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ABSTRACT In recent years, the demand for service robots capable of executing high-level tasks has grown.
In the future, service robots will be expected to perform complex tasks like ‘Set table for dinner’. Such
high-level tasks require that the robot possess the ability to retrieve multiple objects from the environment.
Thus this paper investigates the challenge of locating multiple objects in an environment, termed ‘Find
my Objects’. In our approach, we present a novel model for extraction of ‘Environment-specific’ priors
from generalized data available in public datasets. We present a novel heuristic specifically designed to
optimize Multi-Object search in indoor spaces while considering User Preferences. We also propose a
novel Post-task Position Optimization (PTPO) strategy for improved performance in successive tasks. PTPO
enables the robot to leverage information gained during a task to improve its inferencing for the next task.
Our approach is built on a Semantic Mapping framework that combines semantic object recognition with
geometric data to generate a multi-layered map. We fuse the Semantic Map with environment-specific
priors in our inferencing strategy. Importantly, our method is agnostic to object detectors, Visual SLAM
techniques, and local navigation planners. We demonstrate the ‘Find my Objects’ task in real-world indoor
environments, yielding quantitative results that attest to the effectiveness of our methodology. This strategy
can be applied in scenarios where service robots need to locate, grasp, and transport objects, taking into
account user preferences.

INDEX TERMS Service robotics, object search, probabilistic inference, semantic map.

I. INTRODUCTION not limited to manipulating items, assisting individuals with
Service robots for domestic environments are in high demand. disabilities, and environmental maintenance.

They are being deployed for a diverse array of applications Relying solely on exhaustive exploration or random
including object delivery, patrolling, and cleaning. Addi- navigation can be energy-intensive and may not meet
tionally, advancements in SLAM (Simultaneous Localization time requirements. Therefore, it is essential to harness
and Mapping), deep learning, and object manipulation have information from diverse sources to refine robotic object

accelerated the development [1] of service robots. Their search. Semantic SLAM can provide significant support in
integration spans a spectrum of use-cases, from automating this regard. Semantic SLAM involves the extraction and
household chores to specialized long-term care for the elderly integration of semantic understanding with geometric data
[2], [3]. A fundamental skill that all service robots require is to produce detailed, knowledge-based maps. These maps
the ability to retrieve items effectively. The ability to locate not only identify landmarks like furniture and appliances
and pick objects is crucial for downstream tasks including but typical in a house setting but also classify areas such as
living rooms [4], [5]. Incorporating semantic information can

The associate editor coordinating the review of this manuscript and also assist in problems related to long-term localization [6].
approving it for publication was Byoung Wook Choi . In addition, state-of-the-art approaches incorporate beliefs
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FIGURE 1.

Overview of our framework. We implement multi-object search on top of a semantic map. The implementation is split into various

modules; some of which are online, some are offline, and some are user-inputs. For a detailed explanation of each module, the interested reader can
go through Sec. 111-A (Visual SLAM), Sec.llI-B (Data Association), Sec. I1I-C (OR Layer), Sec. IV-A (Environment-specific priors) and Sec. IV-C (PTPO).

about dynamic entities such as other agents or humans [7].
Robots can build informative and contextually rich maps with
the help of semantic SLAM techniques, facilitating faster
object search.

With the evolution of deep neural networks, extracting
semantic information has become more streamlined. Convo-
lutional Neural Networks (CNN) like Yolov7 [8] facilitate
real-time object detection, while models like MaskRCNN
[9] enable detailed instance segmentation. Service robots can
benefit from the combined prowess of semantic SLAM and
deep learning to enhance object search capabilities.

Despite significant advancements in robotics, robots today
still lack the intuitive scene-awareness that humans naturally
possess. For instance, while a robot can identify an area
as a kitchen and an object as a cup, it should possess the
common-sense that ‘cups are typically found in the kitchen’.
Secondly, it needs to understand negative correlations to
identify objects that are ‘out of place’. A holistic awareness
of what is ‘in place’ and ‘out of place’ is necessary for
execution of complex tasks like Prepare bag for work or Tidy
up my house [10]. Moreover, user preferences significantly
influence what can be deemed as ‘in-place’ or ‘out of
place’ in the environment. For e.g., a user working from
home may prefer their laptop on the couch while someone
else may arrange their work setup differently (e.g., in the
bedroom). Due to the preferences of an individual, indoor
spaces exhibit high variability in layout and clutter. This poses
formidable challenges for robot navigation and decision
systems. Robots will need to obtain personalized knowledge
of the environments they are deployed in to overcome this
challenge. Embodied agents with the capability to prepare
and leverage knowledge-based maps of indoor environments
have a lot of potential for semantic scene-awareness. They
can use Ontologies to capture common-sense knowledge
and spatial associations between objects and places [11],
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[12]. Blending information from common-sense priors with
semantic maps is crucial for an efficient object search.

Object search is necessary for different assistive tasks such
as ‘Bring cup at the kitchen’. A robot equipped with the
ability to search for objects, pick them up and then navigate
with semantic awareness will be able to achieve this. Object
search can also assist individuals with Dementia since they
tend to forget the locations of common items. A robot that can
search for objects on demand would considerably improve
their life. In future, robots will have to deftly plan and
execute the retrieval of multiple items in the environment
to accomplish higher-level tasks. Given these considerations,
our research aims to address the multi-object search task
in indoor settings or the ‘Find my Objects’ task. We have
designed a framework that can effectively explore semantic
maps to look for items commonly found in daily life.

A. CONTRIBUTIONS
The main contributions of this paper include:

o A framework for building Semantic Maps that encodes
information about different landmarks.

« A novel strategy to blend environment specific
information with generalized knowledge to obtain
‘Environment-specific’ priors.

o Defining a multi-object search task in indoor settings
with region-to-region navigation. We propose a novel
inferencing strategy with Post-task Position Optimiza-
tion for improved performance in multi-object search.

o Quantitative results obtained in real environments and
comparisons of our method with baselines and State-of-
the-Art for object search.

B. ORGANIZATION
The remainder of the paper is as follows. Section II
reviews related work and highlights our contributions.
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Section III details our methodology to create a Semantic
Map. Section IV discusses the extraction of environment-
specific priors, multi-object search algorithm, and post-task
position optimization scenario (PTPO) and is the crux of this
submission. Section V describes our experiments, results, and
analysis of the observed data. Finally, Section VI concludes
the paper with a discussion.

Il. RELATED WORK

Early attempts at solving the task of Object Search focused on
mitigating sensor errors and uncertainties in object detection.
A boom in those sectors has led researchers to focus more
on the three core elements of object search: common-sense
priors, mapping, and inferencing mechanisms. We review
related works in these areas which helped formulate our idea.

A. COMMON-SENSE PRIORS

Common-sense priors can be defined as probabilistic rela-
tionships between objects that reflect spatial relationships
and functional associations in an environment. Priors are
important since they leverage information from public
datasets which would otherwise require collecting large
amounts of data and computation to obtain. Extraction
of common-sense priors is a challenging task. Various
multi-modal sources can be used for determining the priors.
One of the earliest works mined a database from the Flickr
website to count co-occurrences of objects and landmarks
in the tags of each image [13]. Mining priors with textual
data can be done using the Skip-Gram model [14]. In [15],
the authors synthesized textual sequences by ranking position
relationships in ascending order and used the Skip-Gram
model for extracting the common-sense prior. A similar
approach involved segregating textual data on the basis of
nouns (e.g., beds, tables) and prepositions (e.g., in, on) for
creating a hierarchical knowledge base [16], [17]. Besides
generalized sources, the environment in which the task
will be carried out can be used for extraction of priors as
well. The authors in [18] collected temporal data as the
robot navigated through the environment to build a prior
belief based on time stamps of observations. Additional
sources such as human instructions or large language models
(LLMs) can also provide common-sense priors. Unlike
these methods, we present a novel framework to leverage
environment-specific information for extraction of priors
from public datasets.

B. EXPLORATION-BASED SEARCH

Frontiers, regions on the boundary between open and
unexplored spaces, were used as the basis of exploration in
this seminal paper [19]. Frontier-based exploration ensures
coverage of the entire space and is also highly scalable
in terms of area to explore. Since then, exploration has
developed tremendous interest as an academic challenge as
well as end-application utility [20]. This has resulted in
Embodied Agents being challenged with navigating toward
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objects in an unseen environment (Object Navigation) while
simultaneously exploring it [21]. A photo-realistic simulator,
called Habitat, was designed for this challenge [22]. A state-
of-the-art solution to the Habitat challenge considered
distance prediction using semantically related objects as
cues [23]. Using semantic concepts for exploration is
presented in [24]. Exploration is also conducted using drones
by evaluating the semantic and geometric gain for all
frontiers [25].

C. SEMANTIC SLAM

Semantic SLAM is an output of detection, tracking, and
data association models combined with conventional SLAM
techniques. The interested reader can refer to different
data association models as a primer for Semantic SLAM
frameworks [26], [27], [28]. Early approaches handled
localization of semantic and geometric data independently
and then incrementally built the semantic map [29]. A more
recent method [30] used semantic data as landmarks
to improve the efficiency of conventional SLAM tech-
niques. Extra layers related to place categorization can be
added using empirical data [31] to prepare multi-layered
maps.

D. TASK-ORIENTED INFERENCE

Previously, researchers have tried to solve the object
search/retrieval problem in three ways. One approach is to
formulate object search as a Partially Observable Markov
Decision Process (POMDP) and optimize the semantic gain
from sensor observations at every time step. The Informative
Path Planning (IPP) approach aims to develop an informative
costmap corresponding to the metric map to supplement
object search. Lastly, the Next Best View (NBV) methods
consider object search to be a discrete problem and use
different strategies to determine the best locations for search.

POMDPs are a generalization of Markov Decision Pro-
cesses by including uncertainties in the observation along
with state transition uncertainty. These have been popular
among researchers trying to push the state-of-the-art in this
domain. However, POMDPs suffer from intractability when
solving for large domains [32]. To tackle the computational
burden, researchers have introduced hierarchies in spatial
scales or planning [33], [34], [35].

In the IPP method, path planning is driven by a joint
cost function consisting of information gained and distance
travelled along the path. The work in [36] first uses Gaussian
Mixture Models and Bayesian relationships to prepare an
information map. A sampling-based informative path plan
is generated using this map for object search. IPP can also
benefit from Reinforcement Learning, as explored in [37].

NBYV methods, as described earlier, depend on determining
the best locations for object search. In [38], the authors eval-
uate all routes to find the object and then store information
about different objects seen during navigation for quicker
retrieval in the next task. The authors in [39] determine a set
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of candidate viewpoints and evaluate the viewpoints based on
probabilistic belief around the viewpoint.

Our approach can be broadly categorized as an NBV
method. In our approach we present a novel framework
for extraction of environment-specific priors. Unlike other
Object Search approaches, we consider multiple objects
while planning and optimize our trajectory accordingly.
This provides better results as compared to splitting the
multi-object search into sequential single-object searches.
We also introduce a novel PTPO framework to improve
performance in successive task execution. Furthermore,
we provide the robot the capability to prioritize objects based
on user preferences.

Ill. SEMANTIC MAPPING FRAMEWORK

This section presents our semantic mapping framework,
which builds upon our previously introduced framework [40]
by adding additional layers to the semantic map and
increasing the number of object classes. We begin with a
brief description of the pre-processing steps followed by a
detailed description of the second layer of our semantic map.
This layer involves the integration of conventional SLAM
processes with a filtering and tracking module, enabling the
overlay of the grid map with object information. Finally,
we compute an ‘observation layer’ based on the obtained
object information. Similarly, several such layers can be
added with new information in our framework (e.g., map
topology or region segmentation) [41].

Our framework is built upon the open-source middleware
Robot Operating System (ROS) [42] and its associated
libraries. We use the ‘Grid Map Library’ [43] to build,
visualize, and maintain our triple-layered map in conjunction
with ROS. Additionally, we utilized the Azure Kinect DK
sensor SDK [44] for synchronization and rectification of
RGB and Depth images.

A. VISUAL SLAM

The RGB and depth images from the Azure Kinect sensor are
registered to prepare the semantic map. The depth image is
registered in the RGB frame since the RGB image has a lower
FoV (Field of View) and subsequently, the compressed depth
and RGB images are transported from the onboard computing
system to the server computer. These images are rectified
using intrinsic camera calibration parameters provided by
the SDK, and finally, the point cloud data is generated.
The resulting point cloud data is used to create a 3D grid
map (octomap) of the environment. While any kind of 3D
map representation like RGBDSLAMV2 [45] can be used
for navigation, we choose RTAB-Map [46] as the preferred
method because of its appearance-based loop closure in real-
time.

B. DATA ASSOCIATION
Five of the most ubiquitous object classes in indoor spaces,
namely the chair, bed, table, TV, and sofa, are taken
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into consideration for generating the semantic map. During
the mapping process, YOLOvV7 [8] is employed to detect
objects in frames. The YOLOV7 network generates a 5-D
output for each detected object, including the object class
and four bounding box parameters (center coordinates: Cy
and Cy, breadth: B, and length: L). The bounding boxes are
randomly sampled, and the mean X and Y coordinates are
computed from the corresponding point cloud data. Multiple
measurements over time are fused using Kalman filtering
before placing 3D models on the map frame.

After an object is placed on the map, it needs to be tracked
to determine if it is a previously detected instance of that
object or not. For tracking the objects in these scenarios,
we maintain the record of 'K’ previously seen objects of a
class and current observations in the latest frame ('L’ objects
of the same class) as follows:

P={Py,Pi, -, Pk} (D
C={Cy,Cy,---,Cr} 2)

We then calculate a cost-association matrix Dy ; between both
the sets using Euclidean distance as shown in equation 3
below.

(k1) e (K.L): Dy =+ —CYT®—Cp)  (3)

After the cost-association matrix is computed, the association
between new observations (i.e., set C) and previous observa-
tions (i.e., set P) is determined using the Hungarian algorithm
[47] as prescribed in [4].

Association P <> C such that:

min ZZ Dlekl (4)
k1

1, if 'k’ is assigned to ‘I’,
where, Xy = .
0, otherwise

The determined association (P, <> Cj) is also distance
dependent; meaning that if the association distance is less
than the threshold value o« (Dx; < «), the association is
considered to be valid else the observation is appended to set
P as a new instance.

If the object is determined as previously seen, a Kalman
filter is used to combine current and prior observations
of the same instance over time. For a prior state of the
instance ‘k’ given by P;;l and an associated new observation
C], determined via the Hungarian algorithm, the following
computations are carried out:

Prediction Step : P = SP{™', )
Correction Step : P} = P} + K(t)(C] —ZP}.)  (6)

where, S is the 2 x 2 state transition matrix (set to identity),
Z is the measurement matrix (set to identity), and K(¢) is the
Kalman gain. The optimal Kalman gain, K(z), is computed
with a diagonal process noise covariance matrix of 0.3 and
a diagonal measurement noise covariance matrix of 0.5I.
We summarize this semantic mapping framework in the
Algorithm 1 below.
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FIGURE 2. Robot navigation in the semantic map. First Layer: metric grid map with obstacle information as occupied cells. Second layer:
landmarks shown by CAD models. Third Layer: observable regions shown by red grids.

Algorithm 1 Algorithm for Semantic Mapping
Require: Odom, PCD, Scan, Prev(P)

1: Input : Curr(C), Transformscam—s map

2: while Not_Shutdown do

3: Map < Update (Map;_1, Odom, Scan)

4 if CurrObs
5 C’ < Sampling(PCD, BBox)
6: C <« Transformscam—s map[C'1
7: endif
8
9

> V(k, 1) € (Prev, Curr)
: [P < C] < Hungarian (Dy 1, Xk.1)
10: if [P < C]is valid

Dy < Dist(P, C)

11: P;+1k < Prediction(S, Py )
12: Pk < Correction(P;H‘k,Z, Civ1.1, Pr k)
13: endif

14: end while

C. OBSERVABLE REGION LAYER

After completion of the mapping phase, we determine the
observation regions. An observable region in our context is
defined as an area around the landmark such as a chair, from
where it is sufficiently visible. We define a rectangular region
based on the location of the landmark.

The Observable Region layer (refer Fig. 2 below) enables
the robot to perform region-to-region navigation. When the
robot explores the chair space to search for an object,
it navigates to the associated region. Once the robot is within
the region, it reorients itself to search for objects on the chair.

The purpose for defining observable regions is manifold.
First, it reduces the time required and the cumulative distance

VOLUME 12, 2024

travelled by the robot to find the object. Secondly, it provides
robustness to occlusions of the navigation goal. This is
achieved by adding a ‘Recovery’ behavior to the navigation
stack. In the event of an occlusion, the local planner fails
which triggers this behavior. Then the closest accessible point
within the observable region is sent as the new goal to the
low-level controller. Since the robot’s final pose is facing the
desired landmark, it can still search for the object without
reaching the exact navigation goal. If the entire region is
occluded, the recovery behavior is retriggered, and the robot
will move to the next best location. Lastly, it eliminates
the need to undertake oscillatory movements or recovery
manoeuvres due to erroneous planning or overshoots during
execution. The results necessary to quantify the impact of
observable regions are shown in Table 1 (Sec. V-C) below.
We use this Semantic Map in our multi-object search strategy,
which is described in the following section.

IV. MULTI-OBJECT SEARCH

We focus on the multi-object search strategy in this section.
This strategy is implemented on top of the Semantic
Map. In our approach, we first extract a quantitative
relationship between the objects and the landmark locations
as environment-specific priors. We then propose a novel
heuristic to incorporate user preferences in the search task.
Finally, we explain our PTPO scenario with results.

A. ENVIRONMENT-SPECIFIC PRIORS

Priors help determine the probability of finding an object
near a known associated landmark. We use Ontologies to
obtain the prior relationship between different objects and
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landmarks. Ontologies are a formal representation of con-
cepts within a domain along with the relationships between
them. Considering landmarks and objects as concepts within
the domain (indoor environment), we consider three types
of relationships between the concepts that the Ontology may
describe:

« 1sOn Ontology
« isNear Ontology
o isIn Ontology

isOn ONTOLOGY

Ontology of such type is object T isOn landmark L (e.g.,
cup is on the table). We interpret the ontology isOn (object-
T, landmark-L) as the probability of finding object T on
landmark L (i.e., Po,(T|L)). We calculate this probability
from the well-known and publicly available dataset ‘Com-
mon Objects in Context (COCO)’ [48]. We first filtered the
dataset to exclude images of outdoor areas/spaces due to our
focus on indoor environments. Next, we use the instance-level
masks provided by the dataset. If the intersection of the object
mask and landmark mask is greater than a threshold value
(6,,) and the pixel distance between their centroid is less
than a threshold value (6;), we consider the object is on the
landmark.

isNear ONTOLOGY

Ontology of such type is object T isNear landmark L (e.g.,
Remote is near TV). In our scenario, we interpret the ontology
isNear (object-T, landmark-L) as the probability of finding
object T given landmark L (i.e., Pyeq-(T|L)), in the same
image frame. We use additive smoothing to calculate the
associated probabilistic priors using the COCO dataset as
given below:

NTNL)+«

PNear(T|L) - N(T) T ad (7)
where, N (.) is the count of observations in the COCO dataset,
d is the number of classes in the dataset and « is a smoothing
parameter to account for unobserved object-landmark pairs.
We set « = 0.5 according to Lidstone’s law. The priors
obtained using the isNear Ontology are shown in Fig. 3.

isIN ONTOLOGY
Ontology of such type includes, for e.g., milk is in the fridge.
We consider that to be out of scope for our study since
our robot does not possess the capability to open fridges: a
problem still considered non-trivial by the community.
However, planning based on COCO priors as it is would
not be accurate. The COCO dataset can provide a generalized
relationship between objects and landmarks but fine-tuning
is necessary to adjust the priors according to the specific
environment in which the robot is operating. This is because
indoor environments tend to be unorganized and distinct
from each other to some extent and the generalized priors
fail to capture that knowledge. For example, if the robot is
present in an environment where there is a table close to the
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Backpackq 0.095 0.109 0.193 0.137
Bottle{ 0.042 0.087 0.097
Cupq 0.024 | 0.313 0.077 0.091

Remoteq{ 0.057 0.253 = 0.332 0.100 = 0.258

Phone{ 0.063 0.108 = 0.282 0.186

Bed Chair Couch Table TV
Landmarks

FIGURE 3. Priors: Near (object-T, landmark-L).

TV, the priors for finding a remote at the table or the TV
should scale appropriately. Essentially, the spatial proximity
between different landmarks should influence the priors for
those landmarks. It is also possible that multiple instances of
the same landmark class may be present in the environment.
In such cases, the priors are scaled according to the instance
count. We calculate the Euclidean Distance between different
landmarks d(L, L’), and propose a Spatial Decay Function
(SDF) for scaling the priors.

d(L. L)) = \(Ly = L)? + (Ly — L) ®)
1 if 0<d <dpn

/ d— dmin 2
SDF(L,L'y= ] 1_ (d—) d <d<d.
in

max — dm

0 if dpax < d
)

where, dpiy, = 1m and dp, = 3m considering our
experimental space. We use the SDF to fuse the probabilistic
priors obtained from the ‘isOn’ and ‘isNear’ Ontologies
to obtain the environment-specific priors. For an object T
conditioned on landmark L is:

Pen(TIL) = | Pou(TIL)+ 1 > WL, L)|  (10)
VL' AL
W(L,L") = Pnear(T|L") - SDF(L, L") (11

where, 1 is a normalization constant and A(= 0.5) is the
hyperparameter for recombination. The value of A must
be less than 1 since the ‘isOn’ prior is more relevant for
Object Search as compared to ‘isNear’ prior. Further, an exact
value of A=0.5 was selected to optimize the influence of
the ‘isNear’ ontology on the environment-specific priors.
Since the location of landmark ‘L’ is known, we use the
environment-specific priors to prune the search space for the
object.

VOLUME 12, 2024



Chikhalikar et al.: Semantic-Based Multi-Object Search Optimization in Service Robots

IEEE Access

Min Max
A = i) A
Bed g Bed ] Bed = Bed i
O R (5} RS s} —_ O I
=l & p=} =
& B 2 E
S Table S Table S Table S Table
= = i o
‘g T =] T
£ & & F
o O o o
Couch Couch Couch Couch
Table TV Stand Table TV Stand Table TV Stand Table TV Stand

(a) Prior: Backpack (b) Prior: Bottle

(c) Prior: Phone (d) Prior: Cup

FIGURE 4. Heatmaps for different objects specific to the environment. A fusion of empirical data from the COCO dataset with environment-specific
information encoded by the SDF (eq. 10) is used to obtain heatmaps for all objects.

Fig. 5 below shows the heatmaps for object ‘Remote’
before and after the fine-tuning of the generalized priors.
We see in Fig. 5b that the ‘heat value’ of the chairs and table
has increased due to their proximity to the TV stand. The
heatmaps were populated based on probabilistic relationships
with an elliptical decay from the center of landmarks. The
probability of an object on a grid not populated by a landmark
instance (i.e., on plain ground) is negligible but never zero.
Heatmaps for other objects are shown in Fig. 4.

I 5

Bed

Chair

Chair
Chair

Chair

=
Chair
Chair

Table Table

Table TV Stand Table TV Stand

(a) Remote (Generalized) (b) Remote (Fine-tuned)

FIGURE 5. Fine-tuning of generalized priors obtained from the COCO
dataset.

B. HEURISTIC SEARCH

Heuristics are essential for evaluating the cost of visiting a
landmark to search for objects. They should minimize the
energy spent in searching while maximizing the chances
of finding the object. Furthermore, in our case, the robot
needs to plan for multiple objects while incorporating user
preferences, in cluttered indoor environments. The robot
needs to consider these adversarial conditions while planning.
Towards that end, this paper proposes a novel heuristic for a
multi-object search that includes user preference:

Dist(A, L)

aPeny(T1|L) + BPeny(T2|L)

where, H: Cost of visiting the landmark
Dist(A, L): Dist. to landmark L from the robot (A)

Py (T;|L): Prior for object 7; at landmark L
The hyperparameters o and 8 are used to incorporate user
preferences. If the user prioritizes object 1, then « > B, and
vice versa. The distance to visit the location L is obtained

(12)
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from the A* global planner. A greedy search is initiated
according to this heuristic. When one of the objects is found,
the heuristic drops down to its single-object equivalent. The
search ends when both objects are found.

Since the robot will visit high likelihood landmarks first,
the influence of the priors (P,y,) is noteworthy. A generalized
prior may be erroneous in some environments, due to which
the performance will deteriorate. However, our prior (i.e.,
P,y adapts to the environment topology. Scenarios where
the prior is erroneous despite considering the environment
topology, large scale data, and user preferences are thus,
highly unlikely.

The user preferences also change the trajectory taken by
the robot while searching for the objects. We show this quali-
tatively in Fig. 6. The robot is tasked with searching for a Cup
and Remote in all three scenarios (Fig. 6a-6¢). The robot fol-
lows the sequence, Table — Sofa — TV when searching for
Cup is the priority (Fig. 6a). For an equal priority search, the
robot follows Sofa — Table — TV sequence (Fig. 6b). If the
user prioritizes Remote, then the sequence of locations visited
is Sofa — TV — Table (Fig. 6¢). An overview of multi-object
search strategy can be found in Algorithm 2 below.

Algorithm 2 Algorithm for Multi-Object Search
Require: Planner, landmarks (L) > Sofa, Table, etc.

1: Input : Priors (P.yy), Objects (T), Pref

ObservationSpace
2: (o, B) < f(Objects, Pref)
3: while Not_Found do
For L e L
D <« Planner(AbL)

4
5
6: Hjjs <
7
8
9

_— > Ref. Eq. 12
g(a, B, Objects)
end For

NavGoal < Max(Hjis))
: if Robot in OSpace then
10: Robot < Reorient(Robot, NavGoal)
11: end if
12: Not_Found < Update(NavGoal, Detections)
13: end while

> NavGoal € L
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(c) Prioritizing Remote
Seq: Sofa —» TV — Table — Table

(b) Equal Priority
Seq: Sofa — Table — Table —» TV

(@) Prioritizing Cup
Seq: Table — Sofa — TV

(g) Searching for Remote (h) Remote found on TV

(f) Cup found on Table

(d) Start Position (e) Searching on Sofa
FIGURE 6. Trajectory followed with respect to the user priority. The next goal position is determined based on the object prioritized and the proximity of
landmarks to the robot. Different trajectories {(a)-(c)} are the outcome of different priorities set by the user. Figures {(d)-(h)} show snaps of the trajectory
followed when the robot (Turtlebot in picture) searches for Cup and Remote with an equal priority for both. The robot finds the Cup on the table and the

Remote on the TV.

C. POST-TASK POSITION OPTIMIZATION

For previous works, the only task completion criterion is that
of successfully finding the object. However, to develop long-
term capabilities, the robot should execute consecutive search
tasks with improved efficiency. Thus, we dive one stage
further and propose a novel Post-task Position Optimization.
Post-task Position Optimization leverages the updated under-
standing obtained from the current task, to autonomously
navigate to optimal positions instead of default locations
(for e.g., docking station). For the sake of understanding,
consider a scenario where the robot is tasked with searching
for a Phone and Bottle. During the search, the robot may
encounter other objects (e.g., Laptop) in the environment.
After completion of the task, the robot may choose to ignore
the object detected, go back to its docking station, and wait for
the next request. The docking station could be far away from
its current location. Instead of returning, the robot can utilize
the information gained during the task as well as conserve its
battery by navigating to any of the pre-determined positions.
The robot confirms its battery level before navigation to avoid
running out of battery. The positions are determined so as to
not hinder the movement of other robots or humans in the
environment.

For this research, the rooms are considered as known
however one can use Voronoi structures for performing
geometric segmentation of the map [49] to obtain the
room-related information. The robot considers the following
criteria for choosing optimal post-task positions.

o Proximity to landmarks with a higher prior likelihood of
finding objects to improve performance in subsequent
tasks.

o Proximity to itself for minimizing energy and time spent
in navigating to the post-task position.
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« Minimizing room transitions while navigating to the
position to not interfere with other robots or humans in
the environment.

This optimization drastically improves the search times
of the robot when it is repeatedly tasked with searching for
objects. If the robot is present in room R, the robot evaluates
each ‘Position: Q present in rooms R’ of the environment as
follows:

Z Z ZVT env(T|L)2 8(R,R) (13)

argmax U(Q) =
0 it Dist(A, Q)

where, §(.) is the Kronecker-Delta Function
U: Utility of Position (Q)
Dist(A,Q): Distance to Position (Q) from robot (A)

The above equation guides the robot to navigate to posi-
tions closer to high-likelihood landmarks while penalizing
incremental travel to reach there. Additionally, a scaling
factor has been introduced to discourage room transitions
during the optimization.

Fig. 7 details the qualitative difference due to PTPO in
successive tasks. The robot is initially tasked with searching
for the Cup and Bottle. After the robot completes the task,
a follow-up request for searching the Remote and Phone is
given to the robot. The overall distance travelled for the first
task, i.e., Cup + Bottle, is less when using the PTPO module
(Fig. 7a vs 7b). Since the robot utilizes the information gained
during the first task, the second task is also accomplished
quickly. The quantitative impact of PTPO can be found in the
Ablation Study (Sec. V-C).

V. EXPERIMENTAL STUDIES
We conducted numerous experiments to understand the
influence of initial conditions, our proposed heuristic, and
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(a) Task 1: Cup () + Bottle (%). Implemented without
PTPO (left image) vs. with PTPO (right image).

(b) Task 2: Remote () + Phone (). Implemented without
PTPO (left image) vs. with PTPO (right image).

FIGURE 7. Trajectory followed with and without Post-task Position Optimization (PTPO). PTPO results in reduced time, distance, and room transitions
during successive object search tasks. Quantitative results are given in Table 1 of Sec. V-C.

navigation strategies. Each data point shown in the next
subsection is obtained after averaging the results of five tests
conducted in every scenario. Averaging eliminates any bias
due to the slight randomness of the path planners and the
minor differences in the starting positions (< 5cm) in each
run. The following section describes the experimental details,
starting with hardware configuration, followed by an ablation
study, and finally comparative results and analysis.

A. HARDWARE CONFIGURATION

We use a Turtlebot2 platform with Kobuki base for our
experiments. The onboard sensors include an RGB-D camera
(Azure Kinect) and a laser range scanner (RPLIDAR S2).
The encoder information from the robot base is used to
compute the odometry. The data acquisition from sensors and
command relay to the robot is performed on the NVIDIA
Jetson AGX Xavier as the client. The backend computations
as well as the frontend visualization were carried out on
a server CPU with NVIDIA 3090RTX graphics unit with
an i9-12900K processor. The ROS distributed computing
network ensured time-synchronized communication between
the server and the client.

B. LIVING LAB- SIMULATED INDOOR ENVIRONMENT

All tests were performed in a simulated indoor environment
called the ‘Aobayama Living Lab’ [2] at Tohoku University.
The goal is to create a concept for future welfare facilities,
as shown in Fig. 8. The Living Lab included household
objects such as tables, chairs, sofas, beds, TVs, lamps,
and cabinets. The facility emulates various areas, including
toilets, bathrooms, and kitchens as well as an outdoor
environment with stairs, slopes, and rough terrain. The dataset
generated from the Living Lab will be used to facilitate
long-term navigation for service robots.

C. ABLATION STUDY

We conduct an ablation study to compare the relative
impact of different modules of our framework described
till now. Specifically, we quantify the impact of Post-task
Position Optimization (PTPO) and Observable Regions (OR)
in our Object Search task. We removed from our overall
framework, the PTPO and OR modules and treated it as
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FIGURE 8. Aobayama Living lab (Tohoku University): Indoor test-bed
environment for experimenting with robots.

the Baseline. The data with the Baseline framework was
compared to adding PTPO and OR to the Baseline. For
this study, the robot performed two tasks consecutively.
Each task involved searching for two objects from the same
start location. One set will be defined as two such tasks.
For e.g., as shown in Fig. 7, Task 1 (Cup + Bottle) and
Task 2 (Remote+Phone) would comprise one set. We used
cumulative Time to search (Time(s)), Distance to search
(Dist.(m)), and Room Transitions (RTs) during a set, as the
parameters for evaluation. RT is defined as the number of
times the robot moved from one room to the other during
the task. The RT parameter was manually determined by
observing the trajectories followed by the robot. However,
this can be automated by amending the state vector of the
robot to indicate the current room it is present in. With the
RTs determined, the average results of the experiments are
given in Table 1 below.

TABLE 1. Ablation study with PTPO and OR.

Modules Metrics (Avg.)
Baseline PTPO OR Time(s) ,  Dist.(m) ] RTsJ
v X X 105.07 21.09 7
v X v 91.62 19.92 7
v v X 78.67 13.01 4
v v v 70.31 12.45 4
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We can see from the Ablation Study that the best results
are observed when the OR and PTPO modules are used in
tandem. The cumulative effect is a reduction in the overall
time by 33.08% and overall distance by 40.96% compared
to the Baseline. Incorporating just the OR module has a
minor impact on the overall distance, however, a considerable
time reduction (12.80%) compared to the Baseline is found.
This supports our hypothesis that ORs help eliminate the
need for cumbersome manoeuvres due to erroneous planning
or overshoots. The Post-task Position Optimization (PTPO)
drives a reduction in time (25.12%) as well as distance
(38.31%). Notably, the overall Room transitions (RTs) for the
tasks are also reduced.

D. COMPARATIVE RESULTS AND ANALYSIS

The results are divided into three groups. In the first group,
we compare the performance of our novel heuristic with
other approaches for multi-object search. Secondly, we look
at the influence of the start position on the search task.
Lastly, we compare the differences in object search when
incorporating the priorities set by the user.

BASELINE COMPARISON
While keeping all other parameters, such as local path
planners, object detectors, and map conditions same,
we benchmark our framework against the following methods:
o Random: The robot randomly chooses a landmark,
navigates to that location, and searches for the object.
« Probabilistic Greedy: The robot traverses greedily while
searching for the object. We define the greedy heuristic
as follows:

H, = Penv(Tl |L) + Penv(T2|L) (14)

« Distance-TSP (D-TSP): Object search is formulated as
a Travelling Salesperson Problem (TSP) to determine
the sequence of locations to visit. This strategy only
considers optimizing the distance travelled. The TSP is
solved with the Google-OR Tools’ Routing solver [50].

o Scene Graph Object Search (SGOS): [38] is a State-
of-the-Art framework. The authors proposed a method
to incrementally build and update scene graphs of
the environment as the robot searches for an object.
The scene graphs were then used in conjunction with
a long-horizon planning strategy to optimize distance
travelled for search. Since this method is primarily for
a single object search, the multi-object search task is
adapted as sequential single object searches.

It is also important to consider the metrics for evaluation.
We list the different metrics for evaluation below:

« Distance: The overall distance from the start of the
search task to the end of the search task.

o Landmarks: The number of landmarks visited during the
task.

o Time: The total time required for completion of the task.

o Coverage Probability (CP): The cumulative probability
from the start of the task to finding the object. This is
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calculated as follows:
n—1
CP =) Pun(T|L) (15)
i=1
« Probability Weighted Success (PWS): For a total of N
runs, where object locations are varied with probabilities
P; and the corresponding distance to search is D;, PWS
is defined as:

>N PAT|L)D(T, A)
N

Apart from the metrics, we also consider the computational
load of different methods. Our method along with D-TSP and
SGOS, uses the A* planner for estimating the distance to
be travelled. For comparison between these three we need
not consider the load due to A* planner. Besides A*, the
computationally expensive step in our framework is that of
finding the maximum of the heuristic list (step 9 in Alg. 2).
This has a computational load of O(n). The D-TSP and SGOS
methods have a very variable computational load and in
worst-cases may have O(nf) and O(n!) load, respectively. The
Random search has O(1) (i.e., constant time) load but has a
poor performance in every other metric. The Greedy method
uses Quicksort algorithm (O(nlogn)) but without the A*
planner. However, in real-world scenarios, the computational
time in our experiments, hovers in the 1-2% range of the total
search time.

In Table 2, we show results after comparing our method
with the baselines based on the metrics described above.
The starting position of the robot was kept the same in all
runs. The OR module was applied for all the methods in
the task. However, the PTPO module was not applicable
since the objective is to assess the performance in each
task separately. Three tasks (Cup+Phone, Bottle+Backpack,
Remote+4-Phone) were assigned and runs were carried out
with all methods. The trajectories followed by the robot for
each method for the task (Cup+Phone) are shown in Fig. 9
below. For each method, the objects were kept at two different
locations for each task. Thus, each data point in the table
below is an average of twelve runs (3 tasks, 2 objects per task,
and 2 locations per object: 3 x 2 x 2 = 12).

PWS = (16)

TABLE 2. Comparisons with other methods.

Method . Metric.s (Avg.)
Time(s) , Ldmk] Dist.(m)] PWS] CP?
Random 112.6 55 24.03 9.28 0.36
Greedy 55.92 2.17 11.62 4.21 0.43
D-TSP 69.45 4.83 10.88 4.85 0.49
SGOS 61.91 3.45 10.26 3.96 0.54
Ours 55.11 3 8.83 3.32 0.52

From our comparison, it is clear that the proposed method
outperforms other methods. Specifically, the method is
significantly superior to the Random and D-TSP meth-
ods by 51.6% and 20.6% respectively, in terms of time.
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(a) Random (b) Greedy

(c) Distance-TSP

(d) SGOS (e) Ours

FIGURE 9. In this scenario, the robot is tasked with searching for a Cup () and Phone () from the same start location. The trajectories followed by the

robot according to the labelled inferencing schema are shown in these figures.

Correspondingly, it is also much better in terms of number
of landmarks visited (45.5%, 37.9%) and distance to search
(63.2%, 18.9%).

Amongst these methods, only SGOS and Greedy
method have comparable results. Greedy method has fewer
landmarks visits on an average (2.17) compared to ours (3).
However, a more nuanced look reveals that the time required
for search is almost the same (~1%) while the distance
to search is almost 31% less for our method. Additionally,
the CP value is higher for our method by 20%. This
outperformance can be solely attributed to our proposed
heuristic which considers minimizing the distance while
maximizing the chances of finding the object simultaneously.
On the other hand, SGOS has a minor advantage in CP value
(0.54) over ours (0.52). However, on every other metric, our
method has better results.

The Random has the highest variance as compared to other
methods for obvious reasons. D-TSP follows a deterministic
path since it is purely distance-dependent. Due to this,
it has a relatively higher CP value. Compared to D-TSP,
SGOS improves on the CP metric since it does consider the
probabilistic priors in its planning.

START POSITION ANALYSIS

A key aspect missing in the previous analysis is the
influence of the starting position. We compare our approach
with the Probabilistic Greedy baseline when tasked with
searching for the Cup from five different locations within the
environment.

Fig. 10 shows the results of this comparative study.
Compared to the baseline, the proposed heuristic led to an
average reduction of 31.67% in the time taken, and 40.5%
reduction in the distance travelled to find a Cup. Similar
reductions of 26.35% and 29.3% were found in time required
and distance travelled for searching the Remote. Thus, our
heuristic is significantly superior to probabilistic baselines for
multi-object search.

USER PREFERENCE ANALYSIS

Next, we compare the differences in object search with
respect to the priorities set by the user. For this analysis, the
robot is tasked with searching for the Cup and Remote. The
search is initialized from ten random locations in the indoor
environment. From each location three different priorities are
set:
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FIGURE 10. Comparison against baselines for search object: Cup. Similar
results were observed for Remote as the object.

o Prioritizing Cup

« Equal Priority

« Prioritizing Remote.

A total of 30 experiments (3 x 10) were conducted. The results
are summarized in Figure. 11.

Our studies show that on average a time reduction of 33.5%
is observed when the user prioritizes finding the Cup. In the
case of prioritizing Remote, a time reduction of 26.5% is
observed compared to an equal priority search. When the
user prioritizes Cup, the first-hit (i.e., success of finding the
object at the first landmark visited) percentage was 20%
higher than for an equal-priority search. The cumulative time
spent increased by 8.94s when prioritizing the Remote and by
4.13s when prioritizing the Cup as compared to equal priority
search. Additionally, if the robot were to prioritize finding
the Remote, it would take 25.8s more than the equal priority
search to find the Cup. Thus, it can be inferred that if the user
intends to save cumulative time rather than find one object at
the earliest, an equal priority directive should be given.

As discussed above, incorporating user preferences comes
at the cost of an increase in cumulative time. To better
assess the distance efficiency of our search strategy, we use
the Success weighted by Path Length (SPL) metric. SPL is
determined as follows:

N

1 L
SPL = — Z S L (17)
N P max(L, Lop)
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User Preference Analysis

[ Prioritizing Cup [ Equal Priority I Prioritizing Remote
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FIGURE 11. The search times for each object from ten different locations
with three different initial conditions (in terms of user preferences).

where, L,y = Optimal distance between Robot and Object
L = Length of path followed by Robot
The optimal distance is defined as the distance the robot
would have to traverse if the object location were known to
the robot. Figure 12 shows the SPL for object search (for both
objects) depending on the priority set by the user.

SPL vs Object
[ Prioritizing Cup [ Equal Priority I Prioritizing Remote
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0 0.5 1.0

Success weighted by Path Length (SPL)

FIGURE 12. SPL values with respect to user preferences.

It is observed that the SPL increases by 24.84% when
the user tasks the robot to search for a cup with priority,
as compared to an equal priority search. An increase
of 19.5% in the SPL is observed when prioritizing the
Remote in the object search. In a cross-analysis, it is
seen that the SPL decreases by 20.2% while searching
for the Remote and 51.5% while searching for the Cup
if the user prioritizes searching for the other object. The
sharper SPL decline for the Cup can be attributed to its real
location being closer to multiple landmarks as opposed to the
Remote.
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VI. CONCLUSION AND DISCUSSIONS
In this study, we have successfully demonstrated the fea-
sibility of multi-object search in indoor environments by
leveraging a semantic map. The first novelty of our approach
lies in the extraction of ‘Environment-specific’ priors from
the more generalized COCO dataset. Our extraction model
was able to logically utilize the environment topology
for fusing Ontologies of various types. We proposed a
novel heuristic capable of incorporating user preferences
while locating multiple objects. Our proposed approach
included a reliable region-to-region navigation strategy that
is efficient in terms of time. We also presented a novel
Post-task Position Optimization strategy that enhances the
performance over successive tasks. Our system can perform
these tasks in real-time which makes it suitable for small
to medium-sized indoor spaces such as homes and offices.
Finally, we compared our approach to different baseline
and State-of-the-Art strategies on several metrics which
established the overall improvement due to our framework.
The system can be improved using decision-making
strategies that optimize long-horizon navigation planners.
A future non-trivial extension of this work is to add a
manipulator to the system that can perform high-level ‘Tidy
Up’ tasks and to improve its robustness to accommodate
cluttered and challenging environments.
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