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ABSTRACT Intelligent vehicle detection systems have the potential to improve road safety and optimize
traffic management. Despite the continuous advancements in AI technology, the detection of different
types of vehicles in complex traffic environments remains a persistent challenge. In this paper, an end-to-
end solution is proposed. The image enhancement part proposes a super-resolution synthetic image GAN
(SSIGAN) to improve detection of small, distant objects in low-resolution (LR) images. An edge enhancer
(EE) and a hierarchical self-attention module (HS) are applied to address the loss of high-frequency edge
information and texture details in the super-resolved images. The output super-resolution (SR) image is fed
into detection part. In the detection part, we introduce a global context-aware network (GCAFormer) for
accurate vehicle detection. GCAFormer utilizes a cascade transformer backbone (CT) that enables internal
information interaction and generates multi-scale feature maps. This approach effectively addresses the
challenge of varying vehicle scales, ensuring robust detection performance. We also built in a cross-scale
aggregation feature (CSAF) module inside GCAFormer, which fuses low- and high-dimensional semantic
information and provides multi-resolution feature maps as input to the detection head, so as to make
the network more adaptable to complex traffic environments and realize accurate detection. In addition,
we validate the effectiveness of our proposed method on a large number of datasets, reaching 89.12% mAP
on the KITTI dataset, 90.62% on the IITM-hetra, 86.83% on the Pascal VOC and 93.33% on the BDD-100k.
The results were compared to SOTA and demonstrated the competitive advantages of our proposed method
for Vehicle Detection in complex traffic environments.

INDEX TERMS Intelligent vehicle detection, self-attention, multi-scale semantic feature, generative
adversarial network, feature aggregation, transportation.

I. INTRODUCTION
Nowadays, with the rising number of vehicles and an over-
burdened transportation system, we are facing problems such
as longer traffic waiting times, heightened environmental pol-
lution, and higher accident rate. Therefore, the development
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of intelligent vehicle detection has become a top priority for
solving transportation problems [57], [58], [59]. Nonetheless,
the utilization of existing vehicle detection techniques in
intricate traffic conditions is constrained, primarily due to the
low resolution of the current vehicle dataset and the absence
of detailed feature information for smaller targets. In crowded
urban environments, small vehicles and pedestrians are a
crucial part of the traffic. However, due to their small size
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and less distinctive features, these small objects may appear
insignificant. They may be affected by factors such as mask-
ing, blurring, and light interference. For instance, small-target
vehicles at a distance, as they approach each other, some of
which blend in with the color of the highway, the surrounding
green belt, or the color of pedestrians’ clothing, can result
in missed detections and false detections. In many practical
applications such as UAV monitoring, video monitoring, and
intelligent security, image resolution is often reduced to cut
costs and enhance real-time detection performance. However,
this can lead to a loss of detail in the image and reduce the
feature information that the network can learn, thus affect-
ing detection accuracy. Detection in complex environments
is challenging, and timely and accurate detection of these
objects is crucial to prevent accidents and improve road
safety. In applications that require a real-time response, such
as path planning for emergency vehicles, the ability to quickly
and accurately detect objects of all sizes can provide vital
information for decision support systems [1], [48].

The development of intelligent vehicle detection technol-
ogy can effectively solve a series of problems due to the
increase in the number of vehicles, such as longer wait-
ing time, heightened environmental pollution and increased
accident rate. Among them, the accuracy of target detection
plays an important role in solving these problems. Longer
waiting time in traffic congestion can be solved by accurately
detecting the position and speed of vehicles and uploading
the real-time data to the traffic management center, so as to
optimize the timing of traffic signals and reduce the waiting
time of vehicles at intersections. In addition, traffic flow
can be predicted and traffic strategies can be established
to avoid congestion. In terms of environmental pollution,
vehicle target detection can be reduced by reducing inef-
fective waiting and idling time. Vehicle target detection can
measure the distance between vehicles and the stopping time
of vehicles through real-time data, which can be fed back
to the traffic management center to issue timely warnings.
In terms of traffic accidents, the vehicle detection system can
also identify illegal behaviors, such as speeding and running
red lights, and reduce the incidence of accidents through
punitive measures. Therefore, an accurate vehicle detection
model is essential for the development of intelligent vehicle
detection technology [52]. However, in practice, image qual-
ity is a key factor affecting the accuracy of vehicle detection,
so super-resolution technology plays a crucial role in traffic
image processing, especially in small target detection. Traf-
fic images usually have low imaging resolution due to the
limitation of hardware cost or noise interference during trans-
mission. Super-resolution techniques improve the resolution
by increasing the pixel density of the image. This means that
the image containsmore pixel points within the same physical
size, which makes the image more detailed [13], [53]. For
small targets in vehicle images, the increase in resolution can
make the features of the target more obvious for recogni-
tion and classification by detection model. In summary, this

research is devoted to the development of a system capable
of generating SR vehicle images and detecting vehicles in
complex traffic environments.

LR images are typically 72 to 150 pixels per inch. Common
LR images include 320 × 240 pixels and 640 × 480 pixels.
At present, some industries that require real-time monitor-
ing and transmission will choose relatively LR monitoring
equipment due to cost considerations, which may lead to
poor monitoring quality and is not conducive to the real-time
transmission and processing of images. HR refers to the
presence of a large number of pixels in an area of the image,
usually, images with a resolution of 800× 600 pixels or more
are considered HR. HR images have rich detail information,
high quality, and high clarity [56].
Most of the existing vehicle datasets consist of low res-

olution (LR) images which are often disturbed by noise.
This leads to poor detection performance, especially when
the objects are very small [2]. Even in high resolution (HR)
images, small objects are not detected as well as large
objects [3]. For improving the accuracy of small target detec-
tion at a distance, some researchers have used CNN-based
techniques to generate super-resolution (SR) images, which
are then used for target detection [4], [5]. GAN are currently
the main method for SR generation, and models such as
SRGNN and ESRGAN have shown excellent performance
when applied to both enhanced noise and noise-free low-
resolution (LR) images [6], [7]. These two models consist of
two sub-modules: the generator (G) and the edge enhancer
(EE). The generator (G) generates a high resolution (HR)
image from the LR image, while the discriminator (D) deter-
mines whether the generated image is a true HR image or a
G-processed LR image.While this approach improves the LR
image and makes it look realistic, some of the high-frequency
details and edge information may not correspond to the actual
HR image labels. Some studies have also demonstrated that
edge information is a key feature for object detection. Thus,
enhancing the high-frequency and edge feature information
is a key method to improve the detection accuracy [8].

The generation of SR images greatly contributes to
enhanced object detection. In the initial stages of research,
features were extracted from vehicle images using traditional
image processing (TIP) methods, which are time consuming
and their performance is adversely affected by background
noise [9]. Currently, there are several methods that use CNNs
as a backbone to extract features and utilize the detection head
for regression prediction. These methods have superior per-
formance over TIP methods [10]. The CNN-based methods
are mainly of two types: single-stage and two-stage. Single-
level methods segment the image into grid cells and then
use regression to predict the location and class of vehicles.
Although single-stage provides good operation speed, it faced
with the variable scale of the vehicle image and small target
features, there is the problem of detecting the vehicle inac-
curately [38]. Although single-stage provides good operation
speed, it suffers from inaccurate detection in the face of
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vehicle images and small target features with variable scales.
The two-stage method determines the head region of interest
(ROI) and performs detectionwithin eachROI. This improves
the accuracy of the detection but also increases the compli-
cated of the network and decreases the prediction speed [41].
Some works proposed feature pyramid networks (FPNs),
embedded between the backbone and the detection head,
for extracting multi-scale feature information [11]. However,
FPN performs feature fusion from top to bottom paths, and
although it can provide multiscale features, this introduces
background noise to the high-dimensional feature maps.
Vision-Transformer has been proposed to realize the intention
of local features to correlate with the global, but it also
results in exponential growth in computation, which affects
the training time of the model and increases the complexity
of the model [12]. In this paper, we proposed two networks:
SSIGAN that generates SR images and GCAFormer that
performs the detection for a vehicle detection system. The
proposed method takes LR image as input to SSIGAN to get
SR image which is then fed into GCAFormer for detection.
The main contributions of SSIGAN and GCAFormer are as
follows:

• The SSIGAN model is proposed to reconstruct the SR
image from LR image and enhance the traffic feature
information in the image for down-streaming detection
tasks.

• An HS module is embedded in generator (G) and edge
enhancer (EE)is designed to effectively enhance the
edge information in the image to generate sharper SR
images with detailed textures.

• The GCAFormer model is proposed with a cascade
self-attention backbone, which can efficiently realize
the information interchange between global features
and finally generate multi-resolution feature maps.

• The proposed CSAF module, which is capable of
bi-directional path fusion of low-dimensional and
high-dimensional semantic information and noise sup-
pression by self-adaptive (SA) block, provides accurate
multi-scale feature information for vehicle detection.

II. RELATED WORK
In this section, the previous research work on vehicle detec-
tion is discussed. The contents are divided into two parts, one
focuses on introducing SR image generation techniques while
other part discusses the recent advances in target detection
modeling.

A. SUPER-RESOLUTION IMAGE
Many existing methods used convolutional neural networks
for SR image generation, such as SRCNN to enhance LR
images with end-to-end training [13]. Related researchers
introduced densely connected networks and residual net-
works to improve SR generation. Liebel et al. proposed
a deep CNN for SR network applied to remote sensing
images [14]. Jiang et al. introduced an edge enhancement
network based on the network architecture of GAN in order

to facilitate the acquisition of smooth edge information [8].
Bai et al. used a CNN-based image enhancement approach
along with a single-stage detection model for simultaneous
processing [15]. Ji et al. also proposed a method for SR
image generation and vehicle detection on remotely sensed
images [5].

B. OBJECT DETECTION
Early vehicle detection methods relied on background sub-
traction and template matching of images, but the accuracy
and speed of these methods were low due to background
variations and noise [16]. Later, researchers started using
manual features such as shape context, Haar-like features,
HOG, and SIFT for vehicle detection [17], [18]. These meth-
ods perform well in dealing with illumination changes and
vehicle occlusion but are complex and time-consuming as
they require manual feature extraction.

Yin et al. proposed a domain-adaptive Faster R-CNN
method for vehicle detection in various types of different
weather such as sunny, cloudy and snowy days. This method
improves the accuracy of Faster R-CNN detection in com-
plex environments, but it is more suitable for orderly traffic
scenarios rather than chaotic and unorganized traffic [42].
Instead, Liu and his colleagues designed a single-shot multi-
box detector (SSMD) to achieve a balance between accuracy
and speed. However, its accuracy is significantly lower when
dealing with vehicles of different sizes [31].

Mao et al. proposed a vehicle detection method based on
the YOLOv3 algorithm. The method uses inverse residual
blocks and non-maximum suppression (NMS) to solve the
problem of complex and variable vehicle features in vehi-
cle detection. Although it runs at a commendable speed,
it is limited to vehicle detection. It has poor detection per-
formance in complex traffic environment such as vehicle
shading and variable weather conditions [32] and hence is
not suitable for vehicle detection in irregular traffic condi-
tions. Junayed et al. proposed a real-time vehicle detection
technique for congested metropolitan cities to detect vehi-
cles from the front view by YOLOv3 algorithm to provide
valuable data for autonomous driving [44]. This method
recognizes vehicles from the front but struggles to detect
occluded vehicles. Despite the impressive speed, the accuracy
is greatly reduced. Roy et al. proposed a vehicle detection
and counting method [38], implemented by the YOLOv4
algorithm, capable of detecting five types of vehicles.

Compared to traditional Convolutional Neural Networks
(CNNs), Transformer is not constrained by a fixed receptive
field and is more flexible in capturing long-range dependen-
cies [61]. In vehicle detection, this means that different parts
of a vehicle (e.g., front, rear, and wheels) can be effectively
associated even if they are spatially far apart. In addition, the
self-attention mechanism assigns different weights to each
feature region, which helps to recognize the most impor-
tant parts of the image and improves the detection accuracy.
Currently transformer-based detection methods are still less
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TABLE 1. Summary of vehicle detection methods.

common compared to CNNs. Just in 2020, a Transformer-
based target detection model, DTER, was proposed, which
takes a fixed set of objects as query key inputs, models object
association global dependencies, and ultimately outputs pre-
diction results [45]. Li et al. in 2022 proposed a simple
non-hierarchical approach backbone (ViTDeT) to perform
the detection task, which acts as a simple FPN for windowed
attention mechanisms [46]. Zheng et al. proposed SwinNet,
a cross-modal fusion model based on Swin-Transformer, for
object detection. The model consists of a Swin-Transformer
as a baseline network to extract discriminative hierarchical
features, augmented by an attentional mechanism to bridge
the gap between the two modalities, and finally utilizes
edge information to highlight the detected target. Although
the aforementioned model is able to achieve more accurate
detection results through its own algorithmic optimization,
low-resolution images with small targets still have few pixels,
which makes it difficult for their features to be accurately
captured [47]. Li et al. proposed a YOLOSR-IST deep learn-
ing method for small target detection in images. Based on
the improved deep learning network of YOLOv5, the feature
extraction and target detection capabilities are enhanced by
introducing coordinate attention, high-resolution feature map
fusion and Swin Transformer model [50]. Zhao et al. pro-
posed the SatDetX-YOLO model to improve the precision
of small target detection in satellite remote sensing images.
It significantly improves the detection performance of vehi-
cle targets by adopting FasterNet as the backbone network,

introducing the TBDetect decoupling header, integrating the
DAM attention mechanism, and applying the MPDIoU loss
function, where the MPDIoU loss function optimizes the
similarity between the predicted frame and the real frame
through the minimum point distance, which is effective even
when the bounding boxes do not overlap, thus further enhanc-
ing the accuracy and regression capability of the model.
[51]. Wu et al. proposed YOLO-SE, which is an improved
version of YOLOv8, specifically designed for detecting and
recognizing small objects in remote sensing images. It intro-
duces a lightweight SEConv convolution and SEF module to
reduce the number of parameters. YOLO-SE also integrates
the SPPFE module with the EMA attention mechanism to
improve the efficiency of feature extraction and includes a
dedicated prediction head for small object detection [55].
Transformer-based object detection technique demonstrates
superior performance in comparison to the CNNmethod. The
SR generation process and the detection procedure presented
in this paper draw inspiration from the Transformer. Table 1
summarizes some vehicle detection methods based on TIP,
CNN and Transformer.

III. METHOD
The vehicle detection system proposed in this study consists
of two parts, the first one is super-resolution image generation
via SSIGAN. The main framework of SSIGAN is composed
of generator (G), discriminator (D) and edge enhancer (EE).
We design a hierarchical self-attention module (HS) that is
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FIGURE 1. Super-resolution synthesis image with generative adversarial network (SSIGAN). SSIGAN is composed of a generator (G), an edge enhancer
(EE) and a discriminator (D). The upper right part represents the flow of the generator processing the image. HS module denotes the hierarchical
self-attention module, which internally includes context-guided blocks in combination with regular self-attention blocks.

embedded in both G and EE. The proposed framework for
super-resolution vehicle image generation is shown in Fig. 1.
The HS is designed to utilize the global context informa-
tion of the Transformer, but considering the introduction of
a large amount of computational and redundant informa-
tion, a context correction block (CG) is designed inside the
HS, which is able to model the global dependencies while
reducing the redundancy information. The detection part is
composed of GCAFomer and its built-in modules cascade
transformer backbone (CT), Cross-Scale Aggregation Fea-
ture module (CSAF), and detection header, which are mainly
designed to adapt to vehicle inspection and classification in
complex environments. Fig. 2 illustrates our proposed vehicle
detection model. As shown in Fig. 4, the main contribution
of CT is the creation of a cascading pattern of attention
modules that deeply interact with the information between
patches. As inputs from stage1 to stage4 are received to obtain
different resolution feature maps, resulting in CT being able
to fully utilize the multi-scale information. These multi-scale
feature maps are fed into the CSAF for further process-
ing. As shown in Fig. 6, the CSAF module also employs a
top-down approach to generate feature maps through a top-
down approach. The module adopts a bidirectional feature
fusion strategy to effectively combine high-dimensional and
low-dimensional semantic information to correct each other.
As shown in the Fig. 7, in the output layer of CSAF, we pro-
posed a novel Self-Adaption Block (SA), which realizes
the condensation of the outputs from different stages and

effectively suppresses the background noise. The detection
head receivesmulti-scale featuremaps from the CSAF, adapts
itself to the vehicle information of the complex environment,
and provides accurate detection and classification results. The
parts of the above two are described in detail as follows.

A. SUPER-RESOLUTION SYNTHESIS IMAGE WITH
GENERATIVE ADVERSARIAL NETWORK (SSIGAN)
This study aims to improve the detection of low-resolution
targets during vehicle detection. To this end, we designed
a network architecture, Super Resolution Synthetic Imag-
ing based on Generative Adversarial Networks (SSIGAN),
in which the network consists of three parts: generator (G),
discriminator (D) and edge enhancement (EE), and we embed
a novel hierarchical self-attention module (HS) into G and
EE. As shown in Fig. 1, for the original vehicle image with
LR, the intermediate super-resolution image (ISR) is gener-
ated by G, and then the SR is output by EE. D receives the
HR and ISR from G and the real labels, respectively, and
updates the gradient backpropagation into G by calculating
the computational discriminative loss, which is used to guide
G training. The feature information obtained from the ISR is
then edge enhanced by the EE module.

The D architecture adopts the idea of augmented super-
resolution GAN [7], which removes all the Batch Normal-
ization layers and reduced complexity of the network. The
main framework of the D is VGG-19, which has signifi-
cant advantages as a discriminator in Generative Adversarial
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FIGURE 2. Global-Context Awareness Network for Vehicle Detection in Complex Traffic Environments (GCAFormer). GCAFormer consists of a backbone,
a neck and a head. The backbone is improved the Cascade Transformer (CT) backbone. The neck features the Cross-scale Aggregate Feature (CSAF)
module designed by us, and the head includes RPN and ROI components.

Networks (GANs). The VGG-19 deep architecture offers
advanced feature extraction capabilities, crucial for dif-
ferentiating between authentic and synthetic images. Its
robustness ensures consistent and reliable discriminative out-
comes across a diverse array of image processing tasks.
Moreover, VGG-19 exhibits strong generalization abilities,
enabling it to effectively distinguish images that were not
part of the training dataset. The architecture is designed to
be straightforward and easy to train and optimize, resulting
in faster convergence. Extensive empirical validation fur-
ther demonstrates its efficacy in similar tasks [19]. In this
paper, a hierarchical self-attentive module (HS) is proposed
to replace the CNN dense link block, and the HS can effec-
tively extract more discriminative feature information. The
HS module has been seamlessly integrated into both the
generator and the discriminator components of the SSIGAN
architecture, and we prioritize the description of the HS mod-
ule in order to facilitate subsequent introductions between the
different modules. Assume that the given input is Oin ∈ R.
The following is a detailed description of the HS module.

Om = MSA(LN (Oin, θ)) + CB(LN (Oin, θ)) + Oin (1)

Oout = MLP(LN (Om, ϖ )) + Om (2)

whereMSA(·) is the multi-head self-attention function, which
is computed by dividing the channel of input features equally
into d parts, i.e., the number of heads is d, and then executing
d times SA (·) (SA (Q,K ,V ) = Softmax(QK

T
√
D
)V ). CB (·) is

composed of the convolution, the activation function GELU,

and the channel attention together. LN (·) is the layer normal-
ization, MLP(·) is the multilayer perceptron, and ϖ is the
correlation coefficient with respect to Om.We use HSM (·) to
represent the HS module.

The main process of the generator is to process the input
of the generator by linear embedding, then use Transformer
block and HS modules to obtain high-level semantic infor-
mation features, and finally output ISR feature maps by
establishing residual connections. Assume that the low-
resolution given input is ILR ∈ RH×W×C , where H, W and
C denote the height width and number of channels, respec-
tively. A detailed description of the generator is given below.

I ′LR = UP(HSM×3(TF(le(ILR), ρ))) ⊕ le(ILR) (3)

IISR = HSM (I ′LR) (4)

where le(·) denotes the linear embedding that transforms
patches into fixed dimensional vectors. ρ denotes the posi-
tional encoding that provides the network with spatial
location information for each patch. TF(·) denotes the reg-
ular self-attention module without context-guide blocks,
which includes layer normalization, MSA(·) and MLP(·).
UP(·) denotes the up-sampling. ⊕ denotes the pixel-wise
addition operation. The final output feature map IISR will be
fed into the D and EE for the following operations.

The D uses the network framework of VGG-19, with a
dependency between the discriminator and the generator. The
role of theD is to predict probability values that the real image
IHR is relativelymore realistic than the generated intermediate
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image IISR. Equations (5) and (6), which formulate the rela-
tivistic average discriminator for our architecture.

D(IHR, IISR) = σ {C(IHR) − EIISR [C(IISR)]} ⇒ 1 (5)

D(IISR, IHR) = σ {C(IISR) − EIHR [C(IHR)]} ⇒ 0 (6)

where σ (·) denotes the sigmoid activation function, since
the final output of the D is a probability value. C (·)

denotes the output feature maps that have been processed
by the VGG-19 architecture. These feature maps are usually
high-dimensional and capture important visual features of the
input image. EIISR [·] denotes the operation of calculating the
average of all generated intermediate images in a small batch.
EIHR [·] denotes the operation of calculating the average of

all real images in a small batch.
The procedure of EE involves processing IISR with the

Laplacian operator, which is an edge detection operator
effective at identifying edges in an image. By applying the
Laplacian operator, the high-frequency parts of the image,
i.e., the edge regions, are highlighted [60]. The feature map
then through subsequent processing, which include linear
embedding, combinations of HS modules, a sigmoid activa-
tion function, and up-sampling. The final SR image output
is obtained by capturing long-range dependencies through
residual connections, a technique that enhances feature learn-
ing and image quality.

I ′SR = UP(σ (HSM×3(TF(le(lo(IISR), κ))) (7)

ISR = lo(IISR) − IISR ⊕ I ′SR (8)

where lo(·) is the Laplace operator, κ is positional encod-
ing, and - and ⊕ denote pixel-wise addition and subtraction
operations

The loss functions for G and D are as follows, respectively.

LG=−EIHR [log(1 − D(IHR, IISR))] − EIISR [log(D(IISR, IHR))]

(9)

LD=−EIHR [log(D(IHR, IISR))] − EIISR [log(1 − D(IISR, IHR))]

(10)

As shown in equations (9), (10), the loss functions of
G and D is symmetric and contain both the intermediate
super-resolution image IISR and the high-resolution image
IHR. The generated intermediate image is created by the
generator where IISR = G (ILR). Therefore, the generator
benefits from the gradient of the generated data and the real
data in adversarial training, and this design approach can help
the generator to learn more details and texture information.

The structure of the edge enhancer (EE) is shown in the
lower part of Fig. 1, the HI generated by the generator is
used as the input, the edge information is firstly extracted by
the Laplace operator, and then the features are extracted by a
number of HS modules after the linear embedding operation,
and then the weights are reshaped for the distribution by using
the Sigmoid activation function, and finally, the enhanced
edge information is fused with the ISR for the feature fusion
at the same time of subtracting the edge information extracted
by the Laplace operator. Thus, the SR image is obtained.

FIGURE 3. Convergence of the loss function.

B. GLOBAL-CONTEXT AWARENESS NETWORK FOR
VEHICLE DETECTION (GCAFORMER)
GCAFormer transforms the input images of different sizes
into 512 × 512 for better training. The input RGB
three-channel image is divided into patches and these patches
are transformed into a one-dimensional sequence of vectors,
which are then fed into the cascade transformer block (CT)
encoder. First, the input image is assumed to be I ∈ RH×W×3.

In this context, H, W, and 3 represent the spatial height,
width, and the number of channels of the image, respectively.
Subsequently, I is divided into (H ×W ) /K 2 grids, each of
size K × K × 3. Every patch is regarded as a token, with
its attributes defined as a segment of the original image’s
RGB values. All the patches in the grid are flattened to form
a sequence x ∈ RN×P, where N = HW/K 2, P = K ×

K × 3. In the sequence x, we apply a learnable projection
l : xi ⇒ ei ∈ RP(i ∈ 1, . . . .N ) to obtain the sequence
ei ∈ RN×P(i ∈ 1, . . . .N ). Finally, the sequence is fed into
the CT for encoding.

CT is used as the backbone of GCAFormer’s hierarchical
feature extraction, which not only employs a window self-
attention design, but also introduces the position encoding of
CNN based on the Transformer. CT restricts the self-attention
computation to each window, which guarantees that the
information within the window can be fully interacted with
each other, and greatly reduces the computation amount.
CT also introduces the shifted window so that the information
between different windows can be exchanged. CT also intro-
duces the shifted window so that the information between
different windows can be exchanged. Therefore, CT can
effectively introduce multi-scale feature information to solve
multi-task vehicle detection in complex traffic environments.
The framework of CT is described in Fig. 3, whereW-MSA is
to divide the image into non-overlapping windows, and each
window carries out self-attention computation, and SW-MSA
is a kind of shifted window special multi-head self-attention
module. An LN layer is used before MSA and MLP compu-
tation, and there is a residual connection after both MSA and
MLP computation. Multiple CT blocks receive inputs from
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FIGURE 4. Cascade transformer (CT) backbone.

FIGURE 5. Super-Resolution GAN and Global aware object detection system.

the previous step. The backbone of GCAFormer consists of
a total of 4 stages. Stage1 consists of linear embedding and
CT blocks, whichmaintains the dimensions of the input token
H/4×W/4×C . In Stage2, patchmerging is used tomerge the
attributes of each set of neighboring 2 × 2 patches. A linear
layer is then applied to the merged patches to change their
dimensions from 4c to 2c for output. The CT block is then
used for feature extraction and output, while the resolution

is changed to H/8 × W/8. The above process of stage2 is
repeated twice, resulting in stage3 and stage4. The output
resolution is H/16 × W/16 and H/32 × W/32. The above
feature maps are generated in a hierarchical manner similar
to traditional CNNs with the same resolution feature maps.

The CSAF module receives low-dimensional feature maps
with rich spatial location information and high-dimensional
low-resolution feature maps from stage1 to stage4,

VOLUME 12, 2024 113449



H. Wang et al.: Super-Resolution GAN and Global Aware Object Detection System

FIGURE 6. Cross-scale aggregation feature module.

FIGURE 7. Self-adaption (SA) block.

respectively. Since deep feature maps and shallow feature
maps involve different semantic information, the combination
of the two types of information can be adapted to vehicles of
different sizes and shapes in the traffic environment. There-
fore, in this study, we design the CSAF module for receiving
the multi-scale feature maps of the CT backbone network and
then processing them to facilitate the fusion of multi-scale
information. The process is illustrated in Fig. 6, where the
CSAF module employs a bi-directional path fusion strategy
(top-down and bottom-up) and an adaptive module (SA),
where Fig. 7 demonstrates the SA process. CSAF cross-fuses

the multi-scale feature maps from the first to the fourth stage,
and the SA module performs background noise suppression
on the fused feature maps. Since the conventional way of
adjusting the resolution and then performing pixel-level addi-
tion operations is not sufficient to cope with vehicle detection
in complex traffic environments. Some previous studies have
pointed out that feature maps with different resolutions have
different weight distributions [20], so in the CSAF module,
we add additional weights on each input branch, which
enables the network to learn the important feature informa-
tion on each input. For additional weights, we use the fast
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normalized fusion strategy O =
∑

i

(
θ/

(
σ +

∑
j θj

))
· Ii

to adjust the weights of the CSAF module, where θi is
the learnable weights and Ii is the input feature map from
stages 1 to 4, which is then processed by θi using the ReLU
activation function to make the weights of F greater than 0
[20]. The value of E is ascertained through a process of trial-
and-error and is set to 1e-3. The output feature map of the
CSAF module can be depicted as follows.

Y1 = SA(
θ ′

1 · S in1 + θ ′

2 · re
(
Smid2

)
θ ′

1 + θ ′

2 + σ
) (11)

Y2 = SA(
θ ′

1 · Smid2 + θ ′

2 · re (Y1)

θ ′

1 + θ ′

2 + σ
) (12)

Y3 = SA(
θ ′

1 · Smid3 + θ ′

2 · re (Y2)

θ ′

1 + θ ′

2 + σ
) (13)

Y4 = SA(
θ ′

1 · S in4 + θ ′

2 · re (Y3)

θ ′

1 + θ ′

2 + σ
) (14)

The input feature maps for Stage1, Stage2, Stage3, and
Stage4 are denoted by S in1 , S in2 , S in3 and S in4 respectively, and
the output features are denoted by Y1,Y2,Y3, and Y4. θ ′

1 and
θ ′

2 denote the weights for each level, respectively, and re (·)

denotes the feature maps are resized to match the inputs.
Since the CSAF module as a whole is cross-fertilization of
different Stages among the feature maps, it is easy to intro-
duce background noise to affect the detection effect, so we
proposed self-adaption block (SA), the purpose is to inhibit
the shallow stage semantic information among the interfering
information as shown in Fig. 7, about the specific description
of the SA is as follows.

G = w1(S, λ ) (15)

Y = (G⊗ δ (M (GAP(G, γ )))) (16)

where w1 (·) is a 1 × 1 convolution operation, λ is the cor-
relation coefficient with respect to the input S, ⊗ denotes the
pixel-level multiplication operation, δ (·) denotes the sigmoid
activation function mapping the input to a 0 to 1 distribution,
M (·) is the information interaction between the channels,
GAP (·) is the global average pooling operation generating
the statistics of the channel dimensions, and γ is the correla-
tion coefficient with respect to G. Smid2 and Smid3 denote the
intermediate feature layers, as follows.

Smid2 = Conv(
θ1 · S in2 + θ2 · re

(
Smid3

)
θ1 + θ2 + σ

) (17)

Smid2 = Conv(
θ1 · S in2 + θ2 · re

(
S in4

)
θ1 + θ2 + σ

) (18)

where Conv(·) denotes the convolution operation and θ1 and
θ2 denote the corresponding weights. The detection header
consists of two stages designed to predict the object class and
output the detection box. Through the experiments we con-
ducted, we discovered that the performance of Mask-RCNN
aligns with our requirements for the detection head compo-
nent [21]. Therefore, we have chosen to utilize Mask-RCNN
as the detection head in this study. As depicted in the

head section of Fig. 2, it comprises a fully connected layer,
a Region Proposal Network (RPN), bounding box prediction,
category prediction, a Region of Interest (ROI), and a loss
function. It aligns between pixels by ROI align and inputs
vehicle detection box (bbox), vehicle class (class) and vehicle
mask (mask).

The detection head acquires multi-scale features from the
CSAF module and uses RPN to generate candidate regions
containing information about the approximate location of the
target. These suggestions are further optimized by feeding
them into two parallel fully connected layers, which are used
as bounding box regression and bounding box classification,
respectively. In the second stage, ROIs are used to classify and
positionally refine the candidate regions, aligning the outputs
of the PRN and CSAF modules.

GCAFormer utilizes global context awareness through
the CT and CSAF modules. The CT module employs
self-attention to capture global features, considering the
relevance of all image regions, which aids in identifying
different parts of the vehicle and their spatial relationships.
The CSAF module further enhances this capability by inte-
grating multi-scale feature maps to provide richer semantic
information, assisting in the understanding of vehicle features
and their distribution.

C. LOSS FUNCTION
1) LOSS FUNCTION OF SSIGAN
We employed two loss functions in the generator (G) part:
the perceptual loss function (Laware) and (Lcontent ) the con-
textual loss function B [7]. The perceptual loss function A
is calculated using the VGG feature mapping (vgg(·)). The
content loss function calculates the 1-norm distance between
IISR and IHR. Here, IISR and IHR denote the low-resolution
image J that has been processed by the generator (G) and
the high-resolution image labeled by us, respectively. The
detailed equations are as follows.

Laware = EILR ||vgg(G(ILR) − vgg(IHR))||1 (19)

Lcontent = EILR∥G((ILR) − IHR)∥1 (20)

Inspired by previous edge enhancement networks
Jiang et al. [8] proposed the use of a consistency loss func-
tion, applied between IISR and IHR, which can effectively
preserve the detail information of the edges. Therefore,
we invoked the consistency loss function for the computation
of edges (Ledge), and we also used the Charbonnier loss
to evaluate the edge information(ISRedge ) extracted from the
super-resolution image ISR generated by Edge Enhancer(EE)
and the edge information(IHRedge) extracted from IHR [49].
We used two consistency loss functions to compute the image
and edges separately, and then summed the two losses. This
is shown in equations (21) and (22), where η (·) represents
the penalty term of the Charbonnier loss.

Limage = EISR [η(IHR − ISR)] (21)

Ledge = EISRedge [η(IHRedge − ISRedge)] (22)
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Lee = Ledge + Limage (23)

We sum up the above loss functions of the generator
(G) and edge enhancer (EE) to finally get the total loss
function regarding our generator (G) module. As shown in
equation (24), where λ denotes the weights accounted for
different loss functions. We set λ1, λ2, λ3 and λ4 as 1, 0.001,
0.03 and 3 respectively according to empirical experience.

LGfinal = λ1Laware + λ2LG + λ3Lcontent + λ4Lee (24)

2) LOSS FUNCTION OF GCAFORMER
The selection and design of the loss function plays a very
important role in the training of the model. It provides insight
into the performance of amodel on training data by evaluating
the difference between the model’s predicted and true results.
In the head part of the network, the loss function (L) is
composed of three parts: classification loss (Lclass), position
loss (Lloc) and mask loss (Lmask) [21]. It is represented as
follows.

Lsum(GCAFomerpi (G(ILR)) ,GCAFomerti (G(ILR)))

= Lclass + Lloc + Lmask (25)

Lclass =
1

Nclass

∑
i

Lclass(GCAFomerpi (G(ILR)) , p∗
i )

Lloc =
β

Nloc

∑
i

p∗
i · Lsmooth1 (GCAFormerti (G(ILR)) − t∗i )

(26)

where GCAFomerpi (G(ILR)) and p
∗
i refer to the confidence

level that the prediction frame is a vehicle and the true value of
the label, respectively. GCAFormerti (G(ILR)) represents four
coordinates of the prediction, and t∗i is the true coordinate.
Nclass is the regularization term with respect to Lclass, Nloc is
the regularization term with respect to Lloc, and β balance the
weights between Lclass and Lloc. Lclass and Lloc are specified
as follows.

Lclass(GCAFomerpi (G(ILR)) , p∗
i )

= −p∗
i ln(GCAFomerpi (G(ILR)))

− (1 − p∗
i )ln(1 − GCAFomerpi (G(ILR))) (27)

Lsmooth1 =

 |z| if |z| > b;
1
|b|
z2 if |z| ≤ b

(28)

where |z| and b are the absolute error values and hyperparam-
eters, respectively, and Lmask is denoted as follows.

Lmask =−
1
m2

∑
1≤i,j≤m

ln (
GCAFomeryij (G(ILR))

)yij
+

ln(1 − GCAFomeryij (G(ILR)))
(1−yij)


(29)

where yij is the label of cell (i, j) in the true mask and
GCAFomeryij (G(ILR)) is the predicted value of the true label.

3) TRAINING
Based on the previous description of equation (5) and (6),
we define the discriminator (D) for training our generator (G).
The structure of the discriminator (D) adopts VGG-19. In the
methods section, we have defined GCAFormer as our detec-
tion network. The discriminator (D) and GCAFormer will
jointly act as a discriminator (D) for the generator module.

For the training part, we provide two approaches. The first
approach, separate training, involves training SSIGAN and
GCAFormer separately. The second approach involves end-
to-end training. We will focus on both approaches in the
following sections.

In the separate training approach, we train the
super-resolution image generation network SSIGAN (gener-
ator module and discriminator (D)) and the detection model
GCAFormer separately. This means that the loss function of
GCAFormer is not backpropagated into the generator mod-
ule (generator (G) and edge enhancer (EE)). The generator
module only receives feedback from the discriminator (D).

In the end-to-end training approach as shown in Fig. 5,
the system (SSIGAN and GCAFormer) is trained end-to-end.
This means that the loss function of the detection network can
be back-propagated to the generator module. Since we treat
GCAFormer and the discriminator (D) as a whole, the gen-
erator module receives gradients from both GCAFormer and
the discriminator (D). As shown in equations (30) and (31),
we obtain the final discriminator (D) loss and the total loss
function of our system.

LDfinal = LD + Lsum (30)

Lsystem = LGfinal + LDfinal (31)

In this paper, the network is trained for 200 epochs, and the
total loss of the network shows good convergence at the 40th
epoch, as shown in Fig. 3.

IV. EXPERIMENTS
A. DATASET AND EVALUATION
In image enhancement part of the system, an adversarial
network (SSIGAN) for generating super-resolution vehi-
cle images is proposed, which requires LR as inputs and
high-resolution images as labels during the training process
of SR generation, and generates SR images through the joint
action of G, D, and edge EE, which helps in the subsequent
target recognition and analysis tasks in complex traffic envi-
ronments. The labeling in this study was done by capturing
high-definition traffic images of no less than 30 cm from
Bing maps and cutting the images into 512 × 512 pixels
image blocks, where it was ensured that each block contained
at least one vehicle target [22]. For the production of low-
resolution images, double cubic interpolation down-sampling
was used to reduce the size of the high-resolution image
(HR) by a factor of four, resulting in LR image blocks of
128× 128 pixels [23].We used the production dataset to train
SSIGAN, making the model sensitive to traffic environment
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TABLE 2. Detection of LR (low resolution) and SR (super resolution) images using the same dataset. Calculate the mAP values under different detection
categories.

TABLE 3. The proposed system (SSIGAN and GCAFormer) is analyzed in comparison with the current SOTA model on the dataset KITTI (E, M, and H for
easy, medium, and hard, respectively).

TABLE 4. The proposed system is analyzed in comparison with the current SOTA model on the dataset IITM-hetra.

features for subsequent application to other traffic datasets for
SR image generation.

Due to the currently available datasets, there are small
targets with far away vehicles and pedestrians with fewer
pixel points, which do not provide sufficient contextual infor-
mation. Without the use of image related techniques, this

would result in the possible loss of texture and detail fea-
ture information, which will affect the effectiveness of the
detection. To ensure a comprehensive analysis of the exper-
iments, the proposed GCAFormer model was employed for
object detection on the IITM-hetra, KITTI, and Pascal VOC
datasets, which was enhanced with the SSIGAN model. The
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TABLE 5. The proposed system is analyzed in comparison with the current SOTA model on the dataset Pascal VOC.

TABLE 6. The proposed system is analyzed in comparison with the current SOTA model on the dataset BDD-100K.

IITM-hetra dataset encompasses complex traffic conditions,
while both the KITTI and Pascal VOC datasets serve as
standard benchmarks for vehicle detection [24], [25], [26].
Fig. 8 shows the image enhancement and detection results
using the IITM-hetra dataset under proposed super-resolution
GAN with global-aware target detection system. SSIGAN
assists GCAFormer to achieve higher average accuracy. From
the figure, it can be clearly seen that, comparing the generated
SR image with the input LR image, the SR image restores the
feature information of the vehicle targets in the LR image and
enhances the detail information of the proximal targets, which
enables GCAFormer to correctly detect most of the objects.

GCAFormer uses the pre-trained weights of Swin-
Transformer on ImageNet for feature extraction [27], [28].

GCAFormer uses the same hyper-parameter settings on the
batch-size of the KITTI, Pascal VOC and IITM-hetra datasets
was set to 20 and trained for a total of 40 cycles using the
AdamW [29] optimizer. The initial learning rate is 0.0001 and
the weight decay is 0.05. The number of epochs for system
is set to 200. Using data augmentation techniques, the input
training set is subjected to random transformations such as
horizontal rotation, scaling and brightness difference to pre-
vent model overfitting. The input image size was resized to at
least 512. Our experimental environment is under the Ubuntu
20.04 operating system, using the PyTorch framework and an
NVIDIA 4090 graphics.

We evaluate the model using the following metrics: mean
average precision (mAP), frames per second (FPS), and
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FIGURE 8. The image enhancement and detection results using the dataset IITM-hetra dataset. (a) The input LR image. (b) The SR image generated by
SSIGAN. (c) The detection results from our proposed model.

runtime (ms). mAP metric is the most critical metric in this
study, and is used to evaluate the mean accuracy of all classes.
The mAP metric is the most critical metric in this study,
which was used to calculate the average accuracy across
all categories. It is affected by average precision (AP) and
intersection over union (IoU), whereAP needs to be evaluated
in combination with precision and recall, and Precision is a
measure of the percentage of correct predictions made by the
model in question, as follows.

Pre =
TP

TP+ FP
(32)

where TP denotes a positive positive and FP a false positive.
Recall is defined as follows.

Re =
TP

TP+ FN
(33)

where FN is denoted as false negative. In summary AP can
be expressed as.

AP =
1
N

∑
Rei

Pre(Rei) = 1 (34)

where N is the number of samples for accuracy and recall.
The IoU’s are used to calculate the difference between the

predicted and true boxes. It is specified as follows.

IoU =
Ap ∩ Ag
Ap ∪ Ag

(35)

where Ap is the predicted bounding box and Ag is the true
bounding box. mAP is calculated by considering the mean of
the estimated IoU thresholds for all classes in the AP dataset,
and FPS and runtime provide model speed on the runtime
platform.

B. ABLATION EXPERIMENTS ON SSIGAN
The SSIGAN model generates super-resolution images, and
in order to verify whether it can help the detector improve
its detection accuracy, we used LR and SR as inputs for the
target detection task based on GCAFormer, respectively.

In Table 2, the performance is examined using detectors
with different training/testing combinations. When we train
and test on LR images without the CSAF module (using
a conventional FPN instead of the CSAF module [30]),
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FIGURE 9. (a) and (e) show the LR image without enhancement using SSIGAN model. (b) and (f) are the SR image enhanced with SSIGAN model.
(c) (g) and (d) (h) are the detection result images using GCAFormer under LR and SR, respectively.

we observe that the mAP of the GCAFormer is only 79.44%
and 77.20%, and its average accuracy improves by 2.98% and

2.39% for training and testing on SR. Therefore, providing
the model with high-quality images as input for detection can
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FIGURE 10. Some result images on the KITTI dataset are shown in figure. Augmented by our proposed SSIGAN model and then detected by GCAFormer.

FIGURE 11. Some result images on the IITM-hetra dataset are shown in figure. Augmented by our proposed SSIGAN model and then detected by
GCAFormer.

recover target details and provide rich feature information to
the detection model.

In the last two lines of Tabel 2, we add the CSAF module
to GCAFormer, which achieves a mAP accuracy of 90.62%
on the SR image, which is 11.18% ahead of that of the first
line of the test on LR. 11.18%. This not only shows the
significant impact of resolution on the quality of target detec-
tion, but also demonstrates that our proposed bidirectional
path fusion feature strategy of CSAF module provides more
efficient multi-scale feature information to the model, which

can be adapted to the task of vehicle detection in complex
environments.

The SR image generated after SSIGAN is shown in Fig. 9.
Fig. 9(a) shows the LR image in the original dataset, and
Fig. 9(b) represents the SR reconstructed image, and the
visual effect of the reconstructed image is significantly
enhanced as seen from the left side of Fig. 9(b). The centered
signboard in Fig. 9(c) is recognized as a vehicle, and the
white vehicle near the back is not detected by GCAFormer
due to less feature information. Fig. 9(d) shows a plot of the

VOLUME 12, 2024 113457



H. Wang et al.: Super-Resolution GAN and Global Aware Object Detection System

FIGURE 12. Some result images on the pascal VOC dataset are shown in figure. Augmented by our proposed SSIGAN model and then detected by
GCAFormer.

detection results using the GCAFormer model after SSIGAN
reconstruction, in which the false detection of the centered
signage is corrected and the white vehicle near the rear is
correctly detected. It can also be seen from Fig. 9(e) and
Fig. 9(f) that the feature information at the far end of the
image after SR reconstruction is enhanced. Comparing the
detection results after LR and SR reconstruction (Fig. 9(g)
and (h)), it can be seen that the blurred motorcycles and cars
at the distance are also accurately detected.

C. EXPERIMENTAL RESULTS ON KITTI DATASET
The KITTI dataset is currently a popular dataset for vehicle
detection with 7,481 images, including cars, people, bicycles,
vans, and trucks, but according to the official evaluation,
only three categories are considered (car, person, and cyclist).
In order to verify the validity and reliability of our proposed
models, all comparative models were evaluated for perfor-
mance at KITTI. Since the dataset has no corresponding
labels, this study divides the dataset according to the method
proposed by Xiang, Choi et al. The training and test sets
are 3712 and 3769, respectively [43]. This study presents a
system that includes twomodels (SSIGAN andGCAFormer).
We will use an end-to-end training approach where the edge
enhancer (EE) and the generator (G) are grouped into the
generation module as a whole. The discriminator (D) and
the detection model GCAFormer will be grouped into the
discriminator module as a whole. By integrating the above
loss functions into a unified system loss function, the gener-
ator module can receive the gradient from the discriminator
module, as shown in Fig. 5. The evaluation of KITTI is cat-
egorized into three modes, i.e., easy, moderate, and difficult,
depending on the height of the bounding box and the level of

occlusion. The results of comparison with the SOTA model
are shown in Table 3, where our method achieves 90.33%
mAP and 422 ms Runtime (ms). It is 7.61% and 4.79% ahead
of YOLOv3 [32] and YOLOv5-NAM [33], respectively, but
since our backbone is based on the self-attention module,
it results in a slower runtime than the former two. SINet is
the stronger competitor of our method, which also uses SR
images as input [34]. YOLOSR-IST and SatDetX-YOLO are
current state-of-the-art algorithmicmodels, and although they
are leading in different categories of target recognition tasks,
mAP still behind our system. Table 3 demonstrates that our
model performs well in all three difficulty levels, proving
that our strategy of SSIGAN generating SR images as input
and GCAFormer sensing global information for detection is
accurate and efficient. Fig. 10 shows the specific detection
results of our proposed model on the KITTI dataset.

D. EXPERIMENTAL RESULTS ON IITM-HETRA DATASET
The IITM-hetra dataset contains 1417 images and we have
divided the dataset into two parts, training and testing,
where training contains 1200 images and testing contains
215 images. The detection targets are made up of a total of
four: cars, people, autos, and buses. People riding motorcy-
cles are labeled as people, and large vehicles are labeled as
bus. In the IITM-hetra dataset, the input images are cropped
to 512×512 and then passed into system. Hetra dataset before
evaluation, we have cropped the image to 512 × 512 size
and fed it as input to our system for training and inference.
For a fair comparison with the SOTA model, we trained it on
IITM-hetra again using transfer learning as well. As shown
in Table 4, we introduce two experimental metrics are back-
bone network and FPS. The backbone network includes the
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FIGURE 13. (a) and (c) show the resultant images of GCAFormer model detection at low resolution. (b) and (d) show the SR images enhanced by the
SSIGAN model and then detected by the GCAFormer model.

swin-transformer and YOLOv8 commonly used in current
SOTA models. Our method leads YOLOv4, EfficientDet and
Swin-Transformer in mAP by close to ranging from 6% to
12%. Although YOLOv4 and EfficientDet perform well for
cars, bicycles, and buses, they are less effective in small target
detection, and Swin-Transformer, although sensitive to small
targets at long distances, is also ineffective due to the absence
of SR images and multi-scale information to guide detection.
As our strongest competitor, SatDetX-YOLO reaches 48 in
FPS, but still lags behind our proposed system in accuracy.
Our proposed method provides SR images for training and
more powerful multi-scale features in the detection session,
which can achieve finer-grained detection results. The detec-
tion results are shown in Fig. 11, from which the accuracy of
our proposed work can be proved.

E. EXPERIMENTAL RESULTS ON PASCAL VOC DATASET
The Pascal VOC dataset has 9963 pictures in 20 groups. It has
2501 pictures for training, 2510 for checking, and 4952 for
testing. The primary task of our system is to locate the vehicle
position in a complex traffic environment. Because the Pascal
VOC dataset’s pictures have many classes and scenarios we
need to spot cars are complex, we tested our system on this

dataset to make sure it could work well in different situations.
As can be seen in Table 5, our model achieves 88.41% mAP
on the test set, outperforming the single and two-stage SOTA
models in the table. Fig. 12 illustrates some of the model
detection results.

F. EXPERIMENTAL RESULTS ON BDD-100K DATASET
The BDD-100k dataset is a large-scale dataset created
by the Berkeley Deep Driving Project team, containing
high-resolution images and detailed annotations of more than
100,000 driving scenarios, with a large number of driv-
ing scenarios with day/night and bad weather images [54].
We selected 2000 images of complex driving environments
as our training sets and 200 images as test sets. Since
the BDD-100k dataset itself is a high-resolution dataset,
we used bicubic down-sampling on its original images, cap-
turing the low-resolution images for training and keeping
the high-resolution original images for labeling. Fig. 13
shows the driving scene images in various types of com-
plex traffic environments, such as alternating day and night,
light interference, alternating seasons, and interference from
surrounding obstacles, as shown in column (a). Column
(c) also shows disturbances such as bad weather. Column
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(a) and (c) show the detection effect in the low-resolution
image, and columns (b) and (d) show the detection effect
in the high-resolution image. It can be clearly observed that
there are fewer pixels in the low-resolution image for the
long- distance target, and the detail information is not rich
enough. The presence of a large amount of noise in the
low-resolution image suppresses the feature information of
the target region and reduces the detection accuracy. When
using the SR image generated by our proposed system, the
detection algorithm is able to extract more detailed feature
information at the distance, which is more sensitive to the
edge information and background noise. SR image allows the
same size image to contain more pixel points while suppress-
ing the noise. As shown in Table 6, we divided the resolution,
the down-sampled images of the BDD-100K dataset as LR
images, the original HD images as HR images, and the ones
that have undergone SSIGAN to generate the images as SR
images. In Table 6, we first used the untrained and untested
LR image dataset as input and used our proposed detection
model GCAFormer for prediction, and the resulted mAP is
only 78.43%,which is not enough to comparewith the current
SOTA model. However, when we integrated the SR image
generation model SSIGAN and the GCAFormer detection
model into one system. When we use this system for pre-
diction, the mAP reached 93.33%, surpassing the strongest
competitor, YOLO-SE, by 2.88%.

V. CONCLUSION
In this study, we proposed a framework that combines a
super-resolution generative adversarial network (GAN) and a
global-aware vehicle detection system. The framework con-
sists of two main parts: a super-resolution image generation
model (SSIGAN) and a global context-aware model for vehi-
cle detection (GCAFormer).

SSIGAN is a model consisting of a generator (G), a dis-
criminator (D) and an edge enhancer (EE). We embed a
hierarchical self-attention module (HS) in G and EE, which
effectively reduces the problems of matching errors and loss
of texture details at the later stage of super-resolution image
reconstruction. The input of SSIGAN is a low-resolution
(LR) traffic image, and the output is a super-resolution (SR)
image with clear edges and textures. This provided detailed
feature information for subsequent detection tasks.

The global context-aware network for vehicle detection
consists of GCAFormer and its built-in modules cascade
transformer (CT), cross-scale aggregation feature (CSAF),
and the detection head. The CT module provides multiscale
information, and the CSAF module employs bi-directional
feature fusion, which combines to allow the detection head
to receive more detailed information about the vehicle. The
CT module provides multi-scale information and the CSAF
module adopts bi-directional feature fusion technology, both
of which enable the detection head to receive more semantic
feature information for accurate detection and classification
on SR traffic images.

TABLE 7. List of abbreviations.

We conducted extensive tests on the KITTI, IITM-hetra,
Pascal VOC and DBB-100k datasets. The results show that
our proposed system (SSIGAN with GCAFormer) can be
adapted to complex traffic situations and is more accurate
when compared to other car localization methods in most
situations. Future work will focus on improving the robust-
ness of the model and creating more diverse and realistic SR
images in order to enhance the generalization capabilities of
the model. We will also explore how to utilize more data and
advanced computer vision techniques to improve our model
performance further.

APPENDIX
Table 7 includes abbreviations of important short terms that
appear in the paper.
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