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ABSTRACT Hand pose estimation is vital for various applications, including virtual reality (VR), augmented
reality (AR), gesture recognition, human-computer interaction (HCI), and robotics. Achieving accurate and
real-time hand pose estimation is challenging due to factors such as the high degree of articulation in
the human hand and the variability in hand shapes and sizes. While multimodal data offers advantages,
developing a fast and resource-efficient hand pose estimation system remains challenging. Current state-
of-the-art methods often require powerful graphics processing units (GPUs) for high performance, limiting
deployment on edge platforms with limited computational resources. There is a critical need for higher
efficiency without compromising accuracy, especially in real-world applications like mobile devices and
embedded systems. Additionally, real-time performance is essential for practical applications, where systems
must respond immediately to user interactions. Unfortunately, most current methods struggle to achieve real-
time speeds, even on powerful GPUs, let alone on resource-constrained devices. To address these challenges,
we propose an efficient hand pose estimation system that leverages both red-green-blue (RGB) and depth
(RGBD) data through a unified fusion strategy. Our method combines appearance and geometric data early
in the processing pipeline, significantly reducing computational complexity while maintaining real-time
performance on resource-constrained devices. Experimental results show that the proposed model runs at
over 110 fps on GPU, and 30 fps on the edge platform of NVidia Jetson NX Xavier, which is 4 to 5 times
faster than existing methods, while achieving competitive accuracy.

INDEX TERMS Pose estimation, robot vision systems, intelligent systems, deep learning, supervised
learning, machine vision.

I. INTRODUCTION
Hand pose estimation has emerged as a crucial technology for
a variety of applications, including virtual reality, augmented
reality, gesture recognition, human-computer interaction, and
robotics [1], [2], [3]. In robotics, precise hand pose estimation
is essential for tasks such as teleoperation, where an oper-
ator remotely controls a robot’s hand movements, and for
collaborative robots (cobots) that work alongside humans in
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industrial and domestic settings [4], [5], [6]. By accurately
tracking human hand poses, robots can learn from human
demonstrations, perform intricate manipulations, and safely
interact with their environment and human partners [7], [8],
[9]. Accurate and real-time hand pose estimation can sig-
nificantly enhance the user experience in these domains by
enabling more natural and intuitive interactions. Despite its
potential, achieving robust and efficient hand pose estimation
remains a challenging task due to the high degree of articu-
lation in the human hand, occlusions, and variability in hand
shapes and sizes.
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Traditional approaches to hand pose estimation primar-
ily rely on either RGB or depth data [10], [11]. RGB
images provide rich color and texture information, which is
useful for identifying hand features, but they often strug-
gle with occlusions and varying lighting conditions [10],
[12], [13]. Depth images, on the other hand, offer geomet-
ric information about the hand’s spatial structure, which is
invaluable for understanding the 3D pose. However, depth
data alone can be noisy and less informative about surface
details [14], [15]. Therefore, a fusion of RGB and depth
(RGBD) data can leverage the strengths of both modali-
ties, potentially leading to more accurate and reliable hand
pose estimation. Despite the advantages of multimodal data,
developing a hand pose estimation system that is both fast
and resource-efficient remains a significant challenge. Cur-
rent state-of-the-art methods typically require powerful GPUs
to achieve high performance, making them impractical for
deployment on edge platforms with limited computational
resources [16], [17], [18]. In many real-world applications,
such as mobile devices and embedded systems, there is
a critical need for higher efficiency without compromis-
ing accuracy [19], [20]. Moreover, real-time performance
is essential for practical applications, where systems must
provide immediate responses to user interactions. Unfor-
tunately, most current state-of-the-art methods struggle to
achieve real-time speeds even on powerful GPUs, let alone
on resource-constrained devices.

This paper aims to address these challenges by developing
a hand pose estimation system that is both efficient and
capable of real-time performance on platforms with limited
computational resources. By leveraging an effective fusion
strategy for RGBD data and optimizing the network architec-
ture for speed and resource efficiency, our approach seeks to
deliver accurate hand pose estimation suitable for real-world
applications without the need for powerful GPUs. To this
end, we propose an efficient and real-time hand pose estima-
tion method that effectively integrates RGB and depth data
through a unified fusion strategy. Our approach begins by
combining the RGB and depth images early in the process,
forming a unified input tensor that is processed through
shared convolutional layers. This early fusion reduces com-
putational complexity while preserving the complementary
information from both modalities. A key innovation in our
method is the introduction of a channel attention mech-
anism, which dynamically balances the contributions of
RGB and depth features, enhancing the most informative
channels. To ensure computational efficiency suitable for
real-time applications, we employ the MobileNetV2 archi-
tecture as the backbone for feature extraction. MobileNetV2
is renowned for its lightweight design, utilizing depthwise
separable convolutions and inverted residuals with linear
bottlenecks to maintain high performance with low computa-
tional cost. The refined feature maps fromMobileNetV2 [21]
are further processed by an Hourglass network [22], which
performs multi-scale analysis to refine pose predictions.
To integrate multi-scale features more effectively, we also

incorporate intermediate feature maps from different layers
ofMobileNetV2 into the Hourglass network. This multi-scale
fusion approach ensures that the model leverages a rich set
of features at various levels of abstraction, improving the
accuracy of hand pose estimation. The effectiveness of our
approach is validated through extensive experiments, demon-
strating its ability to achieve high accuracy in hand pose
estimation while maintaining real-time performance.

• Efficient Multimodal Hand Pose Estimation Net-
work. We present a deep learning approach for real-time
multimodal hand pose estimation, which fuses depth
cues with RGB images and predicts poses using limited
onboard computational resources.

• Efficient RGBDFusion. We introduce a novel, efficient
modality-aware fusionmodule that effectively integrates
complementary information from RGB and depth data
while maintaining a lightweight and real-time architec-
ture. This approach combines RGB and depth data early
in the process and utilizes shared convolutional layers
along with a channel attention mechanism to extract
initial fused features.

• Multi-Scale Feature Extraction. We carefully design
and integrate a lightweight MobileNetV2 backbone with
a single Hourglass network to extract hierarchical fea-
tures efficiently, capturing intricate hand pose patterns.

The structure of this article is as follows. In Section II,
we present related work, specifically addressing RGB-based
hand pose estimation in Section II-A, depth-based hand pose
estimation in Section II-B, and RGBD fusion in Section II-C.
Section III outlines our proposed methodology, breaking
down the process into distinct components such as the
early fusion of RGB and depth data (Section III-A), opti-
mized multi-scale feature extraction using MobileNetV2
and (Section III-B), the modified Hourglass network
(Section III-C), and loss function (Section III-D). Moving on
to Section IV, we cover the evaluation process, including
datasets (Section IV-A), training details (Section IV-B), eval-
uation metrics (Section IV-C), the results (Section IV-D), and
ablation study (Section IV-E). Finally, in Section V, we draw
conclusions. The detailed abbreviations and definitions used
in the paper are listed in Table 1.

II. RELATED WORK
A. RGB-BASED HAND POSE ESTIMATION
Most of the current approaches have utilized either RGB
or depth data [10], [11]. RGB-based hand pose estimation
methods rely on the color and texture information available
in RGB images [23]. These methods have been extensively
researched and developed due to the widespread availability
of RGB cameras and the rich visual information they provide.
RGB images capture detailed surface textures and color vari-
ations, which can be beneficial for identifying and tracking
hand features. Early approaches in RGB-based hand pose
estimation utilized traditional computer vision techniques,
such as edge detection, template matching, and skin color
segmentation [10], [12], [24], [25]. These methods were
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TABLE 1. List of abbreviation and acronyms.

often limited by their reliance on handcrafted features and
their inability to generalize well to different hand shapes and
poses. With the advent of deep learning, significant advance-
ments have been made in RGB-based hand pose estimation.
Convolutional neural networks (CNNs) have been employed
to automatically learn features from large datasets of hand
images. These networks can capture complex patterns and
structures, enabling more accurate and robust hand pose esti-
mation. For instance, Zimmermann and Brox [26] introduced
a deep learning framework that predicts 3D hand joint posi-
tions from RGB images using a two-stage approach: first,
a CNN estimates 2D joint locations, and then a deep neural
network (DNN) lifts these 2D locations to 3D coordinates.
Another notable approach is the work by Iqbal et al. [27],
which proposed an approach for estimating 3D hand poses
frommonocular images, leveraging a unique 2.5D pose repre-
sentation. This new representation captures pose details while
accommodating for scaling variations, which can be refined
with prior knowledge of hand size. The method involves
the implicit learning of depth maps and heatmap distribu-
tions using an CNN architecture. Reference [13] decomposes
the task into three stages: the joint stage predicts the 3D
coordinates of hand joints and the hand segmentation mask;
the mesh stage estimates a rough 3D hand mesh; and the
refine stage aggregates local and global features from ear-
lier layers, learning to regress per-vertex offset vectors for
aligning the rough mesh to the hand image with finger-level
precision. On a similar note, [28] present a camera-space
mesh recovery (CMR) framework that unifies the tasks of 3D
hand mesh and root recovery into a coherent system, involv-
ing 2D cue extraction, 3D mesh recovery, and global mesh
registration phases. Inspired by the advancements in neu-
ral language processing, [29] utilize a transformer encoder
to jointly model vertex-vertex and vertex-joint interactions,
producing 3D joint coordinates and mesh vertices simulta-
neously. Addressing occlusion challenges posed by objects,
[30] introduce HandOccNet, a 3D hand mesh estimation
network that harnesses information from occluded regions
to enhance image features. HandOccNet integrates two suc-
cessive Transformer-based modules, the feature injecting

transformer (FIT), and self-enhancing transformer (SET).
FIT injects hand information into occluded regions by con-
sidering their correlation, while SET refines the FIT output
using a self-attention mechanism. Through the infusion
of hand information into occluded regions, HandOccNet
exhibits promising performance on 3D hand mesh bench-
marks, particularly those featuring challenging hand-object
occlusions.

Despite these advancements, RGB-basedmethods still face
challenges related to occlusions, complex backgrounds, and
varying lighting conditions. Depth images, on the other hand,
provide geometric information about the hand’s spatial struc-
ture, which is invaluable for understanding the 3D pose.
Depth data directly offers distance measurements from the
sensor to the hand surface, which helps in mitigating issues
related to occlusions and varying illumination.

B. DEPTH-BASED HAND POSE ESTIMATION
Depth-basedHand Pose Estimation focuses on reconstructing
3D hand shapes from single depth maps, overcoming the
limitations of 2D images by leveraging depth information.
Reference [31] introduced a hierarchical PointNet architec-
ture for point-to-point regression, achieving precise pose esti-
mation by capturing detailed geometric features from depth
maps. Meanwhile, [14] proposed V2V-PoseNet, converting
2D depth images into 3D volumetric forms for accurate 3D
hand and human pose estimation. Spatial attention-based
method [32] enhances prediction accuracy by focusing on
relevant parts of depth maps. Reference [33] utilizes end-
to-end learning with multiple anchor points for improved
prediction accuracy by capturing global and local spatial
contexts. Additionally, [34] unifies dense representation and
hand joint regression with Adaptive Weighting Regression
(AWR), enhancing robustness and accuracy. Furthermore,
methods like HandVoxNet++ [35] and HandFoldingNet [36]
incorporate advanced techniques such as TSDF-based voxel-
to-voxel networks and folding-based decoders, respectively,
to capture fine-grained details of hand shapes.

Nevertheless, depth data alone can be noisy and less infor-
mative about surface details. Noise in depth data, especially
around the edges and at distant points, can degrade the
accuracy of pose estimation. The fusion of RGB and depth
data, known as RGBD Fusion, has emerged as a prominent
research area, particularly with the proliferation of accessible
RGBD sensors [37]. The fusion of RGB and depth modalities
aims to exploit the complementary strengths of both, poten-
tially leading to more robust and accurate computer vision
applications.

C. RGBD FUSION
Traditional RGBD fusion methods typically involve extract-
ing and combining handcrafted features from RGB images
and depthmaps [49], [50], [51], [52]. However, thesemethods
often fall short due to the inherent limitations of hand-
crafted features, which lack the complexity and adaptability
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TABLE 2. Deep learning-based RGBD fusion methods.

needed for robust performance. With the advent of deep
convolutional neural networks (CNNs), the field has seen a
paradigm shift. CNN-based approaches leverage the pow-
erful feature extraction and representation capabilities of
deep learning, leading to substantial improvements in RGBD
fusion performance and setting new standards [53], [54], [55].
Fusion schemes can be categorized into three types based
on how information flows (as shown in Table 2): undirected
fusion [38], [39], [40], [41], unidirectional fusion [16], [42],
[43], [44], [45], and bidirectional fusion [18], [46], [47], [48].

Undirected fusion is most commonly implemented by
directly concatenating or adding the separately extracted
features. For instance, DenseFusion [41] and PVN3D [40]
process RGB and depth data individually, using a dense
fusion network to extract pixel-wise dense feature embed-
dings. Geometric features are derived by converting depth
pixels into a 3D point cloud with camera intrinsics and
utilizing a PointNet-like architecture. Simultaneously, color
features are obtained through a CNN-based encoder-decoder
that transforms images into a dense feature space, where each
pixel is represented by a multi-dimensional vector. These
features are then fused locally on a per-pixel basis: each
point’s geometric feature is paired with its corresponding
image pixel feature, concatenated, and processed by another
network to produce a global feature vector.

Unidirectional fusion [16], [42], [43], [44] leverages infor-
mation flow from one modality (either RGB or depth) to
guide or enhance the processing of the other modality.
In these approaches, features from one modality refine or
augment the features of the other, ensuring that the strengths
of both modalities are utilized effectively. Huang et al. [43]
introduced a LiDAR-guided Image Fusion (LI-Fusion) mod-
ule, where semantic features from images enhance point
features derived from LiDAR data. The module establishes
point-wise correspondence between raw point cloud data
and camera images, adaptively weighing the importance of
image semantic features. This method enhances useful image
features while suppressing interfering ones, thus improving
the quality of point features. Liang et al. [42] proposed a
method that projects image features extracted by a convo-
lutional network into bird’s eye view (BEV) and integrates
them with the convolution layers of a LiDAR-based network.

This fusion process involves interpolating discrete image
features to create a dense BEV feature map, using continuous
convolutions to extract relevant information from the nearest
corresponding image features for each point in BEV space.
Wang et al. [16] developed a Geometry-Aware Visual Feature
Extractor (GAVE) to produce distinctive and comprehensive
geometric-visual features from RGBD images. This extractor
facilitates better point cloud registration by reliably estimat-
ing correspondences. Within the GAVE module, a Local
Linear Transformation (LLT) technique uses geometric fea-
tures (from a geometric feature extractor) as guiding signals,
converting them into point-wise linear coefficients. These
coefficients are then applied to enhance the visual features
(from a visual feature extractor) through point-wise linear
transformation, improving the overall feature representation.

Bidirectional fusion [18], [47], [56] facilitates a two-way
exchange of information between RGB and depth modal-
ities, allowing each to iteratively refine and enhance the
other throughout the network. This approach leverages the
strengths of both data types to create more comprehensive
feature representations. Hu et al. [47] introduced the Bidi-
rectional Projection Network (BPNet) for joint 2D and 3D
reasoning in an end-to-end manner. BPNet features symmet-
ric 2D and 3D sub-networks connected by a Bidirectional
Projection Module (BPM). The BPM facilitates interac-
tion between complementary 2D and 3D information across
multiple layers, significantly enhancing scene recognition
capabilities by allowing detailed and nuanced feature sharing.
He et al. [18] developed the FFB6D network, which inte-
grates appearance and geometry information to improve both
representation learning and output selection. This network
employs bidirectional fusion modules that merge information
at every encoding and decoding layer. It extracts features
from RGB images with a CNN and from point clouds with
a point cloud network, using the fusion modules to enable
the exchange of complementary information. This process
enhances the distinctiveness of the features and addresses
challenges like incomplete depth data in point clouds and
similar object appearances in RGB images. Bidirectional
fusion effectively utilizes the strengths of both RGB and
depth modalities, enabling robust and accurate feature rep-
resentations. By allowing continuous and mutual refinement
of features, this approach mitigates issues such as noisy depth
data and ambiguous visual cues, leading to improved perfor-
mance in complex tasks.

While the above fusion methods have achieved promis-
ing results in terms of accuracy, they often result in more
complex network architectures. These architectures require
separate subnetworks and additional fusion layers, lead-
ing to increased training requirements, more parameters to
optimize, and greater demands on data and computational
resources. Beyond performance, efficiency is crucial for
practical deployment. Instead of using two separate streams
to handle RGB and depth information as existing methods
do, we propose an approach that combines RGB and depth
data at an early stage, processing them through a single
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network. To effectively capture the complex relationships
between RGB and depth data within this streamlined archi-
tecture, we employ a channel attention mechanism. This
mechanism adaptively balances the contributions of RGB
and depth features, enhancing the model’s ability to integrate
complementary information from bothmodalities.We further
enhance the network by incorporating intermediate feature
maps from different layers into an Hourglass network for
tasks such as hand pose estimation. This multi-scale fusion
approach ensures that the model leverages a rich set of fea-
tures at various levels of abstraction, leading to improved
performance while maintaining a simpler and more efficient
architecture.

III. METHODOLOGY
In this section, we present our Deep Neural Network (DNN)
architecture designed to recover hand configuration from
a single RGBD image in one forward pass. As illustrated
in Figure 1, the architecture comprises three main compo-
nents: efficient RGBD fusion, a backbone network, and the
Hourglass network for hand pose estimation. We employ
the MANO parametric model [57] to represent the hand.
The network outputs the MANO pose and shape parameters,
providing a comprehensive hand configuration.

A. EFFICIENT RGBD FUSION
To effectively integrate the complementary information from
RGB and depth data whilemaintaining a lightweight and real-
time architecture, we propose a unified fusion strategy (as
shown in Figure 2). This approach combines RGB and depth
data early in the process and utilizes shared convolutional
layers to extract features, thereby reducing computational
complexity. Initially, let IRGB ∈ RH×W×3 and ID ∈

RH×W×1 denote the RGB and depth images, respectively.
These inputs are concatenated along the channel dimension
to form a unified input tensor IRGBD ∈ RH×W×4:

IRGBD = [IRGB, ID] (1)

The concatenated RGBD input is then processed through a
series of shared convolutional layers designed to extract joint
features from both modalities efficiently. Each convolutional
layer is followed by batch normalization (BN) and ReLU
activation. The first convolutional layer uses a 3 × 3 filter
size with 32 filters, a stride of 2, and padding set to ‘same’,
resulting in output dimensions of 224 × 224 × 32. Let
FRGBD ∈ R224×224×32 represent the feature map obtained
after this convolutional processing. To dynamically balance
the contributions of RGB and depth features, we introduce
a channel attention mechanism. This mechanism computes a
channel attention vector a ∈ R32 that adjusts the importance
of each channel in the feature map. Channel attention can
effectively integrate information from both RGB and depth
data by dynamically weighing the importance of different
channels. This is particularly useful when dealing with multi-
modal inputs, as it can adaptively prioritize channels that
carry more significant information from either modality. The

channel attention vector is computed as follows:

a = σ (FC(GAP(FRGBD))) (2)

where GAP denotes global average pooling, FC represents
a fully connected layer that reduces the pooled features to
a vector of length 32, and σ is the sigmoid function. The
channel attention vector a is then used to weight the channels
of the feature map:

Fatt
RGBD = a ⊙ FRGBD (3)

where⊙ denotes element-wise multiplication. This operation
enhances the most informative features across the channels.
The final fused feature map Ffused ∈ R224×224×32 is then
passed through an additional convolutional layer to ensure
compatibility with the input requirements of the subsequent
backbone networkMobileNetV2. This layer uses a 1×1 con-
volution with 3 filters, batch normalization (BN), and ReLU
activation to reduce the number of channels to 3, making it
suitable for the backbone:

Ffused = Conv1×1(Fatt
RGBD, 3) → BatchNorm → ReLU

(4)

This results in a feature map with dimensions R224×224×3,
which is compatible with the input requirements of the back-
bone MobileNetV2 [21]. This efficient RGBD fusion module
combines RGB and depth data in a unified manner and
utilizes attention mechanisms to dynamically enhance the
feature representation. By leveraging shared convolutional
layers and channel attention, the proposed method maintains
computational efficiency and is well-suited for real-time hand
pose estimation.

B. BACKBONE
The initial fusion stage provides a combined representation
of RGB and depth data, but these features are relatively
low-level and local. The backbone network, used in this
step, plays a crucial role in the hierarchical extraction of
high-level features from the initial fused RGBD input. While
the Efficient RGBD Fusion primarily focuses on combining
and enhancing the complementary information from RGB
and depth data, the backbone network is responsible for
further processing this fused input to extract more abstract
and discriminative features.

MobileNetV2 [21] backbone is used for feature extrac-
tion from the initial RGBD features Ffused. MobileNetV2 is
known for its efficient and lightweight architecture, making
it ideal for real-time applications on mobile and embed-
ded devices. MobileNetV2 employs depthwise separable
convolutions, which reduce the computational cost by sep-
arating the spatial and channel-wise convolutions. It also
uses inverted residuals, which employ an inverted residual
structure with linear bottlenecks, expanding the intermediate
layers and projecting back to a lower-dimensional space. The
ReLU6 activation function is used, clipping the ReLU activa-
tion at 6 to ensure robustness in low-precision computations.
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FIGURE 1. Overview of the proposed network for efficient and accurate hand pose estimation. The network begins with an early fusion module
for initial feature extraction and fusion from the RGB and depth inputs, forming a unified input tensor that is processed through shared
convolutional layers and channel attention. This early fusion reduces computational complexity while preserving complementary information from
both modalities. To ensure computational efficiency suitable for real-time applications, we employ the MobileNetV2 [21] architecture as the
backbone for feature extraction. The refined feature maps from MobileNetV2 are further processed by a single Hourglass network, performing
multi-scale analysis to refine pose predictions. Intermediate feature maps from different layers of MobileNetV2 are integrated into a single
Hourglass network [22] to leverage a rich set of features at various levels of abstraction, improving the accuracy of hand pose estimation.

The 13th bottleneck layer outputs a feature map with a spatial
resolution of 32 × 32 and 96 channels. This layer strikes a
balance between maintaining sufficient spatial resolution for
detailed feature extraction and having a rich set of features for
subsequent processing by the Hourglass network. Truncating
the MobileNetV2 after the 13th bottleneck layer ensures that
the model remains computationally efficient, which is crucial
for real-time applications.

The feature map output from MobileNetV2 backbone is
denoted as F ∈ R32×32×96. A transition layer is introduced
to adapt the output feature map from MobileNetV2 to the
input requirements of the Hourglass network. This transition
layer includes a 1 × 1 convolution that adjusts the number
of channels from 96 to 256, ensuring compatibility with the
Hourglass network while preserving spatial dimensions. The
transformed feature map is denoted as FT ∈ R32×32×256.

FIGURE 2. Efficient RGBD fusion module.

C. HAND POSE ESTIMATION WITH HOURGLASS
NETWORK
The Hourglass network [22] processes the features extracted
by MobileNetV2, allowing the model to refine pose predic-
tions through multi-scale analysis. We use a single hourglass
module for this purpose. The hourglass module consists
of downsampling followed by upsampling layers, with
skip connections between corresponding levels to combine

high-resolution and low-resolution features. In the down-
sampling path, 3 × 3 convolutions reduce spatial resolution
while increasing the number of channels, batch normaliza-
tion normalizes the feature maps to accelerate training and
improve stability, ReLU activation introduces non-linearity,
and max pooling reduces spatial dimensions by half. The
downsampling path reduces the resolution to 4 × 4 while
increasing the channels to 512. The bottleneck layer pro-
cesses the condensed features at the lowest resolution to
capture global context and interactions. In the upsampling
path, nearest neighbor upsampling increases spatial resolu-
tion by a factor of 2, 3×3 convolutions refine the upsampled
features, and batch normalization and ReLU activation are
applied after each convolution. The upsampling path restores
the resolution to 32× 32 while reducing the channels back to
256. Skip connections link corresponding downsampling and
upsampling layers to merge fine-grained details from higher
resolutions with contextual information from lower resolu-
tions. The feature map output from the Hourglass network is
denoted as FH ∈ R32×32×256.
To further enhance the model’s performance, features from

different layers of MobileNetV2 are combined with features
from the Hourglass network, enabling the model to leverage
multi-scale features more effectively. Specifically, we extract
intermediate feature maps from the 5th, 9th, and 13th bottle-
neck layers of MobileNetV2, denoted as F5

int ∈ R64×64×24,

F9
int ∈ R32×32×32, and F13

int ∈ R32×32×96, respectively.
These intermediate feature maps provide varying levels of
spatial resolution and feature richness. At each correspond-
ing downsampling and upsampling stage of the Hourglass
network, these intermediate features from MobileNetV2 are
concatenated with the feature maps of the Hourglass network.
For instance, at the first downsampling stage of the Hourglass
network, F5

int is resized to match the spatial dimensions of
the Hourglass network’s feature map and then concatenated,
resulting in F1

cat = [F1
H ,F5

int]. Similarly, at subsequent
stages, F9

int and F
13
int are concatenated with the Hourglass

VOLUME 12, 2024 113815



D.-C. Hoang et al.: Efficient Multimodal Fusion for Hand Pose Estimation With Hourglass Network

feature maps at appropriate resolutions. After concatenation,
1 × 1 convolutions are used to fuse the combined features,
ensuring the number of channels is appropriate for the next
layer. This operation can be mathematically expressed as:

F i
fused = Conv1×1([F i

H ,F i
int]) (5)

where F i
fused represents the fused feature map at stage i,

Conv1×1 denotes a 1 × 1 convolution, and [·] denotes the
concatenation operation. The output layer generates a set of
heatmaps, each corresponding to a keypoint. The heatmaps
have the same spatial resolution as the final feature map (32×

32). A 1×1 convolution is applied to the final feature map to
produce the heatmaps. Each heatmap represents the probabil-
ity distribution of a keypoint’s location, with a peak indicating
the predicted keypoint position. The heatmaps are upsampled
to match the original input image resolution (256×256). The
set of output heatmaps is denoted as H ∈ R32×32×K , where
K is the number of keypoints.

Subsequently, the feature maps generated by the Hourglass
network and the heatmaps are fused via 1 × 1 convolutions
and element-wise addition. This fusion process ensures that
the refined features from the Hourglass network and the
probabilistic keypoint information from the heatmaps are
combined effectively, enhancing the accuracy and robustness
of the hand pose estimation. The fused feature maps are then
fed into four successive residual blocks, which are designed
to further refine the features while preserving spatial informa-
tion through skip connections. Each residual block consists of
two 3 × 3 convolutional layers with batch normalization and
ReLU activation, followed by a skip connection that adds the
input of the block to its output. These residual blocks help
in learning more complex representations and improving the
gradient flow during training.

The output of the final residual block is a high-dimensional
feature map that encapsulates detailed information about the
hand pose and shape. This feature map is then flattened into
a 1024-dimensional vector. Flattening converts the spatial
dimensions into a single vector, making it suitable for subse-
quent fully connected layers. This 1024-dimensional vector
is then fed into two fully connected layers to predict the
hand pose and shape parameters according to the MANO
model [57]. The first fully connected layer reduces the dimen-
sionality of the vector while the second fully connected layer
outputs the MANO parameters. These parameters include the
hand pose parameters θ ∈ R48 and the shape parameters
β ∈ R10. The pose parameters θ represent the joint angles
of the hand, while the shape parameters β capture variations
in hand shape. With the obtained MANO parameters, we use
the MANO model to generate the estimated 3D hand mesh
V ∈ R778×3, which provides a detailed surface representation
of the hand. Additionally, the 3D coordinates of the hand
joints J ∈ R21×3 are computed, representing the keypoints
necessary for various hand pose estimation tasks. These out-
puts can be used for applications such as gesture recognition,
virtual reality interactions, and hand tracking in augmented
reality.

D. LOSS FUNCTION
To train our network, we minimize a loss function defined
as a combination of L2 distances between the predicted and
ground truth values of H, θ , β, V, and J. The overall loss
function for the hand pose estimation task, Lhand , is expressed
as follows:

Lhand = LH + L3d + Lmano (6)

LH denotes the L2 loss for 2D joint point detection,
imposed on the heatmaps H. This loss ensures that the pre-
dicted heatmaps accurately represent the 2D locations of the
hand keypoints:

LH =

K∑
i=1

∥∥∥Hi −Hgt
i

∥∥∥2
2

(7)

where Hi and Hgt
i are the predicted and ground truth

heatmaps for the i-th keypoint, respectively. L3d stands for
the L2 loss imposed on the 3D vertices V and 3D joint
coordinates J. This loss ensures that the predicted 3D mesh
and joint positions closely match the ground truth:

L3d =
∥∥V − Vgt∥∥2

2 +
∥∥J − Jgt

∥∥2
2 (8)

where V and Vgt are the predicted and ground truth 3D
vertices, and J and Jgt are the predicted and ground truth
3D joint coordinates. Lmano is the L2 loss on the MANO
parameters β and θ , ensuring that the predicted hand pose
and shape parameters are accurate:

Lmano =
∥∥β − βgt

∥∥2
2 +

∥∥θ − θgt
∥∥2
2 (9)

where β and βgt are the predicted and ground truth shape
parameters, and θ and θgt are the predicted and ground truth
pose parameters.

IV. EVALUATION
In this section, we extensively evaluate our proposed method
using three publicly available RGBD datasets: HO-3D [58],
FPHAB [59], and DexYCB [60]. These datasets are specifi-
cally curated to capture hand poses in real-world scenarios,
providing a robust testing ground for evaluating the per-
formance of hand pose estimation methods under realistic
conditions. Our evaluation includes comparisons with state-
of-the-art RGB-based and depth-based approaches, enabling
us to assess the effectiveness of our proposed system.

A. DATASETS
1) HO-3D DATASET [58]
This dataset is specifically designed for studying hand-object
interactions. It supports the development and evaluation of
algorithms for accurate hand pose estimation, crucial for
advancing manipulation tasks. The dataset comprises RGBD
video sequences with detailed annotations of hand and object
poses, including the 3D positions and orientations of hand
joints and 6D poses of objects. Capturing realistic inter-
actions such as grasping and manipulating various objects,
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FIGURE 3. Qualitative comparison of the proposed method and state-of-the-art hand pose estimation methods.

the HO-3D dataset ensures a diverse range of shapes, sizes,
and scenarios. It includes 77,558 frames distributed across
68 sequences, capturing interactions involving 10 individuals
and 10 different objects. Such diversity facilitates the explo-
ration of complex hand-object interactions under varying
conditions, ensuring a rich array of scenarios for algorithm
development and evaluation. By providing detailed data on
hand-object interactions, including challenging occlusions,
the HO-3D dataset significantly advances research and devel-
opment in hand pose estimation.

2) FPHAB DATASET [59]
The First-Person Hand Action Benchmark (FPHAB) dataset
comprises RGBD video sequences, encompassing over
100,000 frames capturing 45 distinct daily hand action
categories. These actions involve 26 different objects and
cover various hand configurations. Hand pose annotations
were acquired through a proprietary motion capture (mocap)
system, which utilizes six magnetic sensors and inverse kine-
matics to automatically infer the 3D location of each of
the 21 joints in a hand model. The 45 diverse daily hand
action categories were meticulously designed to encompass

a wide array of hand configurations, ensuring diversity in
both hand pose and action space. Each object is linked to a
minimum of one and a maximum of four associated actions,
providing a rich dataset for developing robust algorithms.
The recorded hand actions are organized into three distinct
scenarios for comprehensive coverage. A unique aspect of
the FPHAB dataset is its first-person view, captured using a
head-mounted camera, providing a realistic and immersive
perspective of hand actions. The multi-modal data, including
both RGB and depth information, allows for the development
of robust algorithms. Applications of the FPHAB dataset
include hand action recognition, hand pose estimation, object
interaction analysis, and improvements in augmented reality
(AR) and virtual reality (VR) environments. The dataset is
particularly valuable for training and testing hand pose esti-
mation algorithms.

3) DexYCB DATASET [60]
This is a large dataset used in robotics and computer
vision, particularly for tasks involving hand-object interac-
tion, grasping, and manipulation. It is designed to support the
development and benchmarking of algorithms by providing
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FIGURE 4. Qualitative results of the proposed method on HO-3D dataset.

synchronized RGBD video sequences, detailed hand poses,
and object poses. The dataset features a variety of every-
day objects from the YCB (Yale-CMU-Berkeley) object set,
including tools, kitchenware, and other household items.
It encompasses a substantial dataset of 582,000 RGBD
frames distributed across 1,000 sequences, involving 10 sub-
jects interacting with 20 distinct objects from eight different
viewpoints. A standout feature of the DexYCB dataset is its
detailed hand pose annotations. These annotations include the
3D positions and orientations of the hand joints, capturing
the intricate movements and interactions of the human hand
with various objects. The dataset provides accurate, frame-
by-frame hand pose data, essential for training and evaluating
models in hand pose estimation. This allows for the develop-
ment of algorithms that can predict the 3D pose of the human
hand from visual data with high precision. Noteworthy in its
setup, DexYCB employs an instrumentation of eight RGBD
cameras configured to capture an expansive workspace,
allowing human subjects to interact with objects freely. This
multi-camera setup provides comprehensive coverage from
eight different viewpoints, ensuring diverse and challeng-
ing interaction scenarios where a human hand manipulates
objects in realistic conditions. The multi-modal nature of the
dataset, combining RGBD data, makes it valuable for algo-
rithms that leverage both visual and depth information. These
features make the DexYCB dataset ideal for applications
in hand pose estimation, object grasping and manipulation,
human-robot interaction, and augmented reality (AR) and
virtual reality (VR).

B. TRAINING NETWORK
We train our network and comparative models on the three
datasets. The HO-3D dataset was split into 66,034 images

for training and 11,524 images for testing. Similarly, the
FPHAB dataset was divided into 82,545 training images and
16,986 testing images, while the DexYCB dataset included
118,575 images for training and 23,187 images for testing.
During data preparation, we applied augmentation techniques
such as random cropping, rotation, and scaling, along with
normalization, to enhance the model’s robustness. We used
the Adam optimizer with an initial learning rate of 0.001,
adjusted using a cosine annealing schedule, and trained the
model with a batch size of 16 for 180 epochs, incorporating
early stopping to prevent overfitting. Regularization tech-
niques like dropout and batch normalization were employed
to improve generalization.

For the training phase, we utilized a 32GB Tesla
V100 GPU, which provided the necessary computational
power and memory capacity to handle the large datasets
and complex model architecture efficiently. For inference,
all comparison experiments are executed on the same GPU.
In addition, we tested our trained model on NVIDIA Jetson
NX Xavier, a powerful yet compact platform designed for
edge computing. This deployment strategy was chosen to
ensure that our hand pose estimation model could operate
efficiently in real-world applications where computational
resources are limited. The Jetson NX Xavier provides a bal-
ance of performance and power efficiency, making it ideal for
testing the model’s real-time capabilities in practical scenar-
ios. Experimental results show that our trained model can run
at over 110 fps on GPU, and 30 fps on the edge platform of
NVidia Jetson NX Xavier.

C. EVALUATION METRICS
The evaluation of 3D hand pose estimation methods typi-
cally relies on two key metrics: mean End-Point-Error (EPE)
[61] and Area Under the Curve (AUC) on the Percentage
of Correct Keypoints (PCK) [62]. Mean End-Point-Error
(EPE) quantifies accuracy by calculating the average distance
between the predicted 3D keypoint positions and their cor-
responding ground truth locations. On the other hand, the
PCK metric assesses accuracy by determining the percentage
of keypoints that are correctly predicted within a specified
distance threshold d . Specifically, a keypoint is considered
accurate if its distance from the ground truth is less than
or equal to d . The PCK score is computed across various
distance thresholds, and the AUC on PCK represents the inte-
gral of the PCK curve over these thresholds. A higher AUC
indicates a more precise estimation across a broader range of
distance thresholds. In our study, we define a keypoint pre-
diction as correct if it lies within 50 mm of the ground-truth
position for computing PCK. We calculate the AUC on PCK
with 100 intervals and also report the absolute 3D positional
errors of the predicted joints. Additionally, as recommended
by [60], we include two post-processing error indicators
by aligning the predicted joint positions with the ground
truth. We use two alignment techniques: root-relative and
procrustes. The root-relativemethodmitigates translation dis-
crepancies by aligning the predicted root (wrist) position with
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the ground truth. The procrustes method, however, focuses on
adjusting for translation, rotation, and scale, concentrating on
the relative articulation of the hand.

FIGURE 5. Qualitative results of the proposed method on FPHAB dataset.

D. RESULTS
Tables 3, 4, and 5 present the qualitative results, while
Figure 3, 4, 5, and 6 illustrates the quantitative results.
The quantitative evaluation of hand pose estimation on
the HO-3D dataset demonstrates significant performance
improvements by our method compared to existing state-
of-the-art approaches. The evaluation metrics used include
End-Point-Error (EPE) and Area Under the Curve (AUC) on
the Percentage of Correct Keypoints (PCK), with detailed
results presented in Table 3. We assess three types of EPE:
absolute (abs), root-relative (root-rel), and procrustes (pro),
and report the speed in frames per second (FPS). Our method,
which utilizes both depth and RGB input modalities, achieves
the lowest EPE across all three metrics: absolute (12.15 mm),
root-relative (11.23 mm), and procrustes (6.78 mm). This
indicates a substantial improvement in accuracy over other
methods. For example, Moon et al. [14], using only depth
input, report EPE values of 23.31 mm (abs), 17.43 mm (root-
rel), and 11.90 mm (pro). Similarly, Xiong et al. [33] and
Huang et al. [34] also demonstrate higher EPE values com-
pared to our approach. In terms of AUC on PCK, our method
again outperforms others with values of 0.813 (abs), 0.837
(root-rel), and 0.859 (pro). This indicates a higher overall
accuracy across varying distance thresholds. For instance,
Lin et al. [29], which use only RGB input, achieve AUC
values of 0.692 (abs), 0.722 (root-rel), and 0.763 (pro), while
Park et al. [30] show AUC values of 0.798 (abs), 0.823
(root-rel), and 0.845 (pro). Our method also excels in terms
of processing speed, achieving a remarkable 112 FPS. This
is significantly faster than the next best methods, such as
Spurr et al. [63] at 36 FPS and Park et al. [30] at 32 FPS.

This high speed is crucial for real-time applications, making
our approach not only more accurate but also more practical
for deployment in real-world scenarios. We also com-
pare our method to Modified DenseFusion [41], Modified
FFB6D [18], and Modified PointMBF [65]. These networks
were originally designed for object pose estimation or regis-
tration using RGBD images but were adapted for hand pose
estimation in our study. We retained the same RGBD fusion
and feature extraction techniques as described in their original
papers but modified the networks for hand pose estimation.
TheModifiedDenseFusion achieves EPE values of 17.42mm
(abs), 16.37 mm (root-rel), and 14.79 mm (pro), with AUC
values of 0.670 (abs), 0.705 (root-rel), and 0.719 (pro), and
operates at 18 FPS. Modified FFB6D performs better with
EPE values of 14.32 mm (abs), 13.21 mm (root-rel), and
11.30 mm (pro), AUC values of 0.732 (abs), 0.761 (root-rel),
and 0.782 (pro), and runs at 23 FPS. TheModified PointMBF
also shows strong results with EPE values of 13.86 mm
(abs), 12.82 mm (root-rel), and 10.34 mm (pro), AUC val-
ues of 0.745 (abs), 0.769 (root-rel), and 0.788 (pro), and
a speed of 20 FPS. Despite these strong performances, our
proposed method surpasses all of these modified approaches
both in terms of accuracy and speed. The superior results of
our method underscore its effectiveness in leveraging both
RGB and depth data for precise and efficient 3D hand pose
estimation.

Similarly, the results, summarized in Table 4, demonstrate
the superior performance of our method compared to exist-
ing state-of-the-art approaches on FPHAB dataset [59]. The
proposed network outperforms existing methods, achieving
the lowest End-Point-Error (EPE) values of 12.23 mm (abs),
11.38 mm (root-rel), and 6.92 mm (pro). This is signifi-
cantly better compared to Moon et al. [14], who reported
20.58 mm, 16.90 mm, and 10.87 mm, respectively. Our
method also excels in Area Under the Curve (AUC) on Per-
centage of Correct Keypoints (PCK), with scores of 0.802
(abs), 0.831 (root-rel), and 0.843 (pro), outperforming meth-
ods like Huang et al. [34] and Malik et al. [35].

Extending the evaluation to the DexYCB dataset, our
method again demonstrates superior performance compared
to other state-of-the-art methods, as shown in Table 5. Our
method achieves the lowest End-Point-Error (EPE) values of
23.64mm (abs), 13.88mm (root-rel), and 5.74mm (pro), out-
performing methods such as Moon et al. [14] and Xiong et al.
[33], which reported significantly higher EPE values. In terms
of Area Under the Curve (AUC) on Percentage of Correct
Keypoints (PCK), our method also excels, with scores of
0.761 (abs), 0.812 (root-rel), and 0.874 (pro). These results
are superior to those of Malik et al. [35] and Lin et al. [29].
Furthermore, our method operates at 110 FPS, demonstrating
a significant speed advantage over methods like Spurr et al.
[63] at 35 FPS and Tang et al. [13] at 30 FPS.We also adapted
and evaluated methods originally designed for object pose
estimation, including Modified DenseFusion [41], Modified
FFB6D [18], and Modified PointMBF [65]. Despite their
strong performance, with EPE values of 24.47 mm and AUC
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TABLE 3. Quantitative evaluation of hand pose on the HO-3D dataset. Absolute (abs), root-relative (root-rel), procrustes (pro). The join error EPE is in
mm. Speed in FPS (frames per second).

TABLE 4. Quantitative evaluation of hand pose on the FPHAB dataset. Absolute (abs), root-relative (root-rel), procrustes (pro). The join error EPE is in
mm. Speed in FPS (frames per second).

scores up to 0.869, our method consistently achieved better
results. This reinforces the effectiveness of our approach in
3D hand pose estimation tasks across diverse datasets.

E. ABLATION STUDY
The ablation study evaluates the contribution of various com-
ponents in our proposed architecture. The experiments assess
different configurations by altering or removing specific
modules and comparing their performance on the HO-3D,
FPHAB, and DexYCB datasets. Table 6 presents detailed
results of these ablation studies.

1) OURS (CONCAT FUSION)
Replacing our efficient RGBD fusion module with a simple
concatenation of RGB and depth images while keeping other
components unchanged results in a slight drop in perfor-
mance. The AUC scores are 0.772 (abs), 0.795 (root-rel), and
0.826 (pro) on the HO-3D dataset, which are lower compared
to the full model. This shows the importance of our efficient
RGBD fusion module in enhancing the performance of the
network. However, this configuration achieves the highest
speed at 116 FPS, indicating that while simpler fusion meth-
ods might be faster, they compromise on accuracy.

FIGURE 6. Qualitative results of the proposed method on DexYCB Dataset.

2) OURS (DENSE FUSION) [41]
Using Dense Fusion instead of our efficient RGBD fusion
module and MobileNetv2 increases AUC scores to 0.811
(abs), 0.835 (root-rel), and 0.853 (pro) on the HO-3D dataset.
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TABLE 5. Quantitative evaluation of hand pose on the DexYCB dataset. Absolute (abs), root-relative (root-rel), procrustes (pro). The join error EPE is in
mm. Speed in FPS (frames per second).

TABLE 6. Ablation study. We run trained models on a 32GB Tesla V100 GPU (V100) and an edge platform of NVidia Jetson NX Xavier (Xavier).

FIGURE 7. RGBD images captured by different cameras.

Despite this, the speed drops significantly to 23 FPS. This
indicates that while Dense Fusion can improve accuracy,
it is much less efficient, highlighting the advantage of our
approach in balancing performance and speed.

3) OURS (FFB6D FUSION) [18]
Replacing our modules with FFB6D Fusion results in AUC
scores of 0.815 (abs), 0.838 (root-rel), and 0.859 (pro) on the
HO-3D dataset. This configuration is similar in accuracy to
Dense Fusion but slightly better. The speed, however, remains
low at 20 FPS, demonstrating a trade-off between accuracy
and computational efficiency.

4) OURS (POINTMBF FUSION) [65]
Similarly, using PointMBF Fusion shows AUC scores of
0.816 (abs), 0.839 (root-rel), and 0.861 (pro) on the HO-3D
dataset. The performance is comparable to FFB6D Fusion,
with slightly better AUC scores but at the same speed
of 20 FPS. This reinforces the need for an efficient fusion
module to maintain a balance between accuracy and speed.

5) OURS (RESNET BACKBONE [66])
Replacing MobileNetv2 with ResNet-50 in our architecture
yields slightly higher AUC scores of 0.817 (abs), 0.839 (root-
rel), and 0.865 (pro) on the HO-3D dataset. However, the
speed drops to 18 FPS, the lowest among all configurations.
This highlights that while ResNet-50 can slightly improve
accuracy, it significantly affects the real-time performance of
the network.

6) OURS (STACKED HOURGLASS NETWORKS) [22]
Using the Stacked Hourglass Network instead of our effi-
cient fusion module results in AUC scores of 0.793 (abs),
0.811 (root-rel), and 0.832 (pro) on the HO-3D dataset. This
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configuration shows a decrease in accuracy and operates
at 35 FPS, which is faster than Dense Fusion and FFB6D but
still not optimal.

7) OURS (-INTERMEDIATE FEATURE FUSION)
Removing the intermediate feature fusion between Mobile-
Netv2 and the Hourglass network slightly decreases the
AUC scores to 0.803 (abs), 0.822 (root-rel), and 0.841 (pro)
on the HO-3D dataset. The speed, however, remains high
at 113 FPS, indicating that intermediate feature fusion con-
tributes positively to accuracy without significantly affecting
speed.

8) OURS (FULL)
The full configuration of our method achieves AUC scores
of 0.813 (abs), 0.837 (root-rel), and 0.859 (pro) on the
HO-3D dataset, with a speed of 111 FPS. This demonstrates
that our efficient RGBD fusion module, in combination with
MobileNetv2 and intermediate feature fusion, provides the
best balance of accuracy and speed across the datasets.

9) PERFORMANCE ON VARIOUS RGBD CAMERAS
Figure 7 shows depth images captured by different RGBD
cameras. Table 7 presents an ablation study evaluating the
performance of our method using depth images from various
sensors: Orbbec Astra, ASUS Xtion Pro Live, Microsoft
Kinect v2, Intel RealSense SR300, and Intel RealSense D435.
The results demonstrate that the Intel RealSense D435 sen-
sor achieves the best performance with values of 0.821
(abs), 0.844 (root-rel), and 0.862 (pro). In comparison, the
Intel RealSense SR300 also performs well, with values of
0.810 (abs), 0.835 (root-rel), and 0.850 (pro). The Microsoft
Kinect v2 and ASUS Xtion Pro Live show similar, moder-
ate performance, while the Orbbec Astra sensor records the
lowest performance metrics among the tested sensors. These
results indicate that the choice of depth sensor significantly
impacts the accuracy of our proposed method, with the Intel
RealSense D435 sensor providing the highest accuracy. The
Intel RealSense D435 offers the highest resolution at 1280×

720 and the widest range from 0.2 to 10 meters, making it
suitable for capturing detailed hand movements at various
distances, with a frame rate that can reach up to 90 fps at lower
resolutions. The Microsoft Kinect v2, known for its reliable
body tracking and depth imaging, provides high accuracy
within a range of 0.5 to 4.5 meters and produces low-noise
depth images. The Orbbec Astra and ASUS Xtion Pro Live,
both offering a resolution of 640 × 480, are suitable for gen-
eral applications with moderate noise levels, though the Xtion
Pro Live has a shorter range of 0.8 to 3.5 meters. The Intel
RealSense SR300 is optimized for close-range applications,
with high accuracy within a range of 0.2 to 1.5 meters and low
noise levels, making it particularly useful for detailed hand
pose estimation at close distances. Therefore, the choice of
camera for hand pose estimation depends on specific require-
ments, with the D435 being the most versatile, and the SR300
being ideal for close-range precision tasks.

10) PERFORMANCE ON LIMITED COMPUTATIONAL
RESOURCES
To evaluate the performance of our model on limited compu-
tational resources, we conducted tests on an edge platform,
the NVIDIA Jetson NX Xavier. Our full model achieves an
impressive speed of 30 FPS on the Xavier, demonstrating its
suitability for real-time applications in resource-constrained
environments. Even with reduced computational power, the
model maintains a balance of accuracy and speed, reinforcing
the effectiveness of our efficient fusion and feature extraction
techniques. This makes our approach practical for deploy-
ment in scenarios requiring lightweight and efficient hand
pose estimation.

TABLE 7. Performance comparison of our method using depth images
from different sensors.

V. CONCLUSION
In this paper, we have presented a novel approach for
hand pose estimation using an efficient multimodal fusion
method that leverages both RGB and depth data. Central
to our approach is the innovative RGBD fusion module,
which combines appearance and geometric data early in
the processing pipeline. This module significantly reduces
computational complexity while maintaining real-time per-
formance on resource-constrained devices. Our method inte-
grates MobileNetv2 with an hourglass network and utilizes
intermediate feature fusion to enhance accuracy. Extensive
evaluations on three publicly available datasets demonstrate
that our approach achieves state-of-the-art performance in
terms of End-Point-Error (EPE) and Area Under the Curve
(AUC) on the Percentage of Correct Keypoints (PCK). Abla-
tion studies further confirmed that each component of our
architecture contributes to the overall performance. Com-
pared to other configurations, our full method consistently
outperformed alternative fusion strategies and backbone net-
works, reinforcing the effectiveness of our design choices.
Future work will focus on integrating the current hand pose
estimation system into robotic systems to enhance their inter-
action capabilities. One promising direction is to incorporate
our hand pose estimation method into robotic manipulators
and humanoid robots, enabling more precise and intuitive
control for tasks such as object manipulation, assembly, and
human-robot collaboration.
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