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ABSTRACT In today’s rapidly evolving corporate environments, ensuring comprehensive security measures
is paramount. This paper presents SafeguardNet, a deep transfer learning-based model designed to enhance
corporate safety through effective multiclass threat detection. Recognizing the limitations of existing binary
threat detection systems, our approach introduces a diverse dataset encompassing a wide array of threat
categories, including knives, guns, fires, and normal scenarios. This diversity in threat classes significantly
improves the model’s ability to accurately distinguish between various types of security risks, leading
to enhanced robustness and reliability in real-world applications. Utilizing the Xception architecture,
SafeguardNet achieves an overall accuracy of 94.5%, precision of 92.3%, recall of 93.8%, and an F1 score of
93.0%., the model demonstrates exceptional capability with individual F1 scores of 96% for guns and fires,
95% for Additionallyknives, and 89% for normal scenarios, reflecting its proficiency in handling diverse
threat types. The integration of a varied dataset plays a critical role in enhancing these performance metrics
by providing the model with a comprehensive range of scenarios for training. This diversity ensures that
SafeguardNet can robustly and accurately detect and classify multiple security threats, offering a reliable
and comprehensive solution for corporate security needs.

INDEX TERMS Building safety, weapon detection, fire detection, deep learning, explainable AI, automated
home.

I. INTRODUCTION
In the landscape of corporate security, buildings today face a
broad spectrum of threats that endanger the safety of employ-
ees, visitors, and assets. The stakes are high, as these threats
ranging from armed violence to fires and structural accidents
not only pose physical dangers but also threaten substantial
financial, legal, and reputational damages. The ramifications
extend beyond immediate physical harm, potentially result-
ing in severe brand damage, costly litigation, and operational
disruptions. The psychological impact on employee morale
and productivity further amplifies the urgency for robust and

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

proactive security measures. Recognizing the multifaceted
nature of these threats, it is imperative that corporations
enhance their safety protocols to foster a secure and positive
working environment [1].

Traditional security measures in organizations often inte-
grate manual surveillance, physical security personnel, and
rule-based technologies. These measures, while providing
baseline security, are hampered by significant drawbacks.
Manual surveillance, for instance, demands high labor costs
and suffers from human fatigue, which can lead to lapses in
monitoring and delayed responses to security breaches [2],
[3]. Physical security staff, although essential for on-the-
ground responses, cannot monitor all areas effectively at all
times, creating gaps in coverage. Rule-based technologies,
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on the other hand, operate under fixed algorithms that lack
the flexibility to adapt to novel or sophisticated threats, often
resulting in either oversensitivity, leading to false positives,
or under-sensitivity, which may miss genuine threats.

In response to these limitations, the security industry is
increasingly turning to advanced technologies such as deep
learning (DL), renowned for its capacity to significantly
enhance threat detection capabilities [4], [5], [6]. Deep learn-
ing models, especially those employing convolutional neural
networks (CNNs), are adept at discerning intricate patterns
in visual data, facilitating the real-time detection of diverse
threats with high precision. Unlike traditional methods, these
models learn from vast amounts of data, allowing them
to improve over time and adapt to new, previously unseen
scenarios. This capability is pivotal for maintaining robust
security measures in dynamic environments where threat
vectors continuously evolve.

Recognizing the constraints of typical binary threat
detection systems [7], [8], [9], which often rely on datasets
lacking in variability and scope, our research introduces a
comprehensive new dataset. This dataset merges data from
two distinct sources: publicly available security footage and
a custom-collected set of images and videos specifically
designed for threat detection in corporate environments. The
selection criteria for these data sources were based on the
diversity and representativeness of various threat scenarios,
including knives, guns, fires, and normal scenarios, ensuring
a wide coverage of potential security threats. The threat
classes were chosen to encompass the most common and
critical threats faced by corporate security systems, thereby
maximizing the practical applicability of our model. By inte-
grating such a varied dataset, we enable the development of
a sophisticated deep learning model based on the Xception
architecture, which is specifically optimized for multi-
class threat detection within corporate environments. This
approach not only broadens the scope of detectable threats
but also enhances the accuracy and reliability of the system
in distinguishing between different types of security risks.

The contributions of this research are multifaceted:

1) We propose an optimized real-time threat detection
architecture that utilizes a deep learning model based
on the Xception framework, capable of handling a
diverse classification of security threats.

2) A comprehensive evaluation of current methodologies
is presented, demonstrating the enhanced performance
of our model through the integration of advanced
neural network features such as global average pooling,
dense layers, batch normalization, dropout, and ReLU
activation functions.

3) We conduct a detailed comparative analysis between
our model and existing baseline models, showcasing
significant improvements in threat detection accuracy
and reliability.

4) The application of advanced visualization techniques
such as Grad-CAM++ and SmoothGrad enhances the

interpretability of our model, providing deeper insights
into its decision-making processes.

This paper is structured into seven sections, starting
with this introduction. Section II reviews related literature,
Section III details the dataset and describes the methodology,
Section IV discusses the results, Section V analyzes these
findings, and Section VI concludes the study and outlines
future work directions.

II. LITERATURE REVIEW
A. BACKGROUND STUDY
Corporate security concerns have reached unprecedented
heights and, require prompt attention and creative solutions.
Fires and weapons such as knives and guns endanger
corporate personnel, visitors, and assets. These dangers
can cause more than just physical harm. Financial losses,
legal liabilities, reputational damage, and business continuity
disruptions can occur. Traditional security systems that use
human monitoring or outdated detection methods often fail to
identify and address dynamic security issues. Thus, sophis-
ticated and adaptable monitoring systems that can identify
and respond to threats in real-time must be prioritized. Given
these challenges, a detailed literature study is needed to
evaluate the current methodologies, identify research gaps,
and propose alternative business risk recognition strategies.

B. WEAPON DETECTION
The increasing number of guns in public spaces has prompted
the development of advanced detection devices to reduce
risks. There has been a notable increase in scholarly attention
to the use of cutting-edge technology, such as deep learning
and computer vision, to create automated weapon detection
systems that can accurately and efficiently recognize knives
and weapons. In this study, we discuss the latest weapon
detection technologies for knives and weapons in workplace
environments.

According to Salido et al. [10], surveillance film can
automatically detect handguns. Their technique reduced
false positives by incorporating firearm pose data from
training dataset photos. According to the study, RetinaNet
with the unfrozen ResNet-50 backbone had the highest
average precision (96.36%) and recall (97.23%), whereas
YOLOv3 with posture information had the highest precision
(96.23%) and F1 score values (93.36%. The last design
increased by approximately 2% when pose information
was explicitly employed during training. The models may
misidentify smartphones, wallets, and books as firearms,
causing false positives. Future studies should improvemodels
to differentiate between these objects and improve the
detection accuracy. Kaya et al. investigated automatic firearm
detection in surveillance film [11]. VGGNet was used to
classify assault rifles, bazookas, grenades, hunting rifles,
knives, handguns, and revolvers. This paradigm requires
constant picture data, which are vital. This reliance may
not cover dynamic weapons concealment and use. The

VOLUME 12, 2024 113503



N. Jahan et al.: SafeguardNet: Enhancing Corporate Safety via Tailored Deep Transfer Learning

proposed model outperformed established models such as
VGG-16, ResNet-50, and ResNet-101 with a success rate
of 98.40%. The model struggles to adapt to surveillance
settings and weapon concealing strategies. Examine and
improve future studies. Globally, human violence causes
7.9 deaths per 10,000 individuals year [12]. Human violence
usually occurs suddenly or in distant areas. Without timely
information, it is difficult to prevent these behaviors. This
study addressed this issue through detection. CCTV cameras
help investigate crimes in cities. This study examined violent
CCTV footage. The Inception v3 and Yolo v5 models
recognize violence, perpetrators, and weapons. The analysis
showed 74% accuracy for the proposed model. Automated
violence detection systems have 74% accuracy; however,
human behavior and changing monitoring settings may
produce ambiguity and false positives.

Another group used Efficient-Net for real-time firearm
detection in surveillance cameras [13]. A tested and promis-
ing Efficient-Net was also built with this effort. With more
epochs than the other methods, the Efficient-Net technique
achieved 98.12% accuracy. The number of training epochs
may overfit and prevent the generalization of the unknown
data. More research is needed to evaluate the technique in
real-world settings to solve scalability, computing efficiency,
and model interpretability challenges. Investigating weapon
detection and tracking in crime forecasting can aid detectives
in understanding event chronologies [14]. A professional
carefully annotated each photo for identification and clas-
sification. Validating such data requires object detection
and classification. Weapon detection uses SSD, YOLO,
and a Faster RCNN. The Mediapipe library calculates
weapon-human relationships from human body data. Faster
RCNN with the Mediapipe library achieved 97% accuracy.
This study examined fire and pistol detection in camera-
monitored areas [15]. Wildfires, industrial explosions, and
residential fires have affected the environment. In this study,
they developed a YOLOv3 deep learning model. This model
detects video anomalies and alerts authorities frame-by-
frame. Finally, the model validation loss was 0.2864 and the
detection rate was 45 fps. In the IMFDB, UGR, and FireNet
tests, the model had 89.3%, 82.6%, and 86.5% accuracy.
Despite the low precision of the sensitive automated systems.

This work suggests binarization methods to enhance the
robustness, accuracy, and reliability [16]. The gun, knife,
phone, bill, wallet, and card are logged. The empirical
investigation reveals that the proposed technique lowers the
number of false positives compared to multiclass detection.
Binarization may not capture the details of small items in
complex real-world contexts, which limits this research. This
may cause misclassifications or missing detections. This
study used PGGAN and superimposition to simulate X-
ray images [17]. Training advanced detection models such
as YOLO, SSD, and RetinaNet. The technique recognizes
weapons, knives, razor blades, and shuriken with high mean
average precision (mAP) on real X-ray images. YOLOv3
performed the best among the tested methods. This work may

be constrained by simulated X-ray photographs, which may
not accurately depict scanning details. However, this method-
ology may not be applicable to real-world deployments.

This study used CNNs with pre-trained VGG-16 net-
work weights for real-time weapon monitoring and detec-
tion [18]. This study suggests ways to create and improve
unique images. The approach achieves 98.07% accuracy
with isolated photos and 98.42% accuracy with handled
images, demonstrating its efficiency. More accurate prepro-
cessed photographs support the suitability of the algorithm
and exceed comparable research by 7%. The improved
results demonstrate that the proposed method can improve
real-world weapon detection. Another study sought to create
a deep learning-based system to detect hidden firearms in
thermal pictures [19]. Thermal video and public data train
two deep learning models to locate firearms. A well-adjusted
VGG19 model had an F1 score of 0.84, and a Yolo-V3 model
had 0.95 mean average precision of 10 milliseconds. These
findings demonstrate that deep learning and infrared imaging
can improve real-time surveillance. Effective detection of
weapons and knives in audio recordings is crucial for
public safety [20]. Deep Learning (DL) has improved
object identification; however, problems persist. Weapon size
against camera range and quick reaction are limitations,
especially with inexpensive edge devices. This issue can
be addressed using a two-step deep learning technique that
utilizes a CNN to distinguish humans from anothers to detect
firearms. The technique’s COCO Average Precision (AP) of
79.30 and FPS of 5.10 suggest economical, widely available
automated video surveillance systems.

Recent advancements in deep learning have improved
detection accuracy, but often require substantial computa-
tional resources. This research fills the gap by introducing
a lightweight, pose-based approach, leveraging hand pose
pattern analysis and novel techniques like Fuzzy Discernible
Feature Selection (FDFS) to efficiently and accurately detect
small firearms from visual media. Cao et al. introduces a
novel approach that focuses solely on refining PAFs, leading
to significant improvements in both runtime performance and
accuracy [21]. Additionally, we present the first combined
body and foot keypoint detector, which reduces inference
time without compromising accuracy. This comprehensive
and efficient solution is embodied in OpenPose, the first
open-source realtime system capable of detecting keypoints
for body, foot, hand, and facial features in multi-person
scenarios. Deep learning methods have enhanced detection
capabilities but typically focus solely on the visual appear-
ance of weapons [22]. Another work bridges this gap by
incorporating human pose analysis, utilizing pose keypoints
to better detect handguns, especially when they are not
fully visible. This combined approach significantly enhances
detection accuracy, outperforming previous methods. Exist-
ing pose estimation techniques lack the precision needed
for detecting weapon operation activities, which is crucial
for effective surveillance [23]. Our research utilizes human
body skeleton graphs and integrates an LSTM-RNN network
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with a Kalman filter, achieving 89.09% accuracy in real-time
pose identification and significantly enhancing the detection
of suspicious activities amidst regular movements.Though
direct object detection provides immediate and actionable
intelligence for security personnel, which is crucial in real-
time scenarios. Incorporating pose detection can add com-
plexity and computational overhead, potentially increasing
false positives in dynamic settings.

C. FIRE DETECTION
Fire detection is essential to save lives and property. The
Internet of Things and Deep Neural Networks can automate
fire detection. System design, data quality, and computational
resources determine the effectiveness of these systems.

Jiao 2020 introduces YOLOv3 for classifying objects in
UAV fire images. They proposed boosting the quantity and
variety of training data. A WSN and deep learning system
have been introduced for early forest fire detection [24].
According to the experiments, the GRU model identified
forest fires with 99.89% precision and 0.0088 loss function.
The authors advise improving their approach by improving
the network design, sensor node capabilities, and deep
learning. The efficacy and adaptability of the proposed
system to forest fire scenarios must be demonstrated
using a small dataset. Another study proposed a UAV-AI
forest firefighting system for detection and monitoring.
The researchers compiled and organized a unique dataset
(DeepFire) comprising visual representations of multiple
real-world forests, with and without fire, to aid future
research. Comparison of machine learning methodologies.
The authors recommend VGG19-based transfer learning to
improve prediction accuracy. The simulated results show that
the proposeded approach achieves 95% classification accu-
racy, 95.7% precision, and 94.2% recall rates. An early fire
detection model (EFDM) is developed using computer vision
and CCTVmonitoring [25]. EFDM detects flames faster than
smoke or heat detectors depending on the material. A study
proposed a CNN based YOLOv4 fire detection system
for low-power devices [26]. Deep detection networks were
trained with less important convolutional filters removed.
This method reduces the network computational load without
affecting the performance. Various pruning algorithms can
eliminate 83.88 percent of network parameters, reduce
computational expense (BFLOPs) by 83.60 percent, and
reduce the Raspberry Pi 4 detection time by 83.73 percent
while maintaining the network performance. We recommend
the use of several CNN architectures for fire detection.
Pre-trained four ResNet architectures were used: ResNet18,
ResNet50, ResNet101, and InceptionResNetV2 [27]. SVM-
classified Ensemble ResNet models with 10-fold cross-
validation had 98.91-99.15 percent classification accuracy.
A major drawback of the proposed model is the limited photo
usage during development. A new voting approach merges
YOLO and CNN architectures, combining two weights [28].
The F1 classification model accuracy, sensitivity, and score
were 0.95, 0.99, and 0.98e. The model was classified using

transfer learning. The detector model’s 0.85 and 0.76 smoke
and combination mAP scores were good. The smoke detector
model scored 0.93 F1.

Similarly, smoke is the initial stage of fire thats why
many tried smoke detection methods which often fail in
diverse surveillance environments, particularly under hazy
conditions [29]. This research overcomes these limitations
by introducing a CNN-based framework using EfficientNet
for smoke detection and DeepLabv3+ for segmentation,
achieving up to 3% higher accuracy and significantly
improved performance metrics, making it highly suitable
for varied and challenging surveillance conditions. Vision-
based detection systems, utilizing surveillance cameras,
offer faster and more robust solutions by providing early
warnings from both nearby and distant smoke [30]. Our
research introduces a dual deep learning framework that
leverages Deep Convolutional Neural Networks (CNNs) for
feature extraction from smoke patches and motion-based
features, significantly enhancing detection accuracy and
robustness in varied and challenging conditions. Closely,
Sathishkumar et al. addresses issues by employing transfer
learning on pre-trained models such as VGG16, InceptionV3,
and Xception, and incorporates learning without forgetting
(LwF) to retain original classification abilities while adapting
to new tasks [31]. This approach significantly enhances
detection accuracy and robustness, outperforming state-of-
the-art methods and ensuring reliable performance on both
existing and novel datasets.

D. OVERALL FINDINGS
Our literature review reveals a critical gap in existing threat
detection systems, which predominantly employ binary clas-
sification approaches that are insufficient for the complexities
of real-world scenarios in corporate environments. To address
this, our research focuses on three pivotal threat categories:
fire, guns, and knives. These classes were chosen due to
their high prevalence and significant impact on corporate
safety. Fire detection is vital for early emergency response
to prevent widespread damage and loss of life. Gun detection
is crucial for averting armed assaults, while knife detection
mitigates the risk of close-quarters attacks. Existing typical
deep learning-based models often fail to achieve optimal
accuracy in these areas due to the limitations of non-diverse
datasets. By integrating a comprehensive and varied dataset
that encompasses these specific threats, our proposed model
significantly enhances detection accuracy and robustness.
This approach not only bridges the performance gaps
identified in current systems but also provides a more reliable
and holistic security solution tailored to the multifaceted
nature of corporate security threats.

III. METHODOLOGY
A. DATASETS
The datasets utilized in this study were meticulously selected
to ensure a comprehensive and robust evaluation of the
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proposed models. The primary datasets include various types
of images classified into multiple categories, each aimed at
addressing specific detection tasks.

The Weapon Detection YOLOv7 dataset [32] comprises
5000 labeled images, divided into Knife and Gun classes.
This dataset includes 4245 images in the training set and
755 images in the test set, all annotated in YOLOv7
format, facilitating efficient training and validation of object
detection models. The diversity and quantity of this dataset
provide a solid foundation for the development and testing of
weapon detection algorithms (Table 3).

Another crucial dataset is the Fire dataset [33], which
includes 999 images categorized into Fire and Nonfire
classes. This binary classification dataset is pivotal for
training models to distinguish between fire and non-fire
images, essential for developing reliable fire detection
systems. The dataset’s balanced nature ensures that the model
learns to identify fire instances accurately without being
biased towards non-fire images (Table 4).
Additionally, the Fire detection dataset [34] contains

651 images labeled as 0 for non-fire images and 1 for fire
images. This dataset further supports the binary classification
task, with 541 non-fire images and 110 fire images, enabling
the model to learn from a varied set of instances (Table 5).
The Fire-Flame-Dataset [35] expands the classification task
by introducing three classes: Fire, Smoke, and Neutral.
With 3900 images in total, this dataset allows the model
to distinguish between fire, smoke, and normal scenarios,
enhancing its applicability in real-world situations (Table 5).

The Fire dataset by Spacewalk01 [36] comprises
3677 images exclusively of fire instances. This dataset
enriches the training data with numerous examples of fire,
ensuring that the model can generalize well to different
fire scenarios. The inclusion of this dataset is critical for
fine-tuning the model’s ability to detect fire accurately and
promptly (Table 6).

To enhance the robustness of our models, these datasets
were merged into a single, enriched dataset for training,
validation, and testing purposes. This merged dataset ensures
a balanced representation of all classes, with 85% of the data
allocated for training (further divided into 70% for training
and 15% for validation) and 15% for testing. Specifically,
the merged dataset includes 2092 Knife images, 2908 Gun
images, 1904 Fire images, and 999 Normal images (Table 7).
This comprehensive and balanced dataset allows for the
development of models that can reliably detect various
objects and scenarios, thereby improving their performance
and generalizability.

Figure 1 presents sample images from each class in the
merged dataset, providing visual insights into the dataset’s
composition. These images illustrate the diversity and quality
of the data, which are crucial for training robust and accurate
models. By utilizing such a diverse andwell-balanced dataset,
we ensure that our models are trained on a wide range of
examples, thereby enhancing their ability to perform well in
real-world applications.

FIGURE 1. Sample images of each class from the merged dataset.

The datasets utilized in this study were carefully selected
and processed to ensure robust evaluation and training of
our models. It is important to note that no cropping or
segmentation was applied to the images in our dataset.
Instead, images were resized to standard resolutions (71×71,
128 × 128, 224 × 224, 256 × 256, and 512 × 512 pixels)
as part of our experimental setup to assess the impact of
resolution on model performance. This resizing approach
maintains the integrity of the entire image content while
uniformly adjusting dimensions, ensuring consistency in our
evaluation across various image scales.Moreover, to augment
our dataset for improved model generalization, we applied
techniques such as rescaling pixel values, random shifts,
rotations, zooms, and vertical flips during training. While
these augmentations increase the effective dataset size seen
by the model during training, the original dataset remains
unchanged in terms of stored images. This approach enhances
model robustness without altering dataset size or introducing
bias, facilitating a comprehensive evaluation across different
classification tasks.

Here web-based image scraping was not utilized due to
concerns regarding data quality and legal constraints. Images
sourced from the web often lack consistent labeling and may
introduce noise into the dataset, potentially degrading model
performance. Additionally, adhering to copyright laws and
ensuring ethical data usage guided our decision to rely on
curated datasets from reliable sources. The careful selection
and amalgamation of these datasets provide a diverse and
representative sample of the scenarios the models aim to
address. By integrating datasets with varying complexities
and classes, the models are trained on a wide array of images,
which enhances their ability to generalize and perform well
in real-world applications. Each dataset contributes unique
characteristics: the Weapon Detection YOLOv7 dataset
brings diversity in weapon types and scenes, while the
multiple fire datasets introduce various fire scenarios, from
simple fire detection to distinguishing between fire and
normal conditions.
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FIGURE 2. Different phases of data augmentation.

TABLE 1. Collected dataset details.

B. IMAGE PIPELINE
1) DATA AUGMENTATION
Data augmentation plays a crucial role in enhancing the
model’s ability to generalize from the training data, par-
ticularly for image classification tasks. We employ various

TABLE 2. Weapon detection YOLOv7 [32].

TABLE 3. Fire dataset [33] we have used non-fire images as normal class.

TABLE 4. Fire detection dataset [34] we have used non-fire images as
normal class.

TABLE 5. Fire-Flame-Dataset dataset [35] we have used non-fire images
as normal class.

TABLE 6. Fire dataset dataset [36].

augmentation techniques on the fire detection dataset to
simulate diverse environmental conditions that the model
may encounter in real-world scenarios.The effects of these
augmentations are illustrated in Figure 2, and the augmenta-
tion parameters are as follows:

• Normalizing pixel values to a standardized range of
0 to 1, which aids in model convergence during training.
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TABLE 7. Merged both of the datasets to train, validate, and test with a more enriched one.

• Introducing spatial variability of fire and smoke in
images through random width and height shifts of up to
10

• Adjusting image rotations within a narrow range of
2 degrees to mimic slight angular differences in camera
positioning.

• Applying a zoom range of 10
• Applying vertical flips to represent different orientations
of the captured scenes.

By incorporating these augmentations, the training set
becomes more varied and closely mirrors real-world condi-
tions. This approach improves the model’s ability to perform
under different scenarios and enhances its overall robustness.

2) PREPROCESSING AND GENERATORS
The fire detection dataset was divided into separate sets for
training, validation, and testing. We used the TensorFlow
Keras ImageDataGenerator to streamline image handling and
preprocessing for optimal efficiency. This generator is a
valuable tool for providing real-time data to a neural network
without the need to store augmented images in memory.

3) TRAINING SET
The training set was configured with the data augmentation
parameters mentioned earlier to enhance model generaliza-
tion. It performs the following operations:

• Imports images from the designated training directory.
• The image dimensions are adjusted to 224 × 224 pixels
to ensure a uniform input size. This dimension is a
standard in deep learning, especially for models trained
on the ImageNet dataset, as it strikes a balance between
preserving enough detail and keeping computational
demands reasonable. The decision to use this size is a
compromise between detail preservation and computa-
tional efficiency, which will be empirically confirmed
in the results section.

• Applies the specified augmentation transformations in a
randomized manner to each batch.

• Randomly shuffles the dataset to ensure that each
training batch has a diverse image distribution.

The batch size was set to 16, balancing the speed of training
with memory usage.

4) VALIDATION AND TEST SETS
For the validation and test sets, the ImageDataGenerator
applies minimal processing to preserve the originality of the
data:

• Normalizes the pixel values by rescaling them.
• Resizes and loads images to a dimension of 224 × 224
pixels. Consistency in image size between the training
and evaluation phases prevents potential biases and
allows for an accurate assessment of model perfor-
mance.

• Avoids any augmentation transformations to ensure that
the model’s evaluation is based on unaltered data.

Shuffling is disabled for these sets to maintain consistency
in the evaluation metrics and testing outcomes.

5) CATEGORIES AND CLASS COUNT OF THE DATASET
The dataset was divided into four classes: ‘Fire’, ‘Gun’,
‘Knife’, and ‘Normal’. These categories play a vital role
in enabling the model to accurately detect and distinguish
between different fire and smoke scenarios, as well as normal
conditions without fire. Understanding the classes identified
by the training generator is crucial for setting up the softmax
output layer of a neural network. The dataset consisted of four
classes that represented specific categories.

The model is primed to handle a diverse range of datasets
by employing a meticulous approach to data augmentation
and preprocessing. This, in turn, bolsters the ability to
effectively classify images in real-world fire detection
scenarios.

C. ARCHITECTURE OF THE MODEL
Model architecture plays a crucial role in deep learning
systems. It consists of a network of interconnected layers that
work together to process the input data, create meaningful
representations, and make precise predictions. In this study,
we present a new approach that utilizes the Xception model
as the core framework, enhanced with custom layers to meet
the unique demands of our task. Every aspect of architecture
is carefully designed to strike a perfect balance between
complexity, expressiveness, and computational efficiency.

1) XCEPTION BASE MODEL
The Xception architecture, introduced by Chollet in 2017,
is a significant advancement in the design of convolutional
neural networks [37]. It is constructed based on the principles
of depthwise separable convolutions, allowing it to achieve
cutting-edge performance while using far fewer parameters
than traditional architectures. The model is composed of
71 convolutional layers organized into 14 modules. Each
module includes depthwise separable convolutions, batch
normalization, and rectified linear unit (ReLU) activation.
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This design promotes the reuse of features and allows for
smooth training, resulting in quicker convergence and better
generalization abilities.

2) CUSTOM LAYERS
• Global Average Pooling 2D Layer: When adapting
the Xception model for our unique classification task,
we enhanced it with custom layers specifically designed
to suit our dataset and goals. The model begins with
the base Xception architecture, which acts as a robust
feature extractor. We added custom layers to further
enhance the extracted features and improve classifica-
tion accuracy. After the feature extraction stage, we used
a Global Average Pooling 2D layer to decrease the
spatial dimensions of the feature maps while retaining
crucial spatial information [38]. This pooling operation
combines feature maps across spatial dimensions to
create a condensed representation that can better handle
spatial translations and distortions.

GAP(x) =
1
N

N∑
i=1

xi (1)

• Dense Layer: We incorporate dense layers with rec-
tified linear unit (ReLU) activation functions and L2
regularization to facilitate feature learning and reduce
overfitting. The ReLU activation function enables the
model to grasp intricate patterns and connections within
the data by introducing non-linearity [39]. Additionally,
L2 regularization discourages the model from assigning
excessive importance to certain weight values, promot-
ing the learning of more straightforward and widely
applicable representations:

f (x) = σ (Wx + b) + λ

n∑
i=1

w2
i (2)

• Batch Normalization Layer: To enhance the model’s
resilience and adaptability, we included batch normal-
ization layers [40]. Batch normalization normalizes the
activations within each mini-batch, reducing the effect
of internal covariate shift and speeding up convergence
during training. This normalization technique enhances
the stability and efficiency of the optimization process,
allowing the model to learn more effectively from the
data.

BN(x) = γ

(
x − µ

√
σ 2 + ϵ

)
+ β (3)

where γ and β are learnable parameters, µ is the mean,
σ is the standard deviation, and ϵ is a small constant used
to avoid division by zero.

• Dropout Layer: To address overfitting, we utilize
dropout regularization [41]. During training, dropout
randomly masks a fraction of the units, helping the
model learn redundant representations and reducing its
dependence on specific features. This regularization

technique makes the model more resilient and avoids
memorizing irrelevant noise during training, enhancing
its ability to perform well on new and unseen samples.
The dropout operation is defined as follows:

Dropout(x) = x ⊙ M (4)

• L2 Regularization: Regularization is used in the dense
layers to discourage large weights and avoid overfitting.
It incorporates a penalty term into the loss function,
directly proportional to the square of the weights:

λ

n∑
i=1

w2
i (5)

Here, λ is a coefficient used for regularization, and wi
represents the weights assigned to themodel parameters.

• Softmax Output Layer: A Softmax Output Layer is
integrated to generate class probabilities for multiclass
classification [42]. The softmax function normalizes
the output scores across different classes, ensuring that
the model’s predictions adhere to a valid probability
distribution:

Softmax(xi) =
exi∑
j e
xj

(6)

The resulting architecture showcases a seamless blend of
cutting-edge techniques and customized adjustments, per-
fectly suited to address the unique challenges and demands
of our classification task. By leveraging the Xception model
and adding custom layers, we aim to maximize performance
and improve generalization on our dataset.

3) SUMMARY OF THE MODEL
This detailed explanation offers a comprehensive overview of
the model architecture, explaining the reasoning behind each
component and how it contributes to the overall system. The
citations supporting each technique highlight the scientific
rigor and importance of the design decisions made in the
study.

• Xception base model: An architecture for deep con-
volutional neural networks proposed by Chollet in
2017 [37], known for its efficiency and impressive
performance in tasks involving feature extraction.

• Specialized Layers: Custom layers are added to
enhance feature representations, introduce non-linearity,
and avoid overfitting. These layers include Global Aver-
age Pooling 2D, dense, batch normalization, dropout,
and softmax.

• Applying L2Regularization:Regularization is used on
dense layers to discourage large weights and encourage
generalization [39].

D. TRAINING APPROACH
For optimal model convergence and efficiency, we adopted a
training strategy utilizing the Adam optimizer with a learning
rate of 1 × 10−4 and categorical cross-entropy as the loss
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FIGURE 3. The diagram depicts the proposed method for identifying fire and weapon, encompassing
preprocessing, an Xception model, and several custom layers.

function. The dataset included both original and augmented
images to enhance robustness. Through a series of initial
experiments, the learning rate of 1× 10−4 was chosen for its
balance between convergence speed and model performance.

To determine the optimal learning rate, we conducted a
series of initial experiments where we tested various learning
rates, ranging from 1 × 10−6 to 1 × 10−2. We evaluated
each learning rate based on model performance metrics such
as accuracy, loss convergence, and stability during training.
The learning rate of 1 × 10−4 consistently provided a good
balance, ensuring quick convergence while maintaining high
performance.

To ensure training stability, we maintained a batch size
of 16, which was optimal given our hardware capabilities,
specifically the free version of Google Colab. We imple-
mented early stopping with a patience of three epochs to
mitigate overfitting and employed model checkpoints to
save the best-performing model based on validation loss.
The training specifications, detailed in Table 8, leveraged
cutting-edge models optimized for performance on an
NVIDIA Tesla T4 GPU.

Our training approach was designed for efficiency and
effectiveness, incorporating early stopping and the power of

the NVIDIA Tesla T4 GPU on Google Colab to expedite the
process. Multiple workers were utilized to further accelerate
training.

To train the baseline models in Google Colab, we used
the Keras and TensorFlow libraries. The datasets had varied
input sizes, epoch batch sizes, augmentation parameters,
learning rates, and optimizer activation functions.We ensured
that each algorithm was trained under the same conditions
to allow for a fair comparison. By maintaining consistent
learning rates across different models, we ensured that
the comparative results reflected the inherent performance
differences of the models rather than variations due to
different learning rates.

The framework of our proposed strategy is outlined below,
as shown in Figure 3.

E. EXPLAINABLE AI
In this study, we introduce an Xception-based convolutional
neural network model that is, meticulously trained on a
comprehensive dataset encompassing a various scenarios
involving guns, knives, fires, and normal scenarios. The
model’s architecture was designed to yield transparent visual
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TABLE 8. Training specifications.

explanations for its inferential processes, thereby enhancing
trust and understanding of its predictive capabilities.

• Grad-CAM++: Grad-CAM++ serves as an extension
of the original Gradient-weighted Class ActivationMap-
ping (Grad-CAM), augmenting it with the capability
to leverage second-order gradient information. This
advancement permits a more granular visualization of
influential regions within an image that guides the
model’s predictions. Themathematical representation of
Grad-CAM++ is expressed as follows:

wck =

∑
i

∑
j

αcijk · ReLU
(

∂Aijk
∂Yc

)
(7)

LCij =

∑
k

wCk · Aijk (8)

where wCk symbolizes the importance weights of neu-
rons, Aijk delineates the activation maps for the kth
feature map, αcijk represents the pixel-wise gradient

weighting coefficients, and ∂Aijk
∂Yc

denotes the contribu-
tion of featuremap pixels to the class score. The resultant
localization map LCij accentuates the spatial locations

that are imperative for class c discrimination [43], [44].
• SmoothGrad: SmoothGrad is employed in tandem
with Grad-CAM++ to refine visual explanations by
mitigating noise. This is accomplished by averaging the
gradients of the class score of the input image across
multiple perturbed instances with Gaussian noise:

M̂c(x) =
1
n

∑
Mc(x + N (0, σ 2)) (9)

where n signifies the number of noisy samples, and
N (0, σ 2) are Gaussian noises with a standard deviation
of σ . This methodology engenders saliency maps
with enhanced clarity, facilitating a more coherent
interpretation of the critical regions that influence a
model’s decisions [45].

The initial phase of our methodology involved deploying
the pre-trained Xception model and defining the class labels
pertinent to the domain of interest. Subsequently, we curated
a repository of images for each category, and meticulously
selected and processed individual samples to construct a
descriptive analysis. By documenting both the true and
predicted labels of the images, we ensured the veracity
of the provided explanations. The insights gained from
the application of Grad-CAM++ and SmoothGrad will be

elucidated in the forthcoming sections dedicated to the results
and discussion.

Though our decision to use a single architecture for
both fire detection and weapon detection is driven by the
practical benefits of a unified approach, which leverages
the advanced capabilities of the Xception architecture. This
architecture excels in extracting fine-grained features from
images, allowing it to effectively learn and identify distinct
visual patterns associated with both fire and weapons.
By using a single model, we reduce computational com-
plexity and resource requirements, streamlining the training
and deployment processes. This unified approach ensures
consistent and reliable performance across different types
of threats, which is crucial for real-time threat detection in
corporate environments. Furthermore, integrating both tasks
into one model allows for shared feature representations,
optimizing overall efficiency and enhancing the system’s
ability to accurately and promptly identify a wide range of
security risks. This approach simplifies system architecture,
providing a robust and practical solution for comprehensive
threat detection.

IV. RESULTS
Based on our analysis, we propose a unique classification
approach using Xception for various threat categorizations.
To demonstrate the effectiveness of our approach, we con-
ducted a comparison with existing models. To evaluate our
model, we calculated various performance measures, such as
accuracy, precision, recall, and F1-score.

A. PERFORMANCE COMPARISON
The top-performing model surpassed Xception in accuracy
when data augmentation was applied, achieving an impres-
sive accuracy, precision, recall, and F1-score all at 95%.
This significant improvement is crucial for swiftly identifying
potentially life-threatening situations such as fires, knives,
or guns. The results of this comparison are shown in Table 10.
Various CNN models were evaluated using diverse accu-

racy metrics, both with and without data augmentation.
Without augmentation, models showed varied levels of
accuracy, precision, recall, and F1-score. The proposedmodel
achieved the highest overall performance at 94%, with
notable performances by Xception and NASNetLarge at 9%
accuracy. Introducing data augmentation improved model
efficacy across the board. The results are summarized in
Table 9 for models without augmentation and Table 9 for
models with augmentation. The proposedmodel reached 95%
accuracy with augmentation, enhancing precision, recall,
and F1-score to 95%. Similarly, models like DenseNet201
and Xception improved to 93% accuracy. This highlights
the effectiveness of data augmentation in enhancing model
robustness and generalization across diverse data scenarios.

The Xception network was selected as the foundational
model due to its exceptional performance across various
image classification tasks. Its depthwise separable convolu-
tions effectively reduce parameter count without sacrificing
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FIGURE 4. The class wise performance of each model’s is summarized in
this bar chart.

accuracy, making it particularly adept at detecting diverse
threats with high precision. Moreover, its established success
in transfer learning applications validated its suitability for
our model’s objectives.

The class-wise performance metrics in Figure 4 for
precision, recall, and F1-score reveal distinct patterns in the
model’s ability to accurately classify different categories. For
the ‘Fire’ class, the model achieved the highest precision at
0.99, indicating an exceptional ability to correctly identify
true positives with minimal false positives. Similarly, the
‘Knife’ class demonstrated high precision at 0.98. However,
the ‘Normal’ class had a notably lower precision of 0.83,
suggesting more difficulty in distinguishing this class from
others. In terms of recall, the ‘Gun’ class led with 0.97,
showing the model’s effectiveness in capturing most of the
true positive instances. The ‘Normal’ class also performed
well with a recall of 0.96, indicating that the model correctly
identified most normal instances despite its lower precision.
The F1-score, which balances precision and recall, was
highest for the ‘Gun’ and ‘Fire’ classes at 0.96 each,
reflecting consistent performance across both metrics. The
‘Knife’ class followed closely with an F1-score of 0.95.
Meanwhile, the ‘Normal’ class had the lowest F1-score
at 0.89, aligning with its lower precision. These results
highlight themodel’s strong overall performance, particularly
in identifying hazardous objects, while also pointing out areas
for potential improvement in classifying normal scenarios.

B. CONFUSION MATRIX ANALYSIS
We acquired confusion matrices to thoroughly examine the
model’s performance. The confusion matrices of different
models are shown in Figure 5. Through an in-depth examina-
tion, it became evident that the proposed model consistently
outperformed the others across a wide range of images. The
color on the diagonal of the confusion matrix indicates the

number of instances in which the model accurately predicted
the ground truth value.

C. TRAINING AND VALIDATION METRICS
Figures 6, 7, and 8 show the accuracy, loss, precision, recall,
and area under the curve (AUC) of our model. These graphs
indicate that our model performs exceptionally well. Our
model has made significant progress and has effectively
learned from the training data, as evidenced by the substantial
improvement in the accuracy ratio between the training and
validation curves. The loss graph shows that the validation
data consistently had a slightly lower loss value than the
training data, suggesting our model performed effectively
without overfitting. Examination of the precision and recall
graphs indicates that the validation precision and recall values
surpassed the training precision and recall values, confirming
that our model was not overfitting.

Based on the AUC graph, it is evident that our model
performed well, with a score close to 1. A larger AUC value
indicated a strong ability to distinguish between multiple
classifications. Our proposed model for categorizing data
proved to be highly effective.

As shown in Table 10, the results of the performance
assessment demonstrate that our model outperformed the
others in terms of accuracy (0.95), precision (0.95), recall
(0.95), and F1-score (0.95).

D. ABLATION STUDIES
To accurately assess the role and significance of each layer,
our ablation studies incorporated layerwise modulations
rather than merely inserting or deleting layers. This approach
provided a detailed understanding of the contribution of
each layer to the overall model performance. Table 11
presents the results of these ablation studies, demonstrating
the incremental benefits of each added component:

• Base Model: The baseline Xception model achieved an
accuracy of 0.93, precision of 0.93, recall of 0.93, and
F1 score of 0.93.

• Base Model + Global Average Pooling: Adding
Global Average Pooling maintained the performance at
0.93 across all metrics, suggesting no immediate impact.

• Base Model + Global Average Pooling + Dense
Layer 1: Introducing the first custom Dense layer (512
units) improved accuracy and recall to 0.94, while
precision and F1 score remained at 93%.

• Base Model + Global Average Pooling + Dense
Layer 1 + Dense Layer 2: Adding the second custom
Dense layer (64 units) resulted in uniform performance
improvements, achieving 0.94 in accuracy, precision,
recall, and F1 score.

• Base Model + Global Average Pooling + Dense
Layer 1+Dense Layer 2+Dense Layer 3:Adding the
third custom Dense layer (16 units) reached the highest
performance with 0.95 across all metrics.

113512 VOLUME 12, 2024



N. Jahan et al.: SafeguardNet: Enhancing Corporate Safety via Tailored Deep Transfer Learning

FIGURE 5. Confusion matrix of different models.

FIGURE 6. Training and validation accuracy (left) and training and validation loss (right).

FIGURE 7. Precision for training and validation data (left) and recall for training and validation data (right).

These quantitative results highlight the performance vari-
ations of each layer, confirming the significance of our
architectural choices and ensuring robust and accurate threat
classification.

We evaluated the performance of our proposed model
across various image resolutions to determine its efficacy and

robustness. The results, as shown in Table 12, demonstrate
a clear trend in performance metrics such as Accuracy,
Precision, Recall, and F1-Score.

At the lowest resolution of 71 × 71 pixels, the model
achieved an accuracy of 0.80, with precision, recall, and F1-
score closely aligned at 0.81, 0.79, and 0.80, respectively.
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FIGURE 8. Training and validation AUC.

TABLE 9. Evaluation of the performance of applied models using various
accuracy parameters without augmentation.

TABLE 10. Evaluation of the performance of applied models using
various accuracy parameters with augmentation.

As we increased the resolution to 128 × 128 pixels,
a significant improvement was observed across all metrics,
with the model reaching an accuracy of 0.92, precision of
0.92, recall of 0.91, and an F1-score of 0.91.

The highest performance was recorded at a resolution of
224 × 224 pixels, where the model achieved an impressive
accuracy, precision, recall, and F1-score of 0.95 each. This
peak performance indicates that this resolution is optimal for
our model. Interestingly, at a resolution of 256 × 256 pixels,
the performance metrics slightly declined to 0.94 across the
board, suggesting a potential saturation point or overfitting at
higher resolutions.

Further increasing the resolution to 512 × 512 pixels
resulted in a slight decrease in performance, with an accuracy
of 0.92, precision of 0.91, recall of 0.93, and an F1-score of
0.91. This decline might indicate that very high resolutions
do not necessarily enhance model performance and might
introduce additional computational complexity.

In summary, our findings highlight the importance of
selecting an appropriate image resolution to balance perfor-
mance and computational efficiency, with 224 × 224 pixels
emerging as the optimal resolution for our proposed model.

E. EXPLAINABLE AI
Our approach to Explainable AI (XAI) in this research
involved using advanced visualization techniques, specif-
ically Grad-CAM++ and SmoothGrad, to interpret the
predictions made by our Xception-based model. These
methods help us understand which parts of an image the
model focuses on when making its classification decisions,
thereby providing transparency into the model’s decision-
making process.

To implement these techniques, we loaded our trained
Xception-based model and used a set of test images across
various classes (Fire, Gun, Knife, and Normal). For each
image, we applied both Grad-CAM++ and SmoothGrad
to generate visual explanations of the model’s predictions.
Grad-CAM++ generates heatmaps that highlight important
regions in the image for prediction, while SmoothGrad
reduces noise in saliency maps to provide clearer visualiza-
tions of model attention.

The process included the following steps:

1) Loading the Model and Images: We initialized our
trained Xception model and prepared a batch of test
images representing different classes.

2) Generating Explanations: For each test image,
we computed Grad-CAM++ heatmaps and Smooth-
Grad saliency maps. Grad-CAM++ computes gra-
dients of the predicted class score with respect to
feature maps from the last convolutional layer, empha-
sizing regions relevant to the prediction. SmoothGrad
enhances these maps by averaging multiple noisy
perturbations of the input image.

3) VisualizingResults:Wevisualized the original images
alongside their corresponding Grad-CAM++ and
SmoothGrad visualizations. This comparison included
both the actual class labels and the model’s predicted
labels, facilitating a direct assessment of model inter-
pretability.

4) Analyzing Model Behavior: We analyzed these visu-
alizations to discern which image regions the model
deemed significant for classification. This analysis
helped evaluate the model’s accuracy in identifying
distinguishing features across different classes and
identify potential areas of misclassification.

In Figure 9, we present a grid of images alongside their
explanatory visualizations. This includes the original image,
Grad-CAM++, and SmoothGrad outputs, illustrating the
model’s attention distribution for each sample. For images
classified as normal, such as hallways, the model’s focus
on central regions likely reflects its learning to recognize
symmetrical and consistent patterns that are characteristic of
normal scenes. This behavior underscores the model’s ability
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TABLE 11. Ablation study results.

TABLE 12. Our proposed model performance at different resolutions.

FIGURE 9. Explainable AI for all classes.

to leverage contextual and spatial cues to distinguish normal
from abnormal scenarios, as informed by patterns observed
during training.

These techniques yield valuable insights into the model’s
decision-making process, aiding in the assessment and
refinement of its performance and interpretability.

V. DISCUSSION
The continual menace of threats such as fires, knives,
and guns presents significant risks to public safety. The
development of highly efficient and accurate detection
systems. In response, our research introduces a sophisticated
classification approach utilizing a custom-tailored Xception
model, specifically designed for the multiclass categorization

of these threats. The choice of the Xception model was
predicated on its demonstrated higher accuracy, minimal
loss, and exceptional performance in complex and critical
scenarios. In terms of the model architecture, the adaptation
of the Xception model improved the efficiency and compu-
tational speed by using depthwise separable convolutions.
Additional custom layers equipped with rectified linear units
(ReLUs), batch normalization, and dropout regularization
are instrumental in learning intricate representations, curbing
overfitting, and bolstering generalization. These modifica-
tions have significantly advanced existing models, partic-
ularly in adapting to multifaceted urban environments and
diverse threat scenarios. This strategy not only diversified the
training data but also enhanced the model’s ability to decode
complex patterns. Our evaluations confirm the model’s
efficacy in real-life threat detection scenarios, as evidenced
by its remarkable accuracy, precision, recall, and F1-score
metrics. However, future work could expand the practical
applications of themodel to residential and industrial settings.
Moreover, multiple data sources were used to reflect the
complexity of urban environments and the variety of potential
threat scenarios. To address these unique challenges further,
collecting additional threat-related data, such as from CCTV
footage, social media, or other digital media sources, could
enrich our model’s training dataset. Platforms such as Google
Street View, OpenStreetMap, or even proprietary surveillance
systems can be leveraged to obtain real-time or near-real-
time imagery of targeted public areas for enhanced situational
awareness. Despite the availability and accessibility of these
data sources by region, custom solutions tailored to specific
needs and challenges of threat detection systems are essential.
Our proposed model effectively meets these requirements
through its customization and the use of explainable AI
techniques, proving that the proposed system is a new
standard in the field of threat detection and public safety.

VI. CONCLUSION
Given the seriousness of threats such as fire, knife, and
gun incidents, it is crucial to have strong detection systems
in place to minimize risks and safeguard the well-being
of people and communities. We developed a specialized
advanced classification approach based on Xception to
detect various threat categories, such as fire, knife, and
gun incidents. With careful analysis and thorough testing,
we proved that the exceptional performance and reliability
in accurately detecting potential threats, surpassing other
existing models in the field. The results of our research
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show the impressive performance of our proposed model,
boasting an outstanding accuracy, precision, recall, and
F1-score of 0.95 across all metrics. Ensuring precise and
timely threat detection is crucial in a wide range of real-
world applications, ranging from public safety to security
surveillance. Explainable AI techniques such as Grad-
CAM++ and SmoothGrad, have provided valuable insights
into how the model makes decisions, which improves the
understandability and reliability of its predictions. These
techniques provide clear visual explanations of the model’s
reasoning, allowing stakeholders to make informed decisions
based on the model’s results. Although our model has
shown significant progress, there are still some limitations,
especially in situations in which contextual cues can impact
classification outcomes. To overcome these limitations,
additional research is needed to explore contextual awareness
learning techniques and broaden the training dataset to
include a more diverse range of scenarios. Our study provides
a comprehensive and reliable classification approach for
detecting threats in images. This approach has significant
implications for improving safety and security in different
domains,and offers valuable insights. In the future, further
research should be conducted to improve the model, tackle
any remaining obstacles, and expand its use in various real-
life situations. This will ultimately help advance the threat
detection technology and ensure the safety of people and
communities.
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[26] P. V. A. B. de Venǎncio, A. C. Lisboa, and A. V. Barbosa, ‘‘An automatic
fire detection system based on deep convolutional neural networks for
low-power, resource-constrained devices,’’ Neural Comput. Appl., vol. 34,
no. 18, pp. 15349–15368, Sep. 2022.

[27] S. Dogan, P. Datta Barua, H. Kutlu, M. Baygin, H. Fujita, T. Tuncer, and
U. R. Acharya, ‘‘Automated accurate fire detection system using ensemble
pretrained residual network,’’ Exp. Syst. Appl., vol. 203, Oct. 2022,
Art. no. 117407.

[28] C. Bahhar, A. Ksibi, M. Ayadi, M. M. Jamjoom, Z. Ullah, B. O. Soufiene,
and H. Sakli, ‘‘Wildfire and smoke detection using staged YOLO model
and ensemble CNN,’’ Electronics, vol. 12, no. 1, p. 228, Jan. 2023.

[29] S. Khan, K. Muhammad, T. Hussain, J. D. Ser, F. Cuzzolin,
S. Bhattacharyya, Z. Akhtar, and V. H. C. de Albuquerque, ‘‘DeepSmoke:
Deep learning model for smoke detection and segmentation in outdoor
environments,’’ Exp. Syst. Appl., vol. 182, Nov. 2021, Art. no. 115125.

[30] A. S. Pundir and B. Raman, ‘‘Dual deep learning model for image based
smoke detection,’’ Fire Technol., vol. 55, no. 6, pp. 2419–2442, Nov. 2019.

[31] V. E. Sathishkumar, J. Cho, M. Subramanian, and O. S. Naren, ‘‘Forest
fire and smoke detection using deep learning-based learning without
forgetting,’’ Fire Ecol., vol. 19, no. 1, p. 9, Feb. 2023.

[32] M. Zahrawi, ‘‘Weapon detection YOLOv7,’’ IEEE, USA, 2022, doi:
10.21227/3akm-cb29.

[33] A. Saied. (2018). Fire Dataset. [Online]. Available: https://www.kaggle.
com/phylake1337/fire-dataset

[34] A. Kumar. (2019). Fire Detection Dataset. [Online]. Available:
https://www.kaggle.com/atulyakumar98/test-dataset

113516 VOLUME 12, 2024

http://dx.doi.org/10.21227/3akm-cb29


N. Jahan et al.: SafeguardNet: Enhancing Corporate Safety via Tailored Deep Transfer Learning

[35] O. Abimbola. (2019). Fire-Smoke-dataset. [Online]. Available: https://
github.com/DeepQuestAI/Fire-Smoke-Dataset

[36] Spacewalk01. (2022). YOLOv5-Fire-Detection: Datasets. [Online]. Avail-
able: https://github.com/spacewalk01/yolov5-fire-detection/tree/main/
datasets

[37] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-
tions,’’ 2016, arXiv:1610.02357.

[38] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400.

[39] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[40] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), 2015, pp. 448–456.

[41] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[42] I. Goodfellow, Y. Bengio, and A. Courville, ‘‘Deep learning,’’ Genet
Program Evolvable, vol. 22, no. 4, pp. 351–354, Oct. 2016.

[43] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
‘‘Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), Mar. 2018, pp. 839–847.

[44] Y. Zhang, D. Hong, D. McClement, O. Oladosu, G. Pridham, and
G. Slaney, ‘‘Grad-CAM helps interpret the deep learning models trained
to classify multiple sclerosis types using clinical brain magnetic resonance
imaging,’’ J. Neurosci. Methods, vol. 353, Apr. 2021, Art. no. 109098.

[45] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, ‘‘Smooth-
Grad: Removing noise by adding noise,’’ 2017, arXiv:1706.03825.

NUSRAT JAHAN received the Bachelor of Sci-
ence degree in computer science and engineering
(CSE) with a major in software engineering from
American International University-Bangladesh
(AIUB), in 2022, where she is currently pursuing
the master’s degree. Her research interests include
machine learning, web interaction design, and
natural language processing.

MOHAMMAD SAYEM CHOWDHURY (Asso-
ciate Member, IEEE) received the M.Sc. degree
in computer science and engineering from
American International University-Bangladesh
(AIUB), Dhaka, Bangladesh, in 2023. His major
field of study is intelligent systems. He is currently
a Researcher, focusing on machine learning,
deep learning, and natural language processing.
He has contributed to various open-source
projects and participated in numerous data science

competitions on platforms, such as Kaggle and Tableau Public. He has
authored or co-authored several research articles on AI and data science, with
his work, including developing predictive models and implementing deep
learning techniques. His current research interests include deep learning,
natural language processing, and the ethical implications of AI technologies.

TOFAYET SULTAN is currently a Lecturer with
the Department of Computer Science, Faculty of
Science and Technology, American International
University-Bangladesh (AIUB). Previously, he has
been a Lecturer with the Department of Computer
Science and Engineering, Faculty of Science and
Engineering, Uttara University. He has worked
for a number of research projects in different
domains. His research interests include agent-
based modeling, human–computer interaction,

machine learning, natural language processing, and deep learning.

M. F. MRIDHA (Senior Member, IEEE) received
the Ph.D. degree in AI/ML from Jahangirna-
gar University, in 2017. He is currently an
Associate Professor with the Department of Com-
puter Science, American International University-
Bangladesh (AIUB). Before that, he was an
Associate Professor and the Chairperson of the
Department of CSE, Bangladesh University of
Business and Technology. He was also a CSE
Department Faculty Member with the University

of Asia-Pacific and as the Graduate Head, from 2012 to 2019. His research
experience, within both academia and industry, results in over 120 journals
and conference publications. His research work contributed to the reputed
Scientific Reports,Nature,Knowledge-Based Systems, Artificial Intelligence
Review, IEEE ACCESS, Sensors, Cancers, and Applied Sciences. His research
interests include artificial intelligence (AI), machine learning, deep learning,
natural language processing (NLP), and big data analysis. For more than
ten years, he has been with the master’s and undergraduate students as a
supervisor of their thesis work. He has served as a program committee
member for several international conferences/workshops. He served as an
Associate Editor for several journals, including PLOS One journal. He has
served as a Reviewer of reputed journals and IEEE conferences, such as
HONET, ICIEV, ICCIT, IJCCI, ICAEE, ICCAIE, ICSIPA, SCORED, ISIEA,
APACE, ICOS, ISCAIE, BEIAC, ISWTA, IC3e, ISWTA, CoAST, icIVPR,
ICSCT, 3ICT, and DATA21.

MD SADDAM HOSSAIN MUKTA (Member,
IEEE) received the Ph.D. degree from the BUET
Data Science and Engineering Research Labora-
tory (DataLaboratory), Bangladesh, in 2018. He is
currently a Postdoctoral Researcher with the LUT
School of Engineering Sciences, LUT University,
Finland. He has a number of quality publications
in both national and international conferences and
journals. His research interests include machine
learning, social network analysis and mining,

social computing, and data mining.

VOLUME 12, 2024 113517


