For example, Fig. 10a demonstrates the rendezvous point and
path of each agent for a team consisting of 8 agents. While
the resulting path planning for all 8 agents seems non-trivial,
the increase in the number of agents does not significantly
complicate our framework, and the computational time
increases only linearly with the number of agents, O(N ),
as illustrated in Fig. 10b.Moreover, because the computations
for each agent are independent, the algorithm can be readily
parallelized for further speedup.

Before concluding this section, we briefly show an
additional adaptability of the proposed framework for online

FIGURE 10. Scalability test results on the number of agents.

path planning, leveraging the marginal computation cost
(approximately 3 seconds on a 512 × 512-sized regular
grid). Specifically, we consider a case where the positions
of obstacles and target points are changing over time. Here,
we will limit our discussion to cases where the time scale
of agents traveling in the domain is much larger than that
of the target and environmental changes. In the following,
we assume that the positions of agents and moving obstacles
are tracked by a system at every time interval δt .

For demonstration, consider an initial path planning using
the FMM approach illustrated in Fig. 11a. The initial
positions of the agent and target are denoted by the red circle
and yellow square, while the black cross markers represent
the positions of moving obstacles. After a time interval of
δt , we assume that when the agent arrives at the green
circle, the target has moved to the green square. If such
environmental changes are recorded, a new FMM-based path
planning algorithm, resulting in Fig. 11b, is implemented to
reflect the new positions of the target and obstacles. Fig. 11c
illustrates an additional path planning for the third time
interval, spanning from 2δt until the goal position is reached.
Fig. 11d summarizes the sequence of path planning occurring
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FIGURE 11. An example of semi-discretized online path planning using the FMM method. (a) The initial path planning at the first time interval
[t0, t1]. The red circle and yellow square denote the initial positions of the agent and target point respectively. When the positions of the target and
obstacles (black cross points) are updated after δt = 200 [s], a new path is generated. (b) and (c) demonstrate path planning for the second and third
time interval [t1, t2] and [t2, t3]. (d) Summary the sequence of path planning occurring over three time intervals. In this example, t0 = 0, t1 = δt ,
t2 = 2δt , and t3 = ∞ are used.

over three time intervals. The results show that online path
planning, which respects environmental variations, can be
addressed in a semi-discretized manner due to the extreme
computational efficiency of the FMM-based method.

Finally, we note that the present approach did not explicitly
consider coordination and communication, assuming that
the problem’s scale was large enough to focus solely on
finding the rendezvous point and paths. Specifically, agents’
coordination can be considered in detail by extending the
implementation to treat other agents as obstacles during the
planning stage, as illustrated in Fig. 11. Communication was
assumed to be available throughout the operation, meaning
synchronous rendezvous is considered. The method can be
implemented in either a centralized or decentralized manner.
On the other hand, we admit that the approach would fail
to find the time-optimal rendezvous path if each agent does
not recognize the location of other moving agents. Such a
situation may occur with only asynchronous communication
or, worse, when communication is completely unavailable.
If this is the case, we expect that approximated locations
(e.g., via dead reckoning) might be utilized to determine the
rendezvous point and paths.

D. BASELINE COMPARISON
The current approach is compared with a baseline algorithm
for evaluation. To the best of our knowledge, as described
in detail in Section I, existing algorithms cannot be directly
applied to the problem considered in this paper. Specifically,
scheduling algorithms primarily focus on determining the
sequence of heterogeneous agents, rendezvous search algo-
rithms concentrate on identifying the rendezvous position
under limited communication, and multi-agent path finding
algorithms are chiefly concerned with collision avoidance
among agents. Therefore, we construct a baseline algorithm
by combining two methods from different objectives: the
weighted centroid point [46] for determining the rendezvous
point and the optimal rapidly-exploring random tree (RRT*)
[47] for path planning. The inverse of each agent’s velocity is
used as a weight for the centroid calculation, while the RRT*
is implemented using the Open Motion Planning Library
(OMPL) [48] for C++ implementation. The computational
complexity of the baseline method is also comparable to the
present scheme: the RRT* algorithm has a computational
complexity of O(K logK), where K is the number of nodes
in the tree.
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FIGURE 12. Comparison of the presented FMM-based rendezvous path planning method to a baseline method consisting of a weighted
centroid method to find the rendezvous point (RDV Point) and the RRT* algorithm (for pathfinding).

Fig. 12 illustrates the comparative analysis between the
baseline method and the current FMM-based path planning
approach using the same example problem considered in
Fig. 7. The rendezvous point and agents’ paths computed by
the baseline method are shown in Fig. 12 (a), where it takes
574.29 seconds for all agents to reach the rendezvous. The
corresponding results from the FMM method are shown in
Fig. 12 (b), where it takes 626.27 second for all the agents to
reach the rendezvous point.

At first glance, the advantage of our approach may not
seem clear compared to the baseline method. However,
several points must be considered. First, the RRT* algorithm
does not employ any path smoothing operations, so the
constructed path may not be convenient depending on the
vehicle’s kinematics, whereas the FMM path is smooth.
Second, the weighted centroid method (for determining the
rendezvous point in the baseline approach) does not guarantee
that the rendezvous point xcpm remains within Cfree. Lastly,
if domain � is more complex, resembling a maze, the
optimality of the rendezvous point suggested by the weighted
centroid method becomes more questionable.

IV. NUMERICAL EXPERIMENT
In this section, we conduct a numerical experiment to
showcase an application of the suggested method in more
realistic cases. We consider a virtual scenario of a rendezvous
task for a team of heterogeneous vehicles. The experimental
setting is as follows.

A. EXPERIMENTAL SETUP
First, we create a computational domain to simulate a
realistic environment. The Tampa Bay area is chosen as our
test domain. We use a satellite image from NASA’s Earth
Observatory (as shown in Fig. 13a).2 Then, the GRIP tool
(Graphically Represented Image Processing engine) [49]

2https://earthobservatory.nasa.gov/images/4745/tampa-bay-florida

is employed to convert the satellite image into a binary
configuration space map. The primary objective of image
processing at this stage is to distinguish water bodies and land
areas, as illustrated by white and black pixels, respectively in
Fig. 13b.
Next, we build a team of heterogeneous agents, consisting

of four types of vehicles: an uncrewed underwater vehicle
(UUV), an uncrewed surface vehicle (USV), an uncrewed
ground vehicle (UGV), and an uncrewed aerial vehicle
(UAV). The UUV operates exclusively underwater but is
limited by operational depth constraints. Consequently, UUV
operations are required to take place at a considerable
distance from the shoreline. On the other hand, the USV
is designed for slower mobility, but it has the capability to
navigate areas closer to the coastline. In contrast, the UGV’s
operational domain is limited to land. Lastly, the UAV, being
an aerial platform, is assumed to move at a constant speed
without encountering any obstacles.

Operational constraints for the aforementioned heteroge-
neous agents are addressed using their respective velocity
maps, V i(x). The primary tools are the magnitude of the
penalty parameter α in (6) and mirroring of the binary image.
To begin with, it is reasonable to impose a higher penalty
to the operating velocity of UUV in the proximity to land,
since UUV is required to operate at a far distance from the
shoreline. Thus, we set the penalty parameter to αuuv =

100, while the values of αusv, αugv are set to 3. Moreover,
in order to address the specific land travel limitation of the
UGV, the operation domain of the UGV is obtained by the
mirroring of the binary operational domain of ocean vehicles
(i.e. USV, UUV), the result of which is shown in Fig. 13c.
For UAVs traveling above both water and land, their domain
is considered as free space without obstacles.

The remaining parameters are the maximum operational
speed V imax of each vehicle. In actual applications, these
parameters should reflect the actual performances of agents.
In this virtual test, we assume the following scenario to
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FIGURE 13. (a) Satellite image of Tampa Bay, FL. (downloaded from NASA
Earth Observatory) (b) Processed binary image from Fig. 13a for the USV
and UUV; (c) Processed binary image for UGV, which is an inverse of
Fig. 13b.

demonstrate the full potential of the present approach. First,
the maximum operational speed of UGV is assumed to
be the slowest among all agents, considering cases where
UGVs need to move as a group or encounter additional

environmental restrictions (such as traffic or changes in
topography). Then, we normalize the velocities of the
vehicles using themaximum speed of UGV, and thus wewrite
Vugvmax = 1. The maximum speeds of USV and UUV are set to
the same value Vuuvmax = Vusvmax = 2, and the UAV is assumed
to have the highest navigation speed and set to Vuavmax = 3.
With the prescribed setting, we apply Algorithm 1 to solve
the optimization problem of rendezvous path planning.

B. RESULTS
We execute the first FMM (of the FMS) for each vehicle from
arbitrarily selected initial points, as seen by the red dots in
Fig. 14a to Fig. 14d. The computed time grid T i(x) for each
vehicle is also visualized in the same plots. One distinguished
case is Fig. 14d which shows unimpeded paths for the UAV
throughout the environment.

Next, we describe an additional procedure that is not stated
in Algorithm 1, but is required for the present problem,
wherein the UGV operates on the complementary domain of
the UUV and USV. Note that candidates for the rendezvous
point are located on the shoreline, which belongs to the
obstacles (i.e. �\Cfree) in the first FMM for any agent.
To address this issue, we extend the time grid T i(x) to the
edges of obstacles. Grid cells on the edge of binary images
(Fig. 13b and Fig. 13c) are first detected using MATLAB’s
‘‘edge’’ function, and the T i(x) on edges are inferred from
the minimum time value among the adjacent grid points.
Fig. 15 illustrates this procedure. This process results in a
subset of the shoreline emerging as the candidate for the
rendezvous point as seen in Fig. 16. Then, in the same
figure, the black dot, which represents the optimal rendezvous
point where all vehicles can converge in the minimum time,
is determined by the form (9).

We also note here that we still need to compute the full
arrival time map in Cfree. The reason is because the ultimate
outcome of the present algorithm is not only to determine
the rendezvous point but also to optimize the path for each
agent. The latter necessitates computing arrival times for
every grid point between the initial point and the rendezvous
point.

Overall, the results show that the resulting paths in
Fig. 17 align well with the assumed operational con-
straints of the member vehicles, offering realistic planning
outcomes. While the paths include overlaps between the
USV and UGV, path conflicts are not an issue in the test
scenario because the agents operate in distinct domains;
they would not collide even if their paths overlap at the
same time.

Next, the algorithm computes a path for each vehicle using
the gradient descent method. Fig. 18a illustrates the UUV’s
trajectory, characterized by significant turns to remain within
its operational range, attributable to the low alpha value.
In contrast, Fig. 18b exemplifies the USV’s efficiency in
navigating between islands. The UGV’s path in Fig. 18c
remains confined to land, adhering to its intended operational
domain. Lastly, the paths for all vehicles are summarized
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FIGURE 14. The arrival time grids T i (x) of the (a) UUV, (b) USV, (c) UGV, and (d) UAV. The red dot in each plot denote the initial position of the vehicle.

FIGURE 15. An illustration that outlines procedures for extending the
time grid to accommodate situations where vehicles operate in
non-intersecting domains, specifically the UUV/USV and UGV.

FIGURE 16. An extended time grid defined on shoreline to compute the
rendezvous point xop, following the form (9).

in Fig. 17, which also includes the simplest UAV’s path
unhindered by obstacles due to its aerial capabilities.

V. DISCUSSION
In this section, we highlight the merits of our methodology
in various perspective and analyze the limitations. First, the
numerical experiment presented in Section IV demonstrates
how the proposed path planning method can be applied
to real-world situations that demand rapid and coordinated
action across various domains. For example, in disaster
response scenarios, the method efficiently coordinates rescue

FIGURE 17. Path planning results plotted over the original satellite
image. Circles denote starting points of vehicles, and the triangle denotes
the computed optimal rendezvous point from the presented algorithm.

teams composed of diverse vehicles, ensuring rapid assembly
at critical locations to save lives and deliver aid. Environmen-
tal monitoring can benefit from this algorithm by synchroniz-
ing different types of sensors to converge on pollution sources
or wildlife areas, facilitating comprehensive data collection.
In military operations, the algorithm enhances the strategic
coordination of diverse units, allowing for swift assembly and
execution of missions with heightened precision and safety.

The authors are aware that constructing collision-free
paths for agents is one of the most critical aspects of
MAPF, even though our test scenario was free of such
conflicts. However, even if agents share the same operational
domain, our framework makes it easy to check whether
overlapping paths will lead to collisions. This is because
we have explicit information of each vehicle’s arrival time
at overlapping points; path conflicts occurring at different
times do not result in collisions between agents. This is useful
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FIGURE 18. The paths planned for the (a) UUV, (b) USV, (c) UGV, shown over the each time grids Fig. 14.

information for extending the current framework to achieve
truly collision-free path planning.

We re-emphasize that the main contribution of the present
work is the formulation of the multi-agent rendezvous prob-
lem in the form of (8). While Algorithm 1 is straightforward
under this formulation, a potential improvement can be found
in the design of the velocity function (6) to consider more
detailed and realistic operational constraints of various types
of vehicles.

The main advantage of our approach is that the process is
deterministic, implying that the resulting paths are guaranteed
to be the globally optimized solution. In addition, the
computational cost for determining paths of all agents is only
proportional to the number of agents N . Therefore, at least
for the rendezvous task as defined in (8), we claim that
our approach outperforms heuristic, stochastic, and machine
learning-based methods in terms of providing a unique
solution and scalability.

Although optimization for energy efficiency is not within
the scope of this work, we expect that it can be considered,
at least in a limited sense, by modeling the velocity field to
incorporate physical conditions. For example, a drone’s most
energy-efficient path can vary depending on wind conditions,
while a UUV’smost energy-efficient path can vary depending
on ocean currents. Such environmental conditions can be
modeled into the operating velocity grid by adding the
adverse effect of the ocean current or wind. However, such
approach is still restricted to the shortest path corresponds
to the most efficient path, since the FMM-based method
is inherently grounded on a minimum-time path finding
problem. Therefore, a new formulation would be necessary
to determine the most energy-efficient path. Developing
such a formulation and methodology require to include
vehicle dynamics and control inputs as important constraints.
This related but distinct problem formulation and solution
approach will mark a significant advancement in FMM-based
path planning algorithms.

VI. CONCLUSION
Recent rapid advancements in uncrewed vehicle technol-
ogy have significantly improved accessibility and cost-
effectiveness, leading to their widespread integration across
various domains, including ground, water, and air. As systems
with uncrewed vehicles become ubiquitous, the demand for
sophisticated navigation methodologies that can efficiently
guide their interactions also becomes paramount. In this
regard, the present work introduces a new approach to path
planning for multi-agent systems. Our method is rooted in the
well-established framework of the FMM. The methodology
presented in this paper leverages the capabilities of the FMM
to efficiently optimize trajectories for heterogeneous teams of
agents, augmenting their operational efficiency and collective
synergy.

To illustrate our approach, we consider an example path
planning scenario involving four different types of uncrewed
vehicles navigating around the Tampa Bay area. The results
of the virtual experiment have demonstrated how the path
planning task of a multi-agent system can benefit from the
effectiveness of the FMM-based method, which conveniently
incorporates the individual operational characteristics of the
heterogeneous vehicles. The computational efficiency and
flexibility of our approach open the door to various directions
for future work.

• The optimization function F can also be extended
to incorporate various scenarios of rendezvous tasks
beyond minimal time. For example, we plan to include
different operational costs for heterogeneous vehicles to
maximize the economic efficiency of rendezvous tasks.

• The proposed framework can be extended to path
planning in the presence of dynamic obstacles. This
generalization will allow the algorithm to consider the
collision between different agents. The future work
will investigate how the fast marching method can be
modified in order to efficiently incorporate moving
objects or other moving agents in the computation.
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• Finally, we also envision extending our framework to
different purposes of path planning for heterogeneous
agents beyond rendezvous missions. This extension
could involve group search optimization and assignment
tasks.
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