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ABSTRACT Target detection via remote sensing is extensively utilized across diverse domains because of
its inherent potential value in applications. However, most objects within remote sensing images consist of
multi-scale and dense small objects, observed from diverse angles against complex backgrounds, resulting
in insufficient detection performance. To enhance the detection accuracy and robustness in detecting multi-
scale objects, we present the YOLO-GE algorithm based on you only look once (YOLO). We introduce the
ghost convolution hierarchical graph (G-HG) block that combines ghost convolutions and the cross-stage
partial (CSP) strategy. This enhancement can efficiently utilize redundant feature maps, broaden the
receptive field, and accurately extract multi-scale objects and advanced semantic features in complex back-
grounds. By incorporating the G-HG block, we establish the ghost-convolution enhanced hierarchical graph
(GE-HGNet) feature extraction backbone, thereby enhancing its ability to capture multi-scale object features
and advanced semantic information. Additionally, we develop the E-SimAM attention mechanism using
residual techniques to address the low-resolution feature loss limitation, thereby enhancing the precision in
identifying low-resolution features against intricate backgrounds. Furthermore, to improve the capability of
detecting densely packed small objects, we reconstruct the structure of the neck and add a tiny detection head.
This additional tiny detection head is specifically designed to better focus on densely packed small targets,
fully leveraging the fine-grained information in shallow feature maps. Extensive experiments conducted on
the DIOR, NWPU VHR-10, and VisDrone2019 datasets demonstrate the effectiveness and robustness of
our YOLO-GE algorithm. Notably, compared to the state-of-the-art algorithm, our YOLO-GE-n achieves
improvements of 20.1% and 22.2% in mAP0.5 and mAP0.5:0.95 respectively on the VisDrone2019 dataset.

INDEX TERMS YOLO, multi-scale target detection, remote sensing image, attention mechanism.

I. INTRODUCTION
As satellite techniques and object detection methodologies
progressively evolve, remote sensing target detection plays
a pivotal role in various fields, particularly in applications
involving traffic management [1], military monitoring [2],
and marine resource management [3]. Its primary objectives
in remote sensing images involve automatically identifying
and localizing specific targets within images acquired by
satellites, aircraft, or spacecraft. These targets can range from
buildings, vehicles, water bodies, etc. Nevertheless, due to

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

the diverse shooting angles and high distances within remote
sensing images, detecting objects within such images is quite
different from traditional target detection in general datasets,
such as ImageNet [4], Pascal VOC [5], etc. There are a
considerable number of small objects within remote sens-
ing images, including some that are particularly small (less
than 10 pixels), as well as instances of high-density clusters.
Moreover, the targets vary in scale and the backgrounds are
complex in various scenarios, with certain images possibly
containing multiple categories of objects or backgrounds at
various scales simultaneously [6]. For example, buildings
and airplanes often differ significantly in scale from vehicles
within remote sensing images. Therefore, it is challenging
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to extract features of low-resolution and dense small objects,
which can seriously hinder further improvements in detection
accuracy [7].

Wang et al. [8] proposed the full-scale object detection net-
work (FSoD-Net) to address the issue of scale and category
variance of multiple objects. They presented the multi-scale
enhancement network (MSE-Net) backbone integrating a
Laplace kernel with fewer parallel multiscale convolution
layers to enhance tiny object feature extraction. By designing
regression layers that cater to a large-scale span, FSoD-Net
effectively covers the full range of object sizes found in
optical remote sensing imagery. This addresses the challenges
posed by the varied scales of objects within large-view-
scale scenes. Yu and Ji [9] introduced the spatial-oriented
object detector, which considers the unique spatial proper-
ties and scales. This approach proposed the scale-attention
boosted CNN heatmaps and deformable convolutions to
capture multi-scale objects. Peng et al. [10] adopted the
coordinate attention (CA) mechanism and the bidirectional
feature pyramid network (BiFPN) by improving multi-scale
feature fusion to capture the direction and location-aware
information across channels.

Although thesemethods have been validated and applied in
practical scenarios, they often contain complex feature fusion
mechanisms while yielding only modest improvements in
terms of detection accuracy. In addition, they usually over-
look the fine-grained information in shallow feature maps.
In order to address these issues, we developed YOLO-GE,
a more accurate and robust algorithm for multi-scale target
detection within remote sensing images. Firstly, We intro-
duce the G-HG block that combines ghost convolutions and
the CSP strategy. This enhancement can efficiently utilize
redundant feature maps, broaden the receptive field, and
accurately extract multi-scale objects and advanced seman-
tic features in complex backgrounds. By incorporating the
G-HG block, we establish the GE-HGNet feature extraction
backbone, thereby enhancing its ability to capture multi-scale
object features and advanced semantic information. Addi-
tionally, we develop the E-SimAM attention mechanism
using residual techniques to address the low-resolution fea-
ture loss limitation, thereby enhancing the precision in
identifying low-resolution features against intricate back-
grounds. Finally, in order to improve the capability of
detecting densely packed small objects, we reconstruct the
structure of the neck and add a tiny detection head. This
additional tiny detection head is specifically designed to
better focus on densely packed small targets, fully leverag-
ing the fine-grained information in shallow feature maps.
By organically integrating these enhancements, our proposed
YOLO-GE further enhances the extraction and integration
mechanism for multi-scale feature information. The main
contributions of this article are summarized as follows:

(1) We proposed a novel G-HG block and an improved
feature extraction backbone GE-HGNet based on ghost con-
volution and PP-HGNetv2. The GE-HGNet backbone based

on the G-HG block can efficiently utilize redundant feature
maps, broaden the receptive field, and accurately extract
multi-scale objects and advanced semantic features in com-
plex backgrounds.

(2) In response to the limitation of the SimAM atten-
tion mechanism, especially in dealing with low-resolution
and multi-scale objects, we improved the SimAM attention
mechanism and introduced an enhanced version named the
E-SimAM attention mechanism. This approach enhances the
most representative information while minimizing the loss
of details from lower resolution or weaker characteristics,
significantly improving its capability to detect multi-scale
objects and accurately localize targets.

(3) To improve the capability of detecting densely packed
small objects, we reconstructed the structure of the neck and
detection head. By employing this strategy, the FPN+PAN
network can capture and retain more intricate features of
smaller target objects, while the added small detection heads
can fully utilize these features, consequently enhancing the
model’s capability to recognize small objects from low-
resolution images.

The rest of this study is organized as follows. Section II
provides a review of CNN-based object detection. Section III
details the improvements of our proposed YOLO-GE
algorithm. Section IV describes the experimental datasets,
accompanied by extensive experiments to evaluate the effi-
cacy of our proposed enhancements and the performance
of YOLO-GE. The discussion is presented in section V.
Section VI summarizes the research conducted in this study.

II. RELATED WORKS
CNN-based object detection plays a crucial role in com-
puter vision, focusing on recognizing and positioning objects
in images or video sequences. This technique has gained
immense importance across numerous fields, including
surveillance systems, robotics, autonomous vehicles, etc.
There are primarily two categories of CNN-based object
detection: two-stage and one-stage methods.

The two-stage method divides the process of detecting
objects into two distinct phases: initially, a region proposal
network suggests a series of potential boxes that may contain
the target objects; subsequently, these proposed boxes are
subjected to classification and localization to recognize and
precisely locate the detected targets. The two-stage methods
primarily encompass R-CNN [11], Fast R-CNN [12], Faster
R-CNN [13], and Cascade R-CNN [14], among others. Due
to the necessity of generating candidate regions before con-
ducting object detection, thesemethods exhibit high detection
accuracy but are less suitable for real-time scenarios.

However, in the one-stage approach, category probabilities
and bounding box coordinates are directly regressed without
the necessity of generating candidate regions, resulting in
faster detection speeds albeit with a potential loss in accu-
racy. The one-stage approaches mainly consist of the YOLO
series algorithms [15], [16], [17], [18], [19], [20], [21], [22],
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[23], SSD [24], RetinaNet [25], etc. In 2016, Redmon et al.
[15] introduced the YOLO algorithm, which utilizes a single
network to directly predict position frames and category prob-
abilities across the entire image. It employs the same fully
connected layer for classification and regression, leading
to coarse object localization and suboptimal detection per-
formance for small objects. In addressing these challenges,
numerous researchers have conducted extensive studies, lead-
ing to the emergence of YOLOv2 [16] to YOLOv8 [22]
algorithms. Through their persistent efforts, the YOLO series
algorithms have been continuously improved, achieving a
remarkable balance between speed and precision.

YOLOv8 [22] is the latest state-of-the-art (SOTA) model
proposed by Ultralytics, which is an improvement over
YOLOv5. Compared to YOLOv5, YOLOv8 utilizes the
C2f structure with enhanced gradient flow, replacing all
C3 structures within the backbone and neck. Additionally,
it substitutes the coupled head with the prevalent decoupled
head framework, distinguishing between the classification
and detection heads. Furthermore, YOLOv8 transitions from
anchor-based to anchor-free methodology, aligning ground
truth and predicted boxes through an assigner. Based on
the number of network channels and parameters, YOLOv8
can be categorized into five types: n, s, m, l, and x. Due
to its advantages in accuracy and complex model structure,
YOLOv8 is more suitable for scenarios that require higher
detection accuracy.

Despite achieving excellent results on general datasets, the
YOLO series approaches for detecting objects still encounter
obstacles when utilized in remote sensing imagery, includ-
ing the detection of multi-scale objects, handling complex
backgrounds across diverse scenes, and fulfilling the require-
ments for applications in real-time surveillance. In order to
address these limitations, more recent attention has focused
on enhancing the precision in identifying small objects based
on the YOLO series algorithms. Zakria et al. [26] introduced
the classification setting of the non-maximum suppres-
sion threshold and K-means anchor frame scheme based
on YOLOV4 to improve detection performance. However,
these hyperparameters are fixed and not suitable for arbi-
trary datasets. When handling datasets with significant scale
variations and densely packed small objects, these hyperpa-
rameters must be set empirically. Liu et al. [27] presented the
YOLO-extract approach inspired by YOLOv5, by employing
residual concepts to boost the capacity for extracting features,
which incorporated the coordinate attention mechanism and
mixed dilated convolution into the model. To accelerate the
convergence of the model, Focal-α EIoU was introduced to
replace CIoU loss. However, to improve the detection of
small and densely packed objects, the algorithm introduces
an additional detection head specifically for tiny objects.
Nevertheless, it removes two detection heads for medium
and large objects, which impairs the ability to capture
high-level semantic information and consequently reduces
detection performance for medium and large-scale objects.
Lin et al. [28] developed the YOLO-DA approach inspired

by YOLOv5, which strikes a balance between precision and
speed by incorporating an attention module and a streamlined
decoupled detection head featuring a CBAM module. Xie
et al. [29] introduced the Partial Hybrid Dilated Convolution
(PHDC) blocks and the CSP strategy to propose a lightweight
detection algorithm CSPPartial-YOLO for Remote Sensing
Images. This approach effectively utilizes redundant fea-
ture maps and reduces the model’s parameter count, while
also enlarging the receptive field to detect objects against
complex backgrounds. Although YOLO-DA and CSPPartial-
YOLO have improved the detection efficiency for remote
sensing objects, the enhancements in detection accuracy are
not significant. Liu et al. [30] introduced an improved model
based on YOLOv8, named YOLO-SSP. This model enhances
its detection accuracy by refining the downsampling layers
to capture finer details and employing hierarchical pooling
operations to derive weights from various spatial locations.
Several attempts have been made to enhance the precision
of detecting multi-scale objects, but effectively detecting
densely packed small targets within remote sensing imagery
remains a notable challenge despite multiple attempts.

III. METHOD
The comprehensive architecture of our YOLO-GE algorithm
is depicted in Figure 1. The GE-HGNet backbone is primarily
composed of HGStem [31], ConvModule, SPPF, and the
newly proposed G-HG block. The G-HG block is a novel
GhostConv-based module, specifically crafted to substitute
C2f for extracting features. The neck utilizes upsampling,
C2f, ConvModule, and the E-SimAM for feature fusion.
The E-SimAM is a newly enhanced attention mechanism
designed to address the constraints inherent in the SimAM
approach. Additionally, we reconstruct the structure of both
the neck and head by introducing a features fusion structure
with a 4x down-sampling rate and an additional detection
head.

Similar to the YOLOv8 algorithm, our YOLO-GE
algorithm is categorized into four models based on the depth
and width scales, named YOLO-GE-n, YOLO-GE-s, YOLO-
GE-m, and YOLO-GE-l, respectively. This allows for the
selection of an appropriate model according to the application
scenario. Table 1 showcases the compound scales of YOLO-
GE. In this section, we first detail the G-HG block and
GE-HGNet backbone, then describe the E-SimAM attention
mechanism, and finally introduce the improvements of the
neck and head.

TABLE 1. The compound scales of YOLO-GE.

A. GE-HGNet BACKBONE
The main function of the backbone network involves extract-
ing features across multiple scales and advanced semantic
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FIGURE 1. The architecture of YOLO-GE.

information for various targets, thereby promoting improved
feature fusion in subsequent stages. Within YOLOv8n, the
cross-stage partial network (CSPNet) [32] is retained, while
the C3 module from YOLOv5 has been replaced with the
C2f structure. However, with the continuous stacking of
3 × 3 convolutions, the parameters and computational cost
in the backbone also increase. To tackle this challenge and
establish an efficient yet potent backbone for feature extrac-
tion, we attempt to replace 3×3 convolution with lightweight
convolution.

Ghost convolution is a lightweight module that can cap-
ture additional features with a low computational cost [33].
The ghost convolution is executed in a dual-phase process,
as illustrated in Figure 2. Firstly, a traditional convolution
module is employed to generate an intrinsic feature map
with a smaller number of channels. Subsequently, novel ghost
feature maps are generated from the obtained intrinsic feature
maps through cheap operations. Finally, these two collec-
tions of feature maps are merged to produce the ultimate
feature maps. Compared to other lightweight convolutions,
ghost convolution efficiently exploits the correlations and
redundancies among feature maps. Therefore, we attempt
to employ ghost convolution as a substitute for traditional
convolution for feature extraction.

FIGURE 2. The workflow of ghost convolution.

However, directly replacing the backbone’s convolutional
modules with ghost convolutions may instead weaken its
feature extraction capabilities, resulting in a minor reduction
in detection accuracy. This occurs because the feature maps
provided by the cheap operations of ghost convolutions are
not adequately exhaustive. Therefore, it may be necessary to
stack more ghost convolutions to increase redundant feature
maps and expand the receptive field, enabling effective fea-
ture extraction. Inspired by the recent success of RT-DETR
[34], we incorporate the HG block [31] from its backbone,
as illustrated in Figure 3(a), replacing convolution operations
with ghost convolutions. Additionally, to enhance the extrac-
tion of advanced semantic features, we propose an enhanced
version G-HG block, as depicted in Figure 3(b).

FIGURE 3. The architecture of (a) HG block and (b) our G-HG block.

The HG block employs a hierarchical stacking approach
to blend features from diverse convolution layers. This
boosts the model’s proficiency in processing fine-grained
and coarse-grained information, aligning with the earlier
strategy of stacking ghost convolutions to enlarge the recep-
tive field for extracting advanced semantic features. After
concatenating all the feature maps outputted by ghost con-
volutions, a hierarchical feature fusion is conducted through
two 1 × 1 convolutional modules, significantly increasing
non-linearity while preserving the feature map dimensions.
Although the HG block can effectively extract feature map
information by stacking convolutional layers to enlarge the
receptive field, it becomes challenging to capture advanced
semantic information as the network depth increases due to
the potential loss of gradient information.

To further boost the effectiveness of the HG block,
we employ the CSP [32] strategy and channel shuffle [35]
method to restructure the HG block and introduce the G-HG
block. Firstly, the feature map generated by the initial 1 ×

1 convolution undergoes channel shuffling. Subsequently, the
feature map resulting from channel shuffling is concatenated
with the original feature map. Finally, the obtained feature
map is refined through the second 1× 1 convolution to yield
the ultimate featuremap. By employing channel shuffling, the
features within the channels are further integrated. Through
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the CSP strategy, the infusion of gradient flow information
is introduced, facilitating the network’s learning and feature
extraction.

In pursuit of extracting advanced semantic information and
multi-scale details more comprehensively, we synthesize the
strengths of CSPDarknet53 and HGNet to create GE-HGNet.
The GE-HGNet backbone is comprised of a convolution-
stacked stem, and four feature extraction stages composed
of G-HG blocks and convolutions, along with an SPPF,
as shown in Figure 4. Initially, the original image undergoes
a 4x down-sampling and channel expansion, laying the foun-
dation for subsequent feature extraction. Subsequently, the
obtained feature map undergoes four feature extraction stages
composed of G-HG blocks and convolution layers. In this
process, the convolutional module is responsible for down-
sampling, while the HG block focuses on extracting features
across multiple scales. Finally, the SPPF module performs
multi-scale fusion on the input feature maps to extract richer
advanced semantic information.

FIGURE 4. The architecture of our GE-HGNet backbone.

B. E-SIMAM ATTENTION MECHANISM
In practical remote sensing scenarios, accurately identify-
ing multi-scale targets becomes a considerable challenge,
attributed to the dense distribution of small targets and the
complexity of constantly changing backgrounds. To better
extract features of these targets, the attention mechanism
has garnered significant attention among researchers. Vari-
ous attention mechanisms proposed in prior research suggest
that they can address the limitations of convolutional models
[36]. Therefore, there have been numerous attempts to design
various attention mechanisms to enhance detection accuracy.
Woo et al. [37] introduced the convolutional block attention
module (CBAM), which sequentially inferred a 1D channel
and 2D spatial attention map to extract features from the
channel and spatial dimensions. Misra et al. [38] constructed
the triplet attention module that extracts inter-dependencies
through rotation operations and residual transformations.
Pan et al. [36] presented the ACmix attention module,
which combines self-attention and convolution to extract
semantic features effectively. Although these attention mech-
anisms have achieved significant success, the parameters

and complexity of the networks have also continuously
increased. Yang et al. [39] proposed the SimAM atten-
tion module, as illustrated in Figure 5(a), which establishes
three-dimensional attention weights for the input feature map
by identifying the significance of individual neurons through
the optimized energy function. In particular, the mechanism
features a simple structure without unnecessary parameters.
Aiming to enhance detection precision in capturing small
objects and optimize the model for efficiency, we integrate
the SimAMmodule and propose an enhanced version named
the E-SimAM attention module as illustrated in Figure 5(b).

FIGURE 5. The illustration of (a) SimAM and (b) our proposed E-SimAM.

To generate the three-dimensional attention weights,
we should calculate the significance of individual neurons
within the input feature maps through the optimized energy
function. Suppose the input feature maps refer to X ∈

RH×W×C , t , i, and xi correspond to the target neuron, the
index over spatial dimension, and other neurons in a channel
of the feature maps
X . M = H×W represents the number of all neurons on that

channel. The optimized energy function is defined as follows:

et =
4(σ 2

+ λ )
(t − µ)2 + 2σ 2 + 2λ

, (1)

µ =
1
M

∑M

i=1
xi, (2)

σ 2
=

1
M

∑M

i=1
(xi − µ)2 (3)

where et represents the lower energy of the neuron t ,µ and σ 2

refer to the mean and variance of all neurons. As a result, the
significance of individual neurons can be determined by 1/et ,
and the expression for SimAM can be defined as follows:

X ′
= Sigmoid(

1
E
) ⊙ X (4)

where E groups all et across channel and spatial dimensions,
and X ′ refers to the output feature maps of SimAM. However,
the Sigmoid function is a non-linear function that ensures its
output always lies between 0 and 1. Therefore, neurons with
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prominent features can be preserved, while those with lower
resolution or weaker characteristics in small targets may be
susceptible to loss. To address this limitation, we introduced
the residual concept [40] to enhance the attentionmechanism.
To begin with, the obtained feature maps X ′ undergo further
processing through a 1×1 convolutional module to ensure the
extraction and utilization of effective features. Subsequently,
the original feature maps X are combined with the newly
obtained feature maps. This operation not only reinforces
dominant features but also preserves features with lower
resolution or weaker characteristics, facilitating the detection
and localization of small targets. The E-SimAM module can
be defined as:

Y = X + Conv1 × 1(X ′) (5)

where the output feature of E-SimAM is denoted by
Y ∈ RH×W×C .
To fully leverage the E-SimAM attention mechanism,

we place it after the concatenation operation of feature
maps of various stages within the backbone network and
up-sampling feature maps of the neck. This facilitates the
rapid extraction of pivotal details from the fusion of feature
maps in the backbone and neck, preparing for the subsequent
multi-scale fusion by the C2f module.

C. IMPROVED NECK AND HEAD
In general, deep-layer feature maps encompass more robust
semantic features but offer less precise localization informa-
tion. In contrast, shallow-layer feature maps provide strong
positional information with comparatively weaker seman-
tic features. In order to enhance multi-scale feature fusion
more effectively, YOLO-GE still employs the FPN [41] and
PAN [42] structures from YoLOv8. Firstly, the FPN network
integrates the feature maps from the SPPF layer using a
top-down approach via up-sampling, enabling fusion with
lower-level features. This mechanism enables the transfer of
advanced semantic features to lower levels, thereby enriching
semantic representation across various scales. Subsequently,
PAN further enhances the FPN architecture by incorporat-
ing an additional fusion pathway, extending from lower to
deeper layers through down-sampling. This facilitates the
transmission of robust localization features from lower to
higher layers, enhancing the model’s capacity to localize
across diverse scales. Finally, the feature maps produced by
FPN and PAN are inputted into the decoupled heads for
classification and localization. The workflow of the neck and
head is illustrated in Figure 6.

For object detection within remote sensing imagery, the
majority of detected objects are small, with certain objects
densely distributed and typically covering only a few pix-
els. However, the lowest-level feature maps processed by
the FPN+PAN network undergo an 8x down-sampling rate.
When dealing with low-resolution or small objects, this leads
to loss the fine-grained information, consequently reducing
the precision in detecting small targets. In addressing this

FIGURE 6. The workflow of the neck and head.

concern, we introduced a feature map with a 4x down-
sampling rate from the P2 layer within the backbone. This
facilitates the extraction and fusion of features for small tar-
gets through the FPN+PAN network. Consequently, we have
also incorporated an additional tiny detection head specif-
ically designed for more focus on low-resolution or small
targets.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
The experiments were carried out on an Ubuntu 22.04.3 sys-
tem, Intel®i5-13600KF CPU, and NVIDIA 4090 graphics
cards with 24G video memory. The experimental environ-
ment was set up with Python 3.10, PyTorch 2.1.1, and Cuda
11.8. During the training stage, we employed the SGD opti-
mizer with a momentum of 0.937 and utilized a batch size
of 8. The learning rate was consistently set at 0.01, and the
network underwent training for 200 epochs. For a fair exper-
iment comparison, all training and testing processes shared
the same set of parameters.

B. DATASET
In order to assess the effectiveness of our YOLO-GE model,
we conducted experiments on the extensively employed
DIOR dataset [43]. The DIOR dataset serves as a vast
benchmark dataset developed by Northwestern Polytech-
nical University, specifically tailored for detecting objects
within remote sensing imagery, featuring 23,463 images
and 190,288 instances. The dataset consists of images sized
800× 800 pixels, exhibiting spatial resolutions varying from
0.5 m to 30 m. It encompasses a diverse array of 20 object
categories, including airplanes, buildings, vehicles, and so
on. Compared to other datasets, the DIOR dataset boasts
advantages such as large-scale data, diverse instance object
sizes, rich image diversity, high inter-class similarity, and
significant intra-class differences.

In order to validate the performance capabilities of our
proposed model and to ascertain its robustness, we carried
out extensive experiments on the NWPU VHR-10 dataset
[44], [45]. Published by Northwestern Polytechnical Univer-
sity in 2014, this dataset possesses 650 images with targets
and 150 background images, totaling 800 images for spa-
tial object detection. These images manually annotated by
experts were extracted from Google Earth and the Vaihingen
dataset.
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In order to further verify the detection capabilities and
robustness of our algorithm, we conducted extensive exper-
iments on the VisDrone2019 dataset [46]. This dataset is
collected by the AISKYEYE team from Tianjin University’s
Machine Learning and Data Mining Laboratory, captured
from drone perspectives. It is a horizontal bounding box
dataset specifically designed for optical remote sensing
object detection. The dataset includes 288 video clips, total-
ing 261,908 video frames and 10,209 static images. It’s worth
noting that the data was gathered using various drone plat-
forms under different scenes, weather conditions, and lighting
conditions. It also includes special situations such as scene
visibility, object categories, and occlusion scenarios.

C. EXPERIMENTAL METRICS
In order to assess our approach’s performance, the mean aver-
age precision(mAP) is adopted as the evaluation criterion.
The precision (P) represents the ratio of accurately predicted
samples to total samples, while the recall rate (R) refers to
the ratio of correctly predicted samples to all actual positive
samples, and they can be formulated as follows:

P =
TP

TP + FP
× 100%, (6)

R =
TP

TP + FN
× 100% (7)

where TP signifies true positive, and FP refers to false posi-
tive. FN corresponds to false negative. The average precision
(AP) and mean average precision (mAP) are defined below:

AP =

∫ 1

0
P(R)dR, (8)

mAP0.5 =
1
N

∑N

i=1
APi, Iou = 0.5 (9)

mAP0.5:0.95 =
1
N

∑N

i=1
APi, Iou = 0.5 : 0.05 : 0.95 (10)

where N signifies the total number of categories.

D. ABLATION STUDY
In order to assess the effectiveness of our proposed YOLO-
GE approach, we carried out three sets of ablation experi-
ments, utilizing YOLOv8-n as the baseline for comparison.
In the first set of experiments, to evaluate the performance
of the backbone improvements made to the GE-HGNet
backbone through the integration of the G-HG block, we con-
ducted three experiments. Initially, in the first experiment,
YOLOv8-n served as the benchmark for comparative anal-
ysis. In the subsequent experiment, we verified the effective-
ness of the G-HGNet backbone, which was engineered by
substituting the standard convolutions within the HG block
with ghost convolutions. Finally, we proceeded to assess the
backbone of GE-HGNet, which is developed based on the
G-HG block.

Table 2 provides a detailed comparison of model per-
formance utilizing different backbones. The baseline model
showcases good performance, with a mAP0.5 of 85.7% and

a mAP0.5:0.95 of 61.4%. Nevertheless, the introduction of
G-HGNet has slightly reduced the model’s detection accu-
racy. However, GE-HGNet has realized further improvements
upon the G-HG block, matching the baseline’s precision at
88.8% while significantly enhancing the recall to 81.1%.
In addition, it outperforms both the baseline and G-HGNet
in mAP0.5 and mAP0.5:0.95, achieving 86.2% and 62.4%
respectively. This validates the feasibility of improvements
made with the G-HG block and the GE-HGNet backbone,
particularly in enhancing the feature extraction capabilities
of the backbone, along with its outstanding capability in
detecting multi-scale objects.

During the second set of experiments, to validate the effi-
cacy of the E-SimAM enhancements, we also carried out
three experiments. The initial experiment once again utilized
YOLOv8-n as the reference baseline for comparison analysis.
In the second experiment, we introduced the SimAM atten-
tion mechanism and incorporated it within the model’s neck
structure to evaluate its performance. For the third experi-
ment, we implemented and tested the model with the refined
E-SimAM attention mechanism to validate its efficacy.

Table 3 presents the comparison result of model perfor-
mance incorporating different attention mechanisms. After
incorporating the SimAM attention mechanism, precision
slightly improved to 88.9%, yet there was a slight decrease
in recall and mAP. This observation confirms the analysis
previously discussed, indicating that this attention mecha-
nism tends to overlook small objects with lower resolution
or weaker features, leading to a reduction in detection accu-
racy. However, compared to SimAM, the E-SimAMapproach
experienced a minor reduction in precision to 88.7%, yet
it notably enhanced the recall to 80.7%. Additionally, the
model also achieved significant enhancements in mAP0.5
and mAP0.5:0.95, with 86.3% and 62.3%, respectively. This
demonstrates the efficacy of E-SimAM in preserving the
detection accuracy with low resolution or subtle characteris-
tics. Despite a slight increase in computational parameters,
the improvement in detection performance highlights the
potential of E-SimAM in enhancing models for the challenge
of detecting small objects.

In the final series of ablation research, we aimed tomeasure
the performance impact of three proposed enhancements,
including the GE-HGNet for the backbone, the E-SimAM
attention mechanism, and refinements to the fusion modules
within both the neck structure and the detection head. Table 4
details the ablation results of various improvements evaluated
on the DIOR dataset.

In Table 4, experiment 1 displays the results derived
from the initial YOLOv8-n algorithm. In the second exper-
iment, the adoption of the GE-HGNet maintains precision at
88.8%, significantly raises recall to 81.1%, and advances both
mAP0.5 and mAP0.5:0.95 to 86.2% and 62.4%, respectively.
Experiment 3 introduces the E-SimAM attention mechanism
within the neck structure, resulting in a slight decrease in
precision, but a notable increase in recall to 80.7%, along
with mAP0.5 and mAP0.5:0.95 enhanced to 86.3% and 62.3%,
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TABLE 2. Performance with different backbones evaluated on the DIOR dataset.

TABLE 3. Performance with different attention mechanisms evaluated on the DIOR dataset.

TABLE 4. Performance with different enhancements evaluated on the DIOR dataset.

respectively. In experiment 4, the fusion modules of the
neck structure and detection head were enhanced, improving
detection precision to 89.4%, while the recall rate remained
constant. Additionally, the mAP0.5 and mAP0.5:0.95 were
also enhanced to 86.5% and 62.1%, respectively. The afore-
mentioned three experiments validate the effectiveness of
our proposed improvements, with each improvement notably
improving the mAP0.5 and mAP0.5:0.95.
In order to verify the effect of integrating different

enhancements, we conducted experiments 5-8 as shown in
Table 4. Experiment 5 integrates the GE-HGNet backbone
and the E-SimAM attention mechanism. Experiment 6 then
combines the GE-HGNet backbone with the fusion mod-
ules of the neck and head. In experiment 7, we integrate
the E-SimAM attention mechanism with the fusion modules
of the neck and head. The experimental results show that
integrating these enhancements in pairs leads to additional
advancements in mAP0.5 and mAP0.5:0.95. Notably, pairwise
combinations of these improvements surpass the outcomes
achieved by any single improvement, particularly in terms of
improvements to both mAP0.5 and mAP0.5:0.95 metrics. In the
final experiment, we integrate all improvements to assess the
performance of our ultimate YOLO-GE approach. It is signif-
icantly observable that, despite a slight decrease in precision,
the model achieved the highest detection accuracy, showcas-
ing recall, mAP0.5, and mAP0.5:0.95 at 81.9%, 87.4%, and
63.8%, respectively. The results detailed in Table 4 validate
the efficacy of our proposed improvements and illustrate that
the organic combination of these improvements substantially

improves the model’s detection capabilities, confirming the
rationality and efficacy of the YOLO-GE algorithm.

E. COMPARISON EXPERIMENTS
To further validate the performance and efficacy of our
YOLO-GE approach, we conducted comparisons against
multiple state-of-the-art methodologies. Firstly, we con-
ducted comparisons of the evaluation metric curves through-
out the training process. Then, we proceeded to compare
several classic algorithms, including one-stage methods like
SSD [24] and the YOLO series [15], [16], [17], [18], [19],
[20], [21], [22], [23], alongside two-stage algorithms like
Faster R-CNN [13]. Finally, to confirm the robustness of
our YOLO-GE algorithm, comparison experiments were also
conducted on the NWPU VHR-10 dataset.

Figure 7 illustrates the evaluation curves during training
on the DIOR dataset. It’s noteworthy that the mAP0.5 and
mAP0.5:0.95 consistently outperform YOLOv8-n, exhibiting
a sustained and steady upward trend as iterations increase.
Moreover, our approach achieves a higher convergence speed
and exhibits a stronger continual learning ability com-
pared to YOLOv8n. Therefore, our YOLO-GE outperforms
YOLOv8-n in terms of detecting precision and convergence
performance.

Table 5 presents the performance comparison results eval-
uated from the DIOR dataset. Compared to other algorithms
with similar parameter sizes, YOLO-GE exhibits superior
performance in terms of detection accuracy. In contrast
to lightweight models such as YOLOv5-n, YOLOv6-n,
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TABLE 5. Performance comparison results evaluated on the DIOR dataset.

and YOLOv8-n, YOLO-GE-n achieves a mAP0.50 of
85.7%, showing improvements of 3.8%, 5.8%, and 2.0%,
respectively. Compared to the YOLOv8-x model, YOLO-
GE-l achieves the best detection accuracy, with improvements
of 1.2% and 1.7% in mAP0.5 and mAP0.5:0.95 respectively,
while also reducing parameter size by 21.1%. Compared
to the YOLO-SSP [30], YOLO-GE-s achieves 1.9% and
2.8% enhancements in mAP0.5 and mAP0.5:0.95 respectively,
accompanied by 54.1% and 29.9% reduction in parameter
size and GFLOPs.

To further compare with the YOLO series of algorithms,
we carried out extensive experiments, and the findings are
depicted in Figure 8. It is evident that the YOLO-GE
algorithm outperforms other YOLO series models in terms of
mAP0.5 and mAP0.5:0.95. Notably, YOLO-GE-l achieves the
highest level of detection precision. Although there has been
a certain increase in parameter size, YOLO-GE has achieved
a significant improvement in detection accuracy.

Furthermore, to further evaluate the performance capabil-
ities and robustness of our model, we conducted extensive
experiments on the NWPU VHR-10 dataset. The perfor-
mance comparison results are presented in Table 6. Our
proposed YOLO-GE demonstrates superior performance
compared to models with similar parameter sizes. Signifi-
cantly, YOLO-GE-l maintains the highest detection preci-
sion, achieving mAP0.5 and mAP0.5:0.95 values of 92.3% and
61.0%, respectively.

Finally, we conducted extensive experiments on the more
challenging VisDrone2019 dataset. It can be seen from
Table 7 that our YOLO-GE-l achieves the highest detec-
tion accuracy in terms of P, R, mAP0.5, and mAP0.5:0.95.
Compared to the state-of-the-art algorithms, our YOLO-GE-
n achieves improvements of 20.1% and 22.2% in mAP0.5
and mAP0.5:0.95 respectively on the VisDrone2019 dataset.

Compared to TA-YOLO-s [47], our YOLO-GE-s achieves
4.0% and 2.5% enhancements in mAP0.5 and mAP0.5:0.95
respectively, accompanied by a 6.5% reduction in parame-
ter size. In addition, our YOLO-GE-s improves mAP0.5 by
10.0% and 9.0% respectively, compared to BDH-YOLO [48]
and PVswin-YOLOv8s [49]. These comparative experiments
further validate that our proposed algorithm has significant
advantages in terms of detection accuracy.

F. VISUALIZATION
The comparison of some detection examples betweenYOLO-
GE-n and YOLOv8-n on the DIOR dataset is depicted
in Figure 9. In airplane detection tasks, both algorithms
can identify every instance within remote sensing imagery.
However, the confidence scores for detections made by
YOLO-GE-n are generally higher than that of YOLOv8-n.
When it comes to identifying small targets such as cars,
it is worth noting that YOLO-GE-n can accurately detect
all instances, whereas YOLOv8-n had one instance of false
detection and missed two instances. In the densely packed
detection scenarios involving harbors, ships, and vehicles,
both algorithms successfully identified all harbors and ships.
However, with vehicles, YOLOv8-n missed one vehicle,
whereas YOLO-GE-n accurately detected all vehicle targets.
This confirms that YOLO-GE-n possesses superior detail
feature extraction capabilities, enabling it to detect smaller
targets more effectively.

In addition, in order to further verify the effectiveness and
robustness of our YOLO-GE approach, we conducted another
visualization experiment on the VisDrone2019 dataset.
Figure 10 shows some representative detection results on the
VisDrone2019-test dataset. From row 1 in Figure 10, it can be
observed that our YOLO-GE-m can accurately detect various
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FIGURE 7. Comparison of evaluation indicators during training on the DIOR dataset;(a-d) refer to the
comparison curves of precision, recall, mAP0.5, and mAP0.5:0.95 respectively.

FIGURE 8. Performance comparison of YOLO-GE with YOLO series algorithms. (a) mAP0.5, (b) mAP0.5:0.95.

types of objects, even vehicles that are partially obscured by
trees. As can be seen from row 2 and row 3 in Figure 10, our
approach can also accurately detect objects of various scales
and types even in poor lighting conditions.

V. DISCUSSION
Tables 2 and 3 present the performance of the backbone and
attention mechanism enhancements evaluated on the DIOR
dataset. The performance results reveal that the G-HGNet
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FIGURE 9. Comparison of some detection examples on the DIOR dataset: (a) ground truth,
(b) YOLOv8-n, (c) YOLO-GE-n.

TABLE 6. Performance comparison results evaluated on the NWPU VHR-10 dataset.

backbone and SimAM attention mechanism have slightly
diminished the model’s accuracy. However, the incorporation

of GE-HGNet utilizes redundant feature maps and broad-
ens the receptive field, thereby enhancing the extraction
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TABLE 7. Performance comparison results evaluated on the VisDrone2019-val dataset.

FIGURE 10. Some representative detection results on the
VisDrone2019-test dataset.

of multi-scale objects and advanced semantic features in
complex backgrounds. Additionally, the E-SimAM atten-
tion mechanism employs residual techniques to address the
low-resolution feature loss limitation, thereby enhancing the
precision in identifying low-resolution features against intri-
cate backgrounds.

Table 4 demonstrates each enhancement contributes to
the model’s detection accuracy. Notably, when the three
improvements are combined, our proposed YOLO-GE
achieves the highest detection accuracy, surpassing

algorithms that use only a single improvement. This indicates
that our proposed YOLO-GE algorithm effectively combines
the benefits of all three enhancement methods, thereby sig-
nificantly improving the model’s overall performance.

Tables 5, 6, and 7 illustrate the comparison results between
YOLO-GE and other algorithms evaluated on the diverse
datasets. The overall performance of our YOLO-GE out-
performs all other detection algorithms, even the current
state-of-the-art remote sensing target detection algorithms
such as BDH-YOLO and PVswin-YOLOv8s. In addition,
our approach adapts well to different scenarios, especially
excelling in the more challenging VisDrone2019 dataset,
where it exhibits a significant improvement in detection accu-
racy compared to YOLOv8. This may be attributed to our
enhanced approach’s strong ability to extract features from
densely packed small objects, thus improving the detection
accuracy.

Figures 9 and 10 show some representative detection
results evaluated on DIOR and VisDrone2019 datasets. The
results indicate that our YOLO-GE can accurately detect
objects of various scales and types even in densely packed
detection scenarios or poor lighting conditions.

In summary, extensive experiments across diverse datasets
have fully demonstrated the effectiveness and robustness of
our proposed enhancements.

VI. CONCLUSION
With the widespread application of remote sensing tech-
nology across diverse industries, remote target detection
holds crucial strategic significance for aerial remote sensing
technology. To address the obstacles of multi-scale object
detection within remote sensing and further enhance detec-
tion accuracy, we propose YOLO-GE based on YOLOv8.
We introduce three proposed enhancements, including the
GE-HGNet for the backbone, the E-SimAM attention
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mechanism, and refinements to the fusion modules within
both the neck structure and the detection head. Through
extensive experimental validation on the DIOR, NWPU
VHR-10, and VisDrone2019 datasets, we have fully demon-
strated the effectiveness and robustness of our suggested
enhancements. It has been proven that the integrated applica-
tion of these improvements significantly boosts YOLO-GE’s
capability in accurately detecting small objects in remote
sensing images, demonstrating both its effectiveness and
rationality. In particular, the YOLO-GE-l outperforms current
mainstream algorithms in achieving the highest detection
precision, while also having fewer model parameters com-
pared to several larger models. Given that YOLO-GE features
several models with superior detection accuracy, it allows for
the selection of a suitable model based on the application
scenario, presenting wide-ranging application potential.

The introduction of the GE-HGNet backbone and
E-SimAM attention mechanism in YOLO-GE has improved
the model’s detection accuracy, but it has also increased
the number of model parameters and floating-point opera-
tions, thereby increasing the computational burden on the
system. Therefore, it is relatively challenging to deploy it
on embedded devices with limited computational resources.
In future work, we aim to enhance the YOLO-GE algorithm
by employing techniques such as network pruning and knowl-
edge distillation to achieve parameter compression, while
maintaining detection accuracy, while maintaining detection
accuracy. Additionally, we also plan to boost the model’s
detection performance by improving approaches related to
localization or classification loss functions.
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