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ABSTRACT The essence of smart logistics lies in leveraging information resources and intellectual
assets to efficiently and precisely match the multidimensional demands and supplies within the logistics
system. Unlike supply, demand is more dynamic, making the accurate capture and prediction of demand
variations across different levels and time dimensions the core and key to developing smart logistics systems.
Temporary micro-level demand prediction not only enhances the timeliness, accuracy, and cost-effectiveness
of micro-level supply but also reveals macro trends and extended patterns of logistics demand, providing
decision support for logistics management at all levels. This study addresses the challenges in predicting
temporary logistics demand, characterized by variability, high stochasticity, and abrupt changes. We propose
an advanced E3L-Net model, combining ensemble empirical mode decomposition, local mean decom-
position, long short term memory networks, and local error correction. The E2L-Net model, formed by
integrating ensemble empirical mode decomposition and local mean decomposition, decomposes the original
data to stabilize it and mitigate endpoint effects. LSTM is then used to predict these decomposed signals,
leveraging its superior temporal modeling capabilities. The LEC model further refines these predictions
by correcting local abrupt changes. Our experimental analysis, utilizing logistics demand data from a
company, demonstrates that the proposed model significantly outperforms 11 other models, highlighting
its effectiveness and generalization capability in handling temporary logistics demand predictions.

INDEX TERMS Advancing logistics management, smart logistics, deep learning, LSTM.

I. INTRODUCTION
The essence of smart logistics lies in leveraging information
resources and intellectual assets to efficiently and precisely
match the multidimensional demands and supplies within the
logistics system [1]. Unlike supply, demand is more dynamic,
making the accurate capture and prediction of demand’s vari-
ations across different levels and time dimensions the core
and key to developing smart logistics systems. Temporary
micro-level demand prediction not only enhances the time-
liness, accuracy, and cost-effectiveness of micro-level supply
but also reveals the macro trends and extended patterns of
logistics demand, providing decision support for logistics
management at all levels [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Libo Huang .

Research on logistics demand prediction has traditionally
focused on macro and meso levels over extended periods,
and there is already a substantial body of research in this
area [3], [4], [5]. Because extended demand statistics are
typically measured annually, their trends are relatively sta-
ble. However, temporary demand is influenced by numerous
factors and complex mechanisms, resulting in variability,
strong stochasticity, and sudden changes, making it chal-
lenging to ensure the accuracy of estimations using existing
methods [6].

Given that temporary logistics demand represents variable
time-series data, the use of deep learning techniques, specif-
ically Long Short Term Memory (LSTM) networks, which
excel in temporal modeling with their extended memory
capability, is considered [7]. This ability addresses issues
of gradient vanishing and explosion during long-sequence
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training. Additionally, the Empirical Mode Decomposition
(EMD) technique is advantageous for processing variable
data by decomposing signals to stabilize them [8]. However,
EMD has limitations such as mode mixing and endpoint
effects. To address these, reference [9] proposed the Ensem-
ble Empirical Mode Decomposition (EEMD) method to
tackle mode mixing. Therefore, we aim to combine LSTM
with EEMD to estimate temporary logistics demand. Never-
theless, since EEMD only resolves the mode mixing in EMD
and not the endpoint effects, we also incorporate Local Mean
Decomposition (LMD) [10], which can address issues related
to information extraction in the original signals and endpoint
effects in EEMD. Furthermore, the local abrupt changes in
temporary logistics demand increase the complexity of pre-
diction, prompting this study to propose the use of Local Error
Correction (LEC) [11] to address this challenge.

Compared to existing research, our main contributions are
as follows:

1) More novel research subjects: Current studies mainly
examine annual logistics demand, whereas our study focuses
on 12-hour temporary logistics demand.

2) More challenging data characteristics: While current
research typically involves stable, periodic demand data, our
data exhibits variability and strong stochasticity, with existing
machine learning and deep learning models struggling to
capture underlying data features.

3) More comprehensive research methods: Unlike tra-
ditional statistical and machine learning approaches, our
study begins with feature decomposition and extraction.
We introduce the E2L-Net model to address the challenges
of irregularity and instability in raw demand data, reduc-
ing prediction errors and delays. Additionally, we design
the E3L-Net to tackle significant prediction errors at abrupt
changes, further enhancing the model’s predictive accuracy.

The structure of our paper is organized as follows: Section I
is the introduction, Section II reviews the existing methods of
logistics demand prediction, data decomposition, and local
error correction. Section III presents materials and methods,
Section IV is the experiment and analysis, and Section V
concludes.

II. RELATED WORKS
A. CURRENT RESEARCH ON LOGISTICS DEMAND
PREDICTION
Currently, logistics demand prediction methods can be pri-
marily categorized into four types:

1) Mathematical statistical models: Representative meth-
ods include the GreyModel (GM) [12], Exponential Smooth-
ing [13], Auto Regressive Integrated Moving Average Model
(ARIMA) [14], and Multiple Linear Regression models [15].
These models are based on statistical principles and offer
strong interpretability of the relationships between variables.
However, their assumptions are relatively simple, and they do
not perform well in predicting highly stochastic and irregular
data.

2) Shallowmachine learningmodels: Representativemeth-
ods include BP Neural Networks [16], Radial Basis Function
Neural Networks [17], and Support Vector Machines (SVM)
and their variants [18], [19]. These models can effectively
capture the irregular patterns in logistics demand, enhancing
prediction accuracy. However, their feature learning capabili-
ties are limited, and their generalization ability is constrained.

3) Deep learning models: A representative method is the
LSTMnetwork [7]. Due to their deeper structures and empha-
sis on feature learning, deep learning models can accurately
describe the complex relationships between inputs and out-
puts. They generally outperform statistical models and SVMs
in predicting time series data and are easier to implement.
However, their prediction accuracy for highly stochastic and
variable data still needs improvement.

4) Hybrid Models: These models combine two or more of
the aforementioned methods, such as the combined GM(1,1)
model and BP Neural Network model [20]. Hybrid models
can leverage the strengths of each individual model, thereby
improving prediction accuracy.

B. CURRENT RESEARCH ON DATA DECOMPOSITION
1) RESEARCH ON ENSEMBLE EMPIRICAL MODE
DECOMPOSITION
Ensemble Empirical Mode Decomposition (EEMD) is a
noise-assisted data analysis method proposed by [9] to
address the mode mixing problem [21]. As an efficient data
decomposition algorithm, the EEMD model is widely used
in the related research. For instance, EEMD has been used
for predicting financial time series by decomposing data to
reduce the complexity of time series [22]. Another study
utilized EEMD to decompose data into high, medium, and
low-frequency components, constructing a frequency-mixing
model for financial time series prediction [23]. Addition-
ally, a method combining EEMD and inverse cloud models
was proposed for extracting compound fault features in
gearboxes [24].

2) RESEARCH ON LOCAL MEAN DECOMPOSITION
Local Mean Decomposition (LMD) is another data decom-
position method known for its high adaptability. It can
decompose any complex variable signal into several phys-
ically meaningful Product Function (PF) components [25],
and then combine the instantaneous frequency and amplitude
of these PF components to obtain the complete information
distribution of the original signal [26]. When external fac-
tors influencing the time series remain relatively constant,
the PF components obtained through LMD can effectively
describe the temporal evolution of one or more influencing
factors [27]. Therefore, LMD provides a solid foundation for
extracting relevant information about internal data changes.
For example, LMD has been used to address variability
and irregularity in wind speed time series [28]. By com-
bining LMD with Singular Value Decomposition (SVD),
signal denoising effects were enhanced [29]. Another study
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FIGURE 1. Our E3L-Net architecture.

proposed a new temporary wind speed prediction method
based on LMD and Least Squares Support Vector Machine
(LSSVM), demonstrating that LMD-decomposed data can
effectively explain temporary wind speed fluctuations, peri-
odicity, and trends [30].

C. CURRENT RESEARCH ON LOCAL ERROR CORRECTION
Prediction models generally reflect the overall relationship
between input and output variables but often overlook the
rich hidden information within the error values [31]. There-
fore, some researchers have focused on error correction,
constructing error prediction models to analyze and extract
internal information from prediction error sequences and
using the results to correct the initial predictions. Represen-
tative error prediction models include GM(1,1) [32], Linear
Regression [33], and ARIMA [14]. For instance, a method
based on local ramp error correction was proposed to improve
the lag in wind speed prediction [34]. Another study used
local dynamic approximation to locate simulation points and
correct numerical prediction model errors [35].

In summary, while considerable analysis and research on
logistics demand predicting have been conducted by exten-
sive scholars, and these research outcomes are of significant
reference value, limitations still exist. For example, most
studies focus on regional logistics volume with annual sta-
tistical units, where data trends are relatively stable. There
is a lack of research on temporary logistics demand charac-
terized by variability, high stochasticity, and local mutations.
Applying existing methods directly to temporary logistics
demand predicting often results in low accuracy. In response,
this paper proposes an E3L-Net model for temporary logis-
tics demand predicting. By combining EEMD and LMD
for signal decomposition, the model deeply explores data

characteristics, reducing prediction errors caused by vari-
ability and high stochasticity in temporary logistics demand
and mitigating issues like mode mixing and endpoint effects
from EMD. Furthermore, the LSTM processes the signal
decomposition results of EEMD and LMD in parallel, lever-
aging its extended memory advantages. Additionally, the
LEC model is constructed to correct the LSTM prediction
results, addressing local mutations in temporary logistics
demand by extracting hidden information and variable traces
from the error values.

III. THE PROPOSED METHOD
Our E3L-Net prediction model is divided into two stages: the
E2L-Net model and the LEC model. The framework of the
the proposed model is shown in Figure 1.

A. E2L-NET MODEL CONSTRUCTION
In this stage, the raw temporary logistics demand data is
first decomposed using EEMD and LMD, leveraging their
complementarity to reduce significant endpoint effects in
EEMD and address over-smoothing issues in LMD that could
impact predictive performance. The decomposed signals are
then predicted using LSTM, which is known for its strong
performance in time series prediction. The basic process of
the E2L-Net prediction model in the first stage is divided into
four steps:

1) Data decomposition. The raw temporary logistics
demand data is decomposed using EEMD and LMD, result-
ing in n Intrinsic Mode Function (IMF) components and k PF
components along with a residual component.

2) LSTM prediction. The LSTM prediction model is used
to estimate the n IMF components and the k PF components
and residual components separately.
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3) Aggregation of prediction results. The predicted results
of the n IMF components are weighted and summed, with
weights based on the Pearson correlation coefficients of each
IMF component, to obtain the EL-Net prediction results. The
predicted results of the k PF components and the residual
components are summed to obtain the LMD-LSTM predic-
tion results.

4) Final prediction. The arithmetic mean of the two sets
of prediction results obtained in step 3 is taken as the final
prediction value of the first stage.

1) EEMD DECOMPOSITION OF TEMPORARY LOGISTICS
DEMAND DATA
Given the variable and highly stochastic characteristics of
temporary logistics demand data, the proposed model first
performs EEMD decomposition on it.

Assume X = x(1), x(2), . . . , x(t) is the preprocessed
temporary logistics demand series, where x(t) is the tempo-
rary logistics demand at time t . The main steps of EEMD
decomposition for this data are as follows:

1) Add m types of Gaussian white noise to the logistics
demand data to obtain noisy pseudo-signals.

yj(t) = x(t) + gj(t), j = 1, 2, . . . ,m (1)

where yj(t) represents the j-th noisy pseudo-signal at time t,
and gj(t) represents the j-th Gaussian white noise at time t .
Typically, m is set to 1000.
2) Perform EMD decomposition on the noisy pseudo-

signals to obtain n IMF components and a residual compo-
nent.

yj(t) =

n∑
i=1

imfij(t) + rj(t), j = 1, 2, . . . ,m (2)

where imfij(t) is the i-th IMF component obtained from EMD
decomposition of yj(t), and rj(t) is the residual component
from EMD decomposition of yj(t).
3) Average the IMF components obtained from the EMD

decomposition of the m noisy pseudo-signals to get n IMF
components.

IMFi(t) =

∑n
j=1 imfij(t)

m
, i = 1, 2, . . . , n (3)

where IMFi(t) represents the i-th IMF component of the
temporary logistics demand at time t obtained from EEMD
decomposition. These n IMF components will be used in the
next stage of LSTM prediction.

2) LMD DECOMPOSITION OF TEMPORARY LOGISTICS
DEMAND DATA
Since the EMD method used in the EEMD decomposition
process has significant endpoint effects, the proposed model
also performs LMD decomposition on the original temporary
logistics demand series.

LMDextracts pure frequencymodulation signals and enve-
lope signals iteratively from the temporary logistics demand

series X . Multiplying these signals produces PF compo-
nents, which are then separated from the original series
X to obtain the residual signal. This process is repeated
until the final residual signal is a constant or monotonic,
providing the time-frequency distribution of the original
signal.

The LMD decomposition of the logistics demand x(t) at
time t results in k PF components and a residual component
u(t), such that the original logistics demand x(t) can be
reconstructed from these components.

x(t) =

∑k

i=1
PFi(t) + u(t) (4)

The k PF components PFi(t), i = 1, 2, . . . , k and the
residual component u(t) will be used in the next stage of
LSTM prediction.

3) LSTM PREDICTION OF EEMD AND LMD
DECOMPOSED SIGNALS
Given the temporal dependencies in temporary logistics
demand data, the proposed model employs LSTM to predict
the signals decomposed by EEMD and LMD.

During data decomposition, EEMD decomposes the tem-
porary logistics demand data into n IMF components and
one residual component. Multiple experiments showed that
this residual component does not significantly improve pre-
diction accuracy and is therefore disregarded. For time t , let
IMF(t) = {IMF1(t), IMF2(t), . . . , IMFn(t)}. LMD decom-
poses the data into k PF components and a residual u(t),
represented as PF(t) = {PF1(t), PF2(t),. . . , PFk (t), u(t)}.
These signals essentially reflect the features of the temporary
logistics demand data X over the time series T = 1,2,. . . , t .
For ease of description in subsequent LSTM calculations, the
IMF and PF signals are denoted as F(t) = {F1,F2,. . . , Fn,. . . ,
Fn+k,Fn+k+1}.

For each signal Fi at time t, the feature value is denoted as
f ti . Considering the influence of the logistics demand feature
values from the previous q time periods on the feature value
at time t , the dataset of logistics demand feature values for
the previous q time periods {f t−qi , . . . , f t−2

i , f t−1
i } is used as

the input Z ti to LSTM at time t . The output of LSTM at time
t− 1 is ht−1

i , and the cell state at time t− 1 is C t−1
i . Both are

also used as inputs to LSTM.
The output and cell state at time t are denoted as hti and

C t
i respectively. The weight matrices of the input gate, output

gate, forget gate, and cell state at time t are denoted as We,
Wo, Wf , and Wc respectively, while be, bo, bf , and bc are
the corresponding bias vectors. F ti , I

t
i , O

t
i , and Ĉ

t
i represent

the forget gate output, input gate output, output gate output,
and candidate cell state at time t . The entire LSTM unit
calculation process is as follows:

Forget gate : F ti = σ (Wf f ti +Wf h
t−1
i + bf ) (5)

Input gate : I ti = σ (Wef ti +Weh
t−1
i + be) (6)

Output gate : Oti = σ (Wof ti +Woh
t−1
i + bo) (7)
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Candidate cell state : Ĉ t
i = tanh(Wcf ti +Wch

t−1
i + bc)

(8)

Cell state : C t
i = F ti C

t
i + I ti tanh(Ĉ

t
i ) (9)

Cell output : hti = Oti tanh(C
t
i ) (10)

In these equations, σ represents the sigmoid activation
function. Throughout this process, the features extracted from
the decomposed temporary logistics demand data are further
refined by three interacting gates: forget gate, input gate, and
output gate. The output gate ultimately uses a sigmoid layer
to filter the cell state, and the filtered state is multiplied byOti
after passing through a tanh layer to produce the temporary
logistics demand output hti .

B. CONSTRUCTION OF THE E3L-NET TEMPORARY
PREDICTION MODEL
When logistics demand shows sudden increases or decreases
within a short period, resulting in local abrupt changes, the
prediction results can exhibit significant errors at these points,
as indicated by the solid circle in Figure 2. Additionally,
due to the high stochasticity of temporary logistics demand,
predicted values can become negative, causing prediction
errors, as indicated by the dashed circle in Figure 2.

FIGURE 2. Local sudden change of temporary logistics demand.

To reduce prediction errors caused by abrupt changes and
negative values, and to improve prediction accuracy, this
paper proposes a LECmethod. This method predicts the error
value sequence of temporary logistics demand and corrects
the first stage prediction values accordingly. The framework
of the LEC model is shown in Figure 3.

FIGURE 3. LEC architecture.

The basic process of the second stage LEC model consists
of four steps:

1) Calculate the difference between the predicted value
sequence obtained from the first stage and the actual value
sequence to get the error value sequence.

2) Use the E2L-Net model to predict the error value
sequence to obtain the error predictions.

3) Identify the abrupt change points and negative value
points in temporary logistics demand.

4) Perform local error correction on the abrupt change
points and negative value points in the first stage predictions
according to the correction rules, resulting in the final predic-
tion values.

1) DEFINITION OF LOCAL ABRUPT CHANGES IN
TEMPORARY LOGISTICS DEMAND
Based on the actual changes in logistics demand, the trend can
be categorized into four types: steadily increasing, steadily
decreasing, suddenly increasing, and suddenly decreasing.
The first two can be considered non-local abrupt changes,
where the time series inertia does not cause significant errors
between the predicted and actual values of logistics demand.
The latter two can be considered local abrupt changes, where
the actual value of logistics demand significantly differs
between two consecutive time points. To accurately describe
this, let t and t−1 be two consecutive time points, and
the absolute value of the difference in temporary logistics
demand be γ , defined as:

γ = |x(t) − x(t − 1)| (11)

where x(t) represents the actual logistics demand at time t ,
and x(t−1) represents the actual logistics demand at time
t−1.
When γ ≥ α, this state is defined as a local abrupt change,

and the temporary logistics demand point at time t is termed
a local abrupt change point. The threshold α varies with
different data series and can be determined through parameter
optimization.

C. CORRECTION OF LOCAL ABRUPT CHANGE ERRORS IN
TEMPORARY LOGISTICS DEMAND PREDICTION
If the logistics demand point at time t is identified as a local
abrupt change point or a negative value point, the correction
is performed as follows:

x_correct(t) = pred(t) + eer(t) (12)

where x_correct(t) represents the corrected logistics demand
prediction at time t , pred(t) represents the first stage logistics
demand prediction at time t , and err(t) represents the error
prediction at time t , obtained from the E2L-Net model’s
prediction of the error value sequence.

IV. EXPERIMENT
A. DATASET
To validate the effectiveness of the proposed E3L-Net,
we used the logistics demand order data from a company
between July 1, 2023, and December 31, 2023 comprising
a total of 100,000 entries.
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FIGURE 4. Data distribution.

Considering the discreteness and sparsity of the raw data,
we chose a 12-hour interval for statistical analysis. For exam-
ple, the logistics demand from 00:00 to 12:00 on July 1, 2023,
is aggregated as the first data point, and the demand from
12:00 to 24:00 on July 2, 2023, is aggregated as the second
data point, and so on. This results in 366 entries of temporary
logistics data, with the data distribution shown in Figure 4.

As depicted in Figure 4, the temporary logistics demand
data exhibit characteristics of variability, high stochasticity,
local abrupt changes, and irregularity.

To enhance accuracy and accelerate convergence,
we applied min-max normalization to the raw data, mapping
the values to the range [0, 1] using the following transforma-
tion function:

x ′
=

x − min(x)
max(x) − min(x)

(13)

B. EVALUATION METRICS
To determine the prediction accuracy, we selected the com-
monly used metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Adjusted Coefficient of Determina-
tion (R2).

1) ROOT MEAN SQUARED ERROR (RMSE)

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (14)

In which:
yi : The actual observed value.
ŷi : The predicted value.
n: The total number of observations.
RMSEmeasures the square root of the average squared dif-

ferences between the predicted values and the actual values.
It provides a measure of the magnitude of prediction errors,
where larger errors are penalized more due to the squaring
operation.

2) MEAN ABSOLUTE ERROR (MAE)

MAE =
1
n

n∑
i=1

|yi − ŷi| (15)

MAE calculates the average of the absolute differences
between the predicted values and the actual values. It provides
a straightforward measure of prediction accuracy, reflecting
the average magnitude of errors without considering their
direction.

3) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

MAPE =
1
n

n∑
i=1

|
yi − ŷi
yi

| (16)

MAPE expresses the prediction error as a percentage of
the actual values. It measures the average absolute percentage
error between the predicted values and the actual values,
making it useful for comparing prediction accuracy across
different datasets and scales.

4) ADJUSTED COEFFICIENT OF DETERMINATION (R2)

Adjusted R2 = 1 − (
(1 − R2)(n− 1)
n− k − 1

)

Where R2 = 1 −

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

(17)

Explanation:
ȳ : The mean of the actual observed values.
k: The number of predictors in the model.
The adjusted R2 adjusts the coefficient of determination

for the number of predictors in the model. It accounts for
the complexity of the model and provides a more accurate
measure of the goodness of fit, especially when comparing
models with different numbers of predictors.

C. EXPERIMENT SETTINGS
Based on existing research, we used the first two sets of
logistics demand data to predict the third set, forming a
two-dimensional input and one-dimensional output predic-
tion model. Additionally, to improve the prediction accuracy,
we optimized the number of hidden units q in the LSTM
model and the abrupt change threshold α in the LEC model.

1) SELECTION OF THE NUMBER OF HIDDEN UNITS q
Since the number of hidden units q affects prediction accu-
racy, we performed parameter optimization for the hidden
units. Given the two-dimensional input data for LSTM and
based on related research, we experimented with q values
of 4, 8, 16, 32, and 64 hidden units. Other parameters were
set as follows: 3000 training iterations, initial learning rate
of 0.002, and 20% of the data as the test set. The evaluation
metrics for different q values are shown in Table 1.

As shown, when q = 4, the four evaluation metrics are
optimal, indicating the best prediction performance. There-
fore, we selected 4 hidden units for the LSTM’s hidden layer.

2) SELECTION OF THE ABRUPT CHANGE THRESHOLD α

According to the definition of abrupt changes in temporary
logistics demand prediction errors, the choice of α in the
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TABLE 1. The results for different values of q.

LEC model is crucial for prediction accuracy. Generally,
a smaller α value broadens the range of error correction,
improving the final correction effect. However, if α is too
small, insignificant errors might lead to increased corrected
prediction errors, reducing model performance. Therefore,
we tested α values of 0, 50, 100, 200, 300, 400, and 500, with
the evaluation metrics shown in Table 2.

TABLE 2. The results for different values of α.

As indicated, the choice of α significantly affects predic-
tion accuracy. When α = 50, the model achieves the highest
prediction accuracy, with R2 reaching 0.95357. Conversely,
when α = 0, the prediction performance is the worst, indi-
cating over-correction issues. Therefore, the abrupt change
threshold α is set to 50.

D. EXPERIMENTAL RESULTS ANALYSIS
1) ANALYSIS OF MODEL PREDICTION PERFORMANCE
1) EEMD Decomposition. The collected temporary logis-
tics demand data were decomposed using EEMD, resulting
in 7 IMF components and 1 residual component, as shown on
the Figure 5.

(2) LMD Decomposition. The temporary logistics demand
data were decomposed using LMD, producing 6 PF compo-
nents and 1 residual component, as shown on the Figure 6.
The solid lines represent PF components, and the dashed lines
represent the corresponding envelopes.

(3) LSTM Prediction. The components obtained from the
EEMD and LMD decompositions were input into the LSTM
for prediction. The first stage prediction results are shown in
Figure 7.

The model’s prediction performance indicators are as fol-
lows: RMSE is 213.57651, MAE is 112.47531, MAPE is
54.30778%, and R2 is 0.84875. As seen in Figure 7, the

FIGURE 5. EEMD decomposition results.

FIGURE 6. LMD decomposition results.

FIGURE 7. E2L-Net prediction results.

overall trend of the actual values aligns well with the pre-
dicted values, but the prediction performance at peaks and
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TABLE 3. The comparison results.

FIGURE 8. LEC correction results.

FIGURE 9. Comparison results of Group-a.

abrupt changes is poor. Therefore, the second stage local error
correction is performed.

(4) LEC Correction. The prediction results after the second
stage local error correction are shown in Figure 8.
The prediction performance indicators are: RMSE is

115.85166, MAE is 78.87960, MAPE is 43.70024%, and
R2 is 0.95357. It can be seen that local error correction
has achieved excellent results compared to the first stage,
with R2 improving by about 10% and other indicators also
significantly improving. This demonstrates the superiority of

FIGURE 10. Comparison results of Group-b.

TABLE 4. The results for different values of α for air conditioning
products.

the proposed E3L-Net model in temporary logistics demand
prediction.

2) MODEL COMPARISON
To further demonstrate the effectiveness of the proposed
model, we compared it with 11 other logistics demand pre-
diction models, including:

(1) Mathematical Statistical Model: ARIMA.
(2) Shallow Machine Learning Models: Support Vector

Regression (SVR) and Feedforward Neural Network (FNN).
(3) Single Deep Learning Models: Convolutional Neural

Networks (ConvNet) and LSTM.
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TABLE 5. The comparison results for air conditioning products.

FIGURE 11. Comparison results of Group-c.

(4) Hybrid Prediction Models: Deep Belief Network
(DBN)-LSTM, EMD-LSTM, EEMD-LSTM (EL-Net),
LMD-LSTM, EMD-LMD-LSTM, and EEMD-LMD-LSTM
(E2L-Net).

The comparison results are shown in Figures 9-12. Given
the large number of comparative algorithms, we grouped
them into four sets for better visualization of the prediction
results:

Group-a: ARIMA, SVR, FNN.
Group-b: ConvNet, LSTM, DBN-LSTM.
Group-c: EMD-LSTM, EL-Net, LMD-LSTM.
Group-d: EMD-LMD-LSTM, E2L-Net.
Each group is represented in a subplot, and each subplot

includes the proposed E3L-Net and the original temporary
logistics demand data for comparison.

To accurately assess prediction accuracy, we compared the
RMSE, MAE, MAPE, and R2 of all models as shown in
(14)-(17), as shown in Table 3.
From Figures 9-12 and Table 3, it is evident that the

proposed E3L-Net model significantly outperforms the other
11 models in terms of RMSE, MAE, MAPE, and R2, with
R2 reaching 0.95357. This indicates the advantage of the
proposed model in temporary logistics demand prediction.
Models using data decomposition, such as LMD-LSTM,

FIGURE 12. Comparison results of Group-d.

EMD-LSTM, EL-Net, EMD-LMD-LSTM, and E3L-Net,
perform significantly better than those without data decom-
position, highlighting the importance of data decomposi-
tion for highly variable and stochastic temporary logistics
demand. Furthermore, EL-Net and LMD-LSTM outperform
EMD-LSTM, demonstrating that EEMD and LMD effec-
tively address the mode mixing and endpoint effect problems
of EMD. The E2L-Net model outperforms EL-Net and
LMD-LSTM, showing that the combination of EEMD and
LMD effectively leverages the advantages of both individ-
ual decomposition models. The E3L-Net model outperforms
E2L-Net, verifying the effectiveness of LEC for local error
correction.

E. GENERALIZATION ABILITY OF THE
PREDICTION MODEL
The generalization ability of a model reflects its adaptabil-
ity to different data. In addition to validating the model’s
effectiveness using the data from Section IV-A, we collected
361 entries of logistics demand data for air conditioner prod-
ucts from a company to further verify the effectiveness of the
proposed predictionmodel and demonstrate its generalization
ability. The data were also aggregated at 12-hour intervals,
and the distribution is shown in Figure 13. The abrupt change
threshold α was optimized, with results shown in Table 4.
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FIGURE 13. Data distribution for air conditioning products.

From Table 4, it can be seen that the prediction perfor-
mance is optimal when α is 20. Other model parameters were
set as previously described.

The prediction results of different models are shown in
Table 5.
From Table 5, it can be seen that for temporary logis-

tics demand data for air conditioner products, the proposed
E3L-Net model significantly outperforms the 11 comparative
models, further verifying the effectiveness of the proposed
model in temporary logistics demand prediction.

V. CONCLUSION
This paper presents a comprehensive approach to address
the challenges associated with temporary logistics demand
prediction by introducing the E3L-Net model, which inte-
grates EEMD, LMD, LSTM, and LEC techniques. Our
experimental results demonstrate the model’s superiority
over traditional statistical methods, shallowmachine learning
models, single deep learning models, and hybrid models,
in terms of RMSE, MAE, MAPE, and R2. The generalization
tests with different datasets, such as air conditioner logistics
demand data, further verified the model’s adaptability and
robustness, confirming its potential application across various
logistics scenarios. The E3L-Net model’s ability to handle
highly variable and stochastic data makes it a valuable tool
for advancing smart logistics systems, providing accurate and
reliable demand predictions for better logistics management
and decision support.
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