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ABSTRACT In game design, creators strive to guide players toward specific strategies through the game’s
mechanics. This assumes a level of predictability in player behavior, though in reality, players often deviate
from expected rational strategies. We provide an ensemble mechanism to influence behavior in arbitrary
normal-form games, even when players are not rational. Our algorithm adjusts the game’s reward structure to
encourage gameplay that alignswith the designer’s intentions. At the algorithm’s core is a deep reinforcement
learning technique that learns to model players’ real-world behavior. This mechanism is versatile and
applicable beyond game design; it can be employed in various fields where one can frame problems as
classification tasks. Incorporating actual gameplay data into the training process allows our algorithm to
acquire a practical understanding of player decisions. The efficacy of our mechanism is evaluated by testing
themechanism’s performance against a panel of classifiers, which includes a support vectormachine, random
forest, and multi-layer perceptron.

INDEX TERMS Influencing games, normal-form games, reinforcement learning.

I. INTRODUCTION
Game theory traditionally assumes agents are rational,
striving to maximize their utilities and seeking equilibria.
In reality, cooperation can be beneficial, and full rationality
does not always prevail. While the rationality assumption
works for scenarios involving significant economic stakes,
like spectrum auctions, it can falter under time constraints or
with less sophisticated players. In these situations, seemingly
irrational behavior can be exploited for gain. The freemium
business model, prevalent in mobile gaming, exemplifies this:
players are incentivized toward a balance of free content and
in-app purchases, with profit stemming from deviations from
the equilibrium strategy.

Certain aspects of automated mechanism design [1]
grapple with irrational players by devising mechanisms with
equilibriums that exhibit resilience to irrational conduct,
e.g., Bayesian Robust Mechanisms [2]. In contrast, our
study integrates machine learning components to steer player
behavior, irrespective of its rational or irrational nature, but
does not aim to comprehend the equilibrium or manage
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games characterized by such equilibriums. Consequently, it is
plausible that some games formulated under our model may
lack an equilibrium entirely.

Handling non-rational players has spurred the development
of behavioral game theory models for predicting strategic
human behavior [3], [4], [5], [6], [7], [8], [9]. The models
frequently focus on unrepeated, simultaneous-move scenar-
ios, aptly represented as normal-form games (NFG).1 NFGs
capture many interactions while remaining conceptually
straightforward.

Traditional machine learning techniques, e.g., Support
Vector Machines (SVM) [10], Multi-Layer Perceptrons
(MLP) [11], [12], Random Forest [13], do not typically pre-
dict strategic player behavior well. However, [3] introduced a
novel deep-learning neural-network architecture invariant to
the input size that makes good predictions.

Influencing behavior is crucial in contexts like elections,
policy changes, and contract design [14]. This entails model-
ing likely player actions to guide them toward specific goals.
Recent work by [15], probes this, presenting a mechanism to

1A normal-form game is a game description via a matrix, detailing all
strategies and corresponding payoffs for each player.
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incentivize behavior in extensive-form games, demonstrating
the P-completeness of determining optimal deposit schemes
in perfect-information games, and demonstrating the use of
payments to alter game equilibrium.

Various research attempts to deal with irrational players in
the fields of opponent-shaping, adaptive mechanism design,
differentiable economics, and empirical game theory. Refer-
ence [16] explores deep reinforcement learning (RL)methods
to model and understand players’ behavior in such games.
Works such as [17] and [18] involve analyzing player behav-
ior and using it to design adaptive mechanisms that shape
opponents’ strategies. Strategy shaping can involve dynam-
ically adjusting strategies in response to opponent behaviors.
On the other hand, [19] focuses on analyzing and designing
mechanisms based on empirical data and real-world settings
and provides insights into how empirical methods can inform
mechanism design in practical scenarios, even when the data
is extremely scarce. Reference [15] recently investigated
influencing players’ behavior in extensive-form games where
players play equilibrium strategies. Note that in contrast to
these results, our result works with NFGs and seeks to change
the game’s overall outcome rather than adapt to opponents
and is not concerned with equilibria.

GUIDE uses [20]’s Deep Q-Learning (DQL) algorithm
to divide the space of possible games into regions with the
same expected outcome. GUIDE vectorizes a set of game
data in the form of NFGs and uses an ensemble approach
[21], [22] to build mathematically well-defined boundaries
for areas containing NFGs with the same outcome. The
algorithm analyzes the polytopes to find the game nearest
to the designer’s that will play as requested. We selected
DQN for its ability to handle complexity and scale to high-
dimensional spaces.

Although our study primarily integrates conventional
machine learning components to steer player behavior in
Normal-Form Games (NFGs), it is worth noting the broader
context in which these technologies operate. Distributed
machine learning [23], for instance, offers scalable solutions
that could enhance the processing of large-scale game data
across multiple servers or nodes without the need to share
sensitive data.

Our result adapts [24]’s approach to finding classification
boundaries by dividing a space using genetic algorithms
with hyperplanes. GUIDE adapts [24]’s approach by using
a DQN and solves its stopping problem by incorporating
a recursive separation technique with stopping criteria that
ensure the system converges on a solution and results in better
classification boundaries.

A. OUR CONTRIBUTION
In this paper, we present a generic mechanism called GUIDE
(Game InflUencIng through Deep LEarning) to incentivize
behavior in arbitrary NFGs. GUIDE receives a game from a
designer and finds the nearest game2 that plays as the designer

2later define in 1.

intends. GUIDE supports both pure and mixed-strategy
NFGs and applies to other domains where problems can be
formulated as classification problems.

Reference [3]’s NFG matrix representation was adopted
for encoding NFGs as data. Each data point consists of an
NFG together with the players’ joint actions represented as
a classification. This creates a basis for bounding areas that
isolate NFGs with the same classification.

We evaluated GUIDE using a combined dataset of actual
game data obtained from [3], [5], [6], [25], [26], [27], [28],
[29], and [30]. Since, to the best of our knowledge, there are
no similar mechanisms to benchmark against, we tested the
agreement of our results against a panel of ML classifiers
such as SVM [10], MLP [11], [12], and Random Forest [13].

It is important to note that GUIDE is indifferent to
theoretical equilibria. GUIDE only considers outcomes to the
extent that they appear in actual data. The outcome requested
by the game designer can be any combination of player
actions.

B. ETHICAL CONSIDERATIONS
Our research introduces an ensemble classification technique
with potential applications in modifying games represented
by Normal-Form Games (NFGs) to align with designers’
expectations. While our technique is inherently neutral, its
application can lead to various outcomes depending on the
user’s intent. The technology has the potential to enhance
fairness and balance in games, ensuring a better experience
for players. However, it also carries risks of misuse, such as
manipulating game outcomes for dishonest gain or creating
biases in competitive scenarios.

The ethical implications of machine learning technologies
in game modification necessitate ongoing discussion and
careful consideration. As highlighted by [31], AI ethics
should focus on both supporting the socially positive use of
these technologies and preventing their misuse. In line with
this perspective, we advocate for the responsible application
of our technology.

To mitigate potential ethical risks associated with our
approach, we propose several strategies:

1) Ensuring transparency by openly disclosing algorith-
mic modifications to players, allowing them to make
informed decisions about their gameplay.

2) Adopting inclusive design practices that involve a
diverse range of stakeholders in the development
process, which helps ensure fairness and balance
in-game mechanics for all players.

3) Regularlymonitoring the effects of gamemodifications
on player experience and maintaining consistent stan-
dards of fairness.

These strategies align with the principles of fairness,
accountability, and transparency in machine learning, as dis-
cussed by [32] in their comprehensive survey of the
field. Their work emphasizes the importance of ethical
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considerations in the development and deployment of algo-
rithmic systems.

We underscore the obligation of developers and users to
apply this technology ethically and to consider the broader
consequences of their actions on the game’s stakeholders.
By promoting these practices, our aim is to contribute
positively to the field of game design and ensure that
advancements in gaming technology foster an equitable and
enjoyable experience for all participants.

C. ORGANIZATION
Section II covers the notation and background concepts from
game theory and deep reinforcement learning needed for our
algorithm. Section III explains the mechanism and presents
key algorithms. Section IV shows experimental results and
performance evaluation. We conclude and discuss future
directions in Section V. The appendix contains deferred
details and introduces experimental results for GUIDE with
non-NFG datasets.

II. PRELIMINARIES AND NOTATION
This section provides the necessary background and notation.
We discuss normal-form games, hyperplanes, and polytopes
and provide relevant notation.

See Table 1 for a summary of all notations.

A. NORMAL-FORM GAMES
Let L represent a set of players in an NFG where |L| = l.
Let At be the set of actions available for player t ∈ L.3 Let
ati ∈ A

t be the ith action of player t ∈ L.
An NFG can be represented by a matrix. Each matrix axis

represents the actions available to a given player. Each cell
expresses the payout from a combination of selected actions.
For example, a two-player NFG where each player has two
possible actions is represented as follows:

[ a21 a22
a11 r11,1, r

2
1,1 r11,2, r

2
1,2

a12 r12,1, r
2
2,1 r12,2, r

2
2,2

]
(1)

where r t
a1i1
,..,alil

is the tth player’s reward for a specific joint

action (a1i1 , .., a
l
il ).

1) NFG VECTOR
An NFG matrix can be placed in a coordinate space by
converting it to a vector. An NFG,M , of size

∏l
t=1 |At | can be

transformed into a vector of length l ·
∏l

t=1 |A
t
|. For example,

for a two-player NFG where each player has two possible
actions, the vector is (r11,1, r

1
1,2, r

1
2,1r

1
2,2, r

2
1,1, r

2
1,2, r

2
2,1, r

2
2,2).

B. CLASSIFICATION
NFG Vectors are classified by the actions participants choose
when playing the given NFGs. Let C = (a1i1 , .., a

l
il ) denote

3At may include mixed strategies.

an NFG’s classification and let Ĉ denote the game maker’s
desired classification.

In the case of 2-player games for an |A1|× |A2|matrix, for
row player actions, we define |A1| classes, while for column
player actions, we define |A2| classes. If we are interested in
studying joint actions, we will define |A1|×|A2| classes - one
per NFG cell.

From the example matrix provided earlier, in the case of
a row player, we have two possible classes: a11 and a

1
2. In the

case of a joint action of both row and column players, we have
four classes: a11a

2
1, a

1
1a

2
2, a

1
2a

2
1 and a

1
2a

2
2, and each cell of the

matrix represents a separate combination of actions.
For an l-player matrix, the space dimension is:

Rl×(|A
1
|×...×|Al |) or just Rl×(A

l )l if all l players have the same
Al number of possible actions. In the matrix above, for
2-players with two actions each, we have 2 ∗ 22 = 8→ R8).

C. NFG DISTANCE
GUIDE incentivizes behavior in NFGs by finding the nearest
game that will play as the game designer desires. There are
various ways to define the ‘‘nearest’’ game. It is reasonable
to assume that a game designer would want a game that
is close in cost and class to the original game. Therefore,
we define the distance of two NFGs as their Euclidean
distance and illustrate this choice as aligned with finding a
cheaper potential payoff solution out of the options for the
designer.

An illustrative example can be found in appendix -A.
Definition 1 (NFG Distance): The distance between two

NFGs (of the same dimension) V and V̄ is defined by the
Euclidean distance:

∥V , V̄∥ =
√
6l
t=1 6a1i1

∈A1 . . . 6alil∈A
l (r ta1i1 ,..,a

l
il

− r̄ t
a1i1
,..,alil

)2

For ease of comprehension, the example provided in
appendix -A uses rational players, though our research
focuses on players who may not necessarily make rational
moves. Nonetheless, the algorithm introduced in Section III
handles both rational and irrational behaviors. Also, note that
the space of classified NFGs may contain multiple regions
with the same classification with a considerable distance
between them. This can occur, for instance, when the payoffs
of a specific NFG are multiplied by a positive constant,
resulting in a new game with the same incentives. In such
cases, we will identify the region closest to the given NFG
among the multiple regions with the desired classification.

D. HYPERPLANES
Our system uses hyperplanes to define classification bound-
aries. A normal vector from the origin can completely
determine a hyperplane. For example, in R2, a hyperplane is
a simple line that is defined on the axes x1, x2 as x1∗cos(α)+
x2 ∗ cos(β) = d .

Linking this to the dimension of an NFG matrix trans-
formed to a vector of dimension, Rn, as illustrated by Fig. 1,
we get the following defining equation.
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FIGURE 1. The definition of a 2D hyperplane.

Definition 2 (Hyperplane): Given n, the dimension of the
enclosing space, d , the length of the normal vector to the
hyperplane from the space’s origin, and α1, α2, . . . , αn−1, αn,
angles of the normal vector to the corresponding axis
of the space. A hyperplane can be expressed as:
6n
i=1xi ∗ cos(αi) = d .

1) HYPERPLANE ROTATION
The hyperplane definition allows us to specify a hyperplane
as a tuple (α1, α2, . . . , αn−1, αn, d). Hence, a hyperplane
can be rotated in space by changing one of its angles
α1, . . . , αn, taking into consideration the hyperplane equation
coefficients, it is known that [33]: 6i = 1ncos2(αi) = 1.

Therefore we can express the hyperplane equation with
coefficients bi as follows:

n∑
i=1

bi · xi = d (2)

Given a set W of NFGs transformed to vectors of
dimension m, |W | = w. We want to insert k hyperplanes to
separate regions of NFGs with the same classification. Each
of the k hyperplanes is constructed with bij coefficients of
dimension m where j indexes the NFG vector dimension and
i indexes the k hyperplanes.

We denote byM a matrix of wNFGs of dimensionm.M ∈
Rw×m. We denote by H a matrix of the NFGs coefficients of
dimensionm for the k hyperplanes.H ∈ Rm×k . We denote by
D a matrix of the dis, the length of the normal vectors to the k
hyperplanes from the space’s origin for each of the w NFGs
transformed to vectors. D ∈ Rw×k . An example of how to
constructM , H , and D is given in appendix -B.

E. POLYTOPES
A polytope is a geometric object with flat sides that
generalizes three-dimensional polyhedrons to any number of
dimensions. Polytopes are identified by the set of hyperplanes
that define their bounds. Polytopes can be open on one or
more sides.

Each k hyperplane, defined as hi(x) = di, splits the NFGs’
space into two regions as follows: k̄i : hi(x) − di < 0, ki :
hi(x)− di > 0.
Each polytope is identified by the set of hyperplane sides

(k̄i or ki) that define its bounds.

1) POLYTOPE MEMBERSHIP
Our algorithm needs to find regions of games with a desired
classification. This requires determining which NFGs reside
within a given polytope.

The following matrix equation provides us with the
position of each classified NFG relative to each hyperplane:
P = M×H−D. It follows thatP ∈ Rw×k where the sign of pij
(positive or negative) specifies the position of NFG j relative
to hyperplane i. This means that each row i in P represents the
position of NFG j relative to all hyperplanes. This allows us to
group NFGs belonging to the same polytopes. We calculate
the array of signs +/- relative to defined hyperplanes where
sign− points to k̄i and+ points to ki, and thus the set of these
signs points to the set of hyperplane side specifications which
identifies a polytope.

We define the set of polytopes as Y .

F. DEEP-Q LEARNING
Deep-Q Learning is an advanced reinforcement learning
algorithm that integrates classical Q-learning with deep
neural networks. This technique allows agents to learn
optimal policies for decision-making tasks that involve
complex, high-dimensional environments where traditional
Q-learning approaches would be impractical.

At its core, DQL utilizes a neural network to approximate
the Q-value function, which estimates the expected cumula-
tive rewards for taking each possible action in every given
state. This Q-value function is crucial because it helps the
agent to evaluate the potential future benefits of its actions,
guiding it to make decisions that maximize the cumulative
reward over time.

The learning process in DQL involves repeatedly interact-
ing with the environment, collecting experiences in the form
of state-action-reward-next state tuples, and using these to
update the Q-values predicted by the neural network.

The reward function in DQL provides immediate, quan-
tifiable feedback reflecting the effectiveness of the agent’s
actions. Mathematically, it is expressed within the Bellman
equation used for updating Q-values, (Note that the following
notation is specific to this section):

Q(s, a)← Q(s, a)+ α
(
r + γ max

a′
Q(s′, a′)− Q(s, a)

)
where:
• r represents the reward received after the agent performs
an action a in state s,

• γ is the discount factor, indicating the importance of
future rewards,

• maxa′ Q(s′, a′) is the best possible future reward from
the next state s′,
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TABLE 1. Notation summary.

• α is the learning rate, controlling the integration of new
information.

This formula encapsulates the reward’s role: it directly
influences the update of Q-values, integrating immediate
outcomes with anticipated future benefits, thus steering the
agent’s learning trajectory toward achieving optimal long-
term rewards.

1) NETWORK STRUCTURE
GUIDE’s Deep Q-Network (DQN) has the structure:

1) Input Layers - The input layer flattens the input and
preprocesses the data for future layers. This layer
captures the state of the environment as described by
the position of all hyperplanes in space defined by P.
Thus, if we have k hyperplanes the state size is w · k .

2) Hidden Layers - Three dense, fully connected, hidden
layers of 64 units each, each activated by a rectified
linear unit (ReLU) function. These layers enable the
network to learn intricate patterns and representations
of the environment’s states and actions.

3) Ouptut Layers - The final dense layer outputs prob-
abilities for each possible action, facilitated by a
softmax activation function. This setup allows the
agent to select actions probabilistically based on their
associated Q-values.

FIGURE 2. Overview of GUIDE stages.

The neural network is configured to use a Boltzmann
Q-Policy, which helps in selecting actions in a manner that
balances between exploration of new actions and exploita-
tion of known actions. Additionally, the network utilizes
experience replay via SequentialMemory to efficiently learn
from past experiences by revisiting and learning from them,
which enhances the stability and effectiveness of the learning
process.

III. THE MECHANISM
The mechanism operates in the stages represented in Fig. 2.

We present the algorithm in two phases, each consisting
of two sequential stages from the overview. These phases
are building classification boundaries and remapping an
NFG, denoted by G, to play as requested by the game
maker.

The first phase builds classification boundaries using an
input set, W , of NFGs with the players’ actions attached.
The input NFGs are vectorized, and classifications are
created from the players’ actions. If an NFG was played
multiple times, the most common outcome is selected to
classify the NFG. In case of a tie, we randomly select a
winner. A reinforcement learning algorithm then constructs
k hyperplanes, defined by H and D, to isolate regions where
NFGs in W share the same classification. Additional steps
are taken to ensure homogeneously-classified polytopes,
as discussed later in this section.

The second phase remaps G so that it will play with
classification Ĉ , as requested by the gamemaker. This is done
by finding the polytope nearest to G with classification Ĉ
using the distance formula given in definition 1. G is then
mapped to the closest point on the target polytope, shifted
a small distance toward the target polytope’s interior, and
provided to the game maker as Ĝ.
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A. BUILD BOUNDING POLYTOPES
This section explains how to split the space into regions
with the same classification using a reinforcement-learning
algorithm and a separation algorithm. The initial space is
treated as an unbounded polytope, and the process is repeated
recursively on each mixed-classification polytope until no
new homogenous polytopes can be generated. Any remaining
mixed-classification polytopes are then resolved using the
separation algorithm.

Polytope building was developed using keras-rl [27]’s
DQN, a state-of-the-art deep reinforcement learning
algorithm. Specifically, we used [20]’s agent DQN, which
combines Q-learning with a deep convolutional neural
network. The DQN is structured as follows:

• Input a fully-connected MLP layer of of size k ∗
(m+ 1) with ReLU activation. The input layer captures
the current position of the hyperplanes as there are k
hyperplanes with orientation defined in m dimensions
and one additional node per hyperplane to capture the
distance of each hyperplane from the origin.

• Three hidden layers with ReLU activation, 64 units each.
• Output softmax layer of size k ∗ (m + 1) ∗ 2. The
output layer independently expresses the increment or
decrement to apply to each hyperplane to change its
location in space.

The RL algorithm is presented as a Markov Decision
Process, where H and D represent the state space. The
algorithm can choose to rotate a hyperplane or move it
to/from the origin, with the probability of each action
determined by past success and subsequent actions. The
reward function evaluates the success of each action and
favors regions with homogeneous classifications.

The RL algorithm selects a hyperplane and action accord-
ing to a probability distribution, ρ, which is initialized
to a uniform distribution and changes as information is
learned. The RL algorithm rotates hyperplanes by selecting
one of the coefficients from the equation in Definition 2
according to ρ. Then, the algorithm changes the selected
coefficient by some fraction and adjusts the other coefficients
to observe equation (2). Hyperplanes are moved to/from the
origin by adding/subtracting a movement increment to/from
a hyperplane’s distance from the origin, d .

1) THE RL REWARD FUNCTION
This section describes the RL’s reward function, which is
the core of the ensemble technique for creating high-quality
polytopes. We start by formalizing the reward function
notation, then presents the reward function, and proceeds to
explain the intuition behind the function.

For context, in the function ensemble, the RL positions
region-bounding hyperplanes while NFGnn informs the RL
on classification probability contours, which aids optimal
hyperplane placement. TheRL algorithm computes its reward
using a quality score St for each homogeneous polytope
Yt ∈ Y , 1 ≤ t ≤ |Y |, where yt is the number of NFGs

TABLE 2. Reward function notation summary.

bounded by Yt . We define the following notation to support
the RL reward function:
Definition 3: Let ψhi (G) be the nearest point on hi(x) to

G, and let ηi(G) = ψhi (G) + ϵ · u, where u is a unit vector
randomly chosen from the hyperplane hi(x).

Let 5i(G) be the probability of classification Ĉ at ηi(G),
whereG in the interior of Yt and hi(x) is a hyperplane defining
some of the bounds of Yt .

Let Hm(G) = {hi(x) | hi(x) is among the m closest
hyperplanes to G}.

Let ξi(G) = e−
(5i(G)−φ)

2

2c2 be a positional reward that scores
the location of a point in the classification probability space,
where φ is the desired probability on the polytope boundaries,
i.e., 0.5.

Let τhi (G) be the Euclidean distance ||ψhi (G),G||. This
parameter incentivizes the RL to prefer tighter polytope
boundaries.

Let θ (G) define an NFG’s hyperplane position and
orientation quality function with respect to G:

θ (G) =
∑

hj∈Hm(G)

m∑
i=1

ξi(G)
τhi (G)2

with tuning factor c experimentally set to 0.1.
Let nt define the weighted value of the NFGs inside

homogeneous polytope Yt ∈ Y :

nt =
∑
G∈Yt

θ (G)

Finally, the reward function St is:

St =
f∑
t=1

nt
f · w
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The intuition behind the reward function is as follows:

1) Encouraging Homogeneous Polytopes: The function
rewards the creation of polytopes that encompass
multiple NFGs, so long as reasonable boundaries are
set. The main term influencing this outcome is the
denominator f ·w which encourages a higher score per
NFG per homogeneous polytope.

2) Aligning with Classification Boundaries: Through the
ξi(G) component, the function incentivizes placing
polytope boundaries close to the 50% classification
probability contours, ensuring accurate capture of the
underlying classification landscape.

3) Orienting with the Classification Space: The sum-
mation in θ (G) over points, ηi(G), contributes to
hyperplane orientation by scoring a region of samples
on each hyperplane surface. Hyperplanes that are
misaligned with the probability space will be punished
by ξi(G)’s exponential function.

4) Promoting Tighter Boundaries: The division by τhi (G)
encourages tighter polytope boundaries, creating more
compact representations. Where ξi(G) finds favorable
locations for polytopes, τhi (G) ensures that these
locations that tightly bound their interior NFGs.

By combining these elements, St guides the RL algorithm
towards solutions that not only meet the classification criteria
but also maximize the spatial and structural efficiency of the
polytopes. The function’s design ensures a balance between
accuracy (alignment with classification boundaries) and sim-
plicity (larger, fewer polytopes) in the final representation.

The Complexity of the scoring function is O(wm2σ ). The
scoring function runs over all non-empty polytopes 1 ≤ t ≤
f that in the worst case can be the number of NFGs w.
I.e., each polytope is non-empty and each polytope contains
a single NFG. For each non-empty polytope the scoring
function computes nt which in turn computes for each of
the m closest hyperplanes to G, m times the positional
rewards. The positional rewards are based on the calculation
of the NFGnn, which is a constant time calculation, and
the Euclidean distance between the nearest point on the
hyperplane to the NFG at hand. Finding each such nearest
point is computed by a LP computation. As of this writing
the best running time for such an algorithm [34] is σ =
O((wµ+w2.5−ι/2

+w2+1/6) logw where µ is the exponent of
matrix multiplication (µ ≤ 2.38) and ι is the dual exponent
of matrix multiplication (ι ≥ 0.31).

2) MIXED-CLASSIFICATION POLYTOPES
After the initial RL algorithm is called, we recur-
sively apply the reinforcement-learning algorithm to each
mixed-classification polytope as illustrated in Fig. 3.

Fig. 5 demonstrates space with mixed-classification poly-
topes. Polytopes k̄1k2k̄3 and k1k2k̄3 isolate two instances
of C2 and one instance of C1, which means that we have
mixed-classification and a recursive call for RL algorithm is
performed as is illustrated in Fig. 3.

FIGURE 3. RL recursive call on mixed-classified polytopes.

FIGURE 4. At some RL separation iteration, hyperplanes could fail to split
instances, and the process will not advance.

FIGURE 5. Space with mixed-classification polytopes.

The RL polytope bounding algorithm follows:
As an optimizer can converge on a local minimum,

the RL algorithm may reach a state where it cannot
create new homogeneously-classified polytopes. See Fig. 4
for illustration. This can happen if the RL algorithm
cannot find a proper hyperplane orientation or if the
selected number of hyperplanes is insufficient for the given
NFGs. We apply the separation algorithm to handle this
case.
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Algorithm 1 RL Bound Regions
procedure RL Bound Regions(P)

Input:
P, the vectorized NFG matrices and hyperplanes

Output:
Yhomog, a set of homogeneously classified polytopes
Ymixed, a set of mixed classification polytopes

Let Yhomog be a set of homogeneously-classified
polytopes

Let Ymixed be a set of mixed-classification polytopes
Let Yactive be the working set of polytopes
Call the RL algorithm to create polytopes

assigned to Yactive
for y in Yactive do

if y is homogeneously classified then
add y to Yhomog

else
if y is mixed classified then

Call RL Bound Regions with a copy of y
if RL Bound Regions returned any

homogenous polytopes then
Add the new homogeneous regions

to Yhomog
if RL Bound Regions also returned

some mixed regions then
Add the mixed regions to Yactive

else
There was no change, so add

y to Ymixed for resolution
with the separation algorithm

return Yhomog and Ymixed

3) THE SEPARATION ALGORITHM
The separation algorithm recursively subdivides a mixed-
classification polytope intomultiple homogeneous polytopes.
The algorithm subdivides a region by creating a hyperplane
between two points in the region. The separation algorithm
is then applied to any mixed-classification polytope resulting
from the division, and so on until homogeneously-classified
regions remain. For example, applying the separation
algorithm to the mixed classification polytopes k̄1k2k̄3 and
k1k2k̄3 in Fig. 4 results in Fig. 6(a). In the worst case, the
algorithm will require w̄ iterations to converge on a solution
where w̄ is the number of NFGs in a given heterogeneously
classified polytope. The separation algorithm follows:

B. NFG REMAPPING
Given an input NFG matrix, G, we want to find the minimal
modification that will cause players to play the actions
defined by classification Ĉ .We remapG to play Ĉ by locating
the nearest polytope that isolates NFGs classified as Ĉ and
then find the closest point on that polytope (Fig. 6(b)), G′.
To increase the probability that the modified NFG will play
Ĉ , G′ is moved toward the point with the steepest probability
gradient in the incident polytope to create Ĝ.
The algorithm finds the nearest point on a polytope

that isolates NFGs classified as Ĉ by solving a linear
programming (LP) problem for each such polytope. The LP

Algorithm 2 Separation Algorithm
procedure Separate(Ymixed )

Input:
Ymixed , a set of mixed-classification polytopes

Output:
Yhomog, a set of homogeneously-classified polytopes

Yhomog = {}
for Y in Ymixed do

Generate a hyperplane h to separate any two
NFGs in Y

Polytopes Y1 and Y2 result from Y’s separation
by h

if Y1 is homogenously-classified then
Add Y1 to Yhomog

else if Y1 is missclassified then
Call Separate(Y1.copy())
Add result to Yhomog

if Y2 is homogenously-classified then
Add Y2 to Yhomog

else if Y2 is missclassified then
Call Separate(Y2.copy())
Add result to Yhomog

return Yhomog

FIGURE 6. Separation algorithm illustrations.

solution gives the nearest point to G for each polytope,4 and
thus the distance between each polytope and G.

4In the case where G is already in a relevant polytope, then the algorithm
returns G.
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The LP’s constraints are defined by the set of constraints
concluded from the hyperplane equations that constitute
a given polytope. The objective function minimizes the
Euclidean distance from G to the polytope. For G with
coordinates (X1, . . . ,Xm) and a set of k hyperplanes defines
a matrix with k where the first row is 6m

j=1b1j ∗ xj = d1 and
the kth row is 6m

j=1bkj ∗ xj = dk .
The set of polytopes Y is defined by sets of constraints

derived from the k hyperplane equations in the form of
6m
j=1bij∗xj < di or6m

j=1bij∗xj > di, depending on which side
of a specific hyperplane a polytope is located. The objective
function is: min

√
6m
j=1(Xj − xj)

2.

Thus, G′ is the point with the minimal distance from G
among all the solutions found by the set of LPs. Let Ŷt be
the polytope that G′ belongs to. In Fig. 7(a) and Fig. 7(b)
we give an example of how to remap from G to G′. G′

falls on a polytope surface that also belongs to an adjacent
polytope with a different classification. To make Ĝ play as
intended with higher expectation, we move the solution NFG
further into Ŷt ’s interior. Given point G′, we find the NFG in
Ŷt with the steepest probability gradient from G′, the point
(X ′′1 , . . . ,X

′′
m), and move G′ toward (X ′′1 , . . . ,X

′′
m) and return

its’ new location as Ĝ. The gradient is calculated as the
probability that each interior point will play Ĉ divided by
the distance between G′ and each interior NFG. Fig. 7(b)
illustrates this operation.

Fig. 7(a) illustrates two classes C1 and C2 and polytopes
bounded by the three hyperplanes:

b11 ∗ x1 + b12 ∗ x2 = d1
b21 ∗ x1 + b22 ∗ x2 = d2
b31 ∗ x1 + b32 ∗ x2 = d3

If G is at point (X1,X2), and we want to find the nearest
point on a polytope classified as C2, we solve an LP
problem for each polytope containing C2. In this case we
solve the LP for k̄1k̄2k̄3 and k̄1k2k3, under the objective
function min

√
(X1 − x1)2 + (X2 − x2)2. For polytope k̄1k̄2k̄3

the constraint set derived from the hyperplanes is:

b11 ∗ x1 + b12 ∗ x2 < d1
b21 ∗ x1 + b22 ∗ x2 < d2
b31 ∗ x1 + b32 ∗ x2 < d3

and for k̄1k2k3, the constraint set derived from the hyperplanes
is:

b11 ∗ x1 + b12 ∗ x2 < d1
b21 ∗ x1 + b22 ∗ x2 > d2
b31 ∗ x1 + b32 ∗ x2 > d3

In this example, the nearest point is from k̄1k2k3, and the
system solves and returns (X ′1,X

′

2).
The experimental results include an investigation of the

relationship between the remapping confidence, and the
distance the solution point was moved into the bounding
polytope’s interior.

FIGURE 7. NFG remapping illustrations.

C. THE ALGORITHM

Algorithm 3 GUIDE

procedure Main(W ,C1, ...Cw, k , G, Ĉ)
Input:
W , the dataset of input NFG matrices
C1, ...Cw a set of classifications for each NFG ∈ W
k , number of hyperplanes to divide the

vectorized NFGs
G, the NFG to remap
Ĉ , the desired classification for G

Output:
Ĝ the remapped NGF such that Ĝ is in polytope Ŷt

with classification Ĉ

Build M , i.e. vectorize NFGs in W .
Denote v∗ by maxV∈W ∥V ,V o∥ where V o is the origion.
Initialize H and D with k hyperplanes by placing them
parallel to each other with di = v∗/i.

Compute P from H , D, M .
Call RL Bound Regions (Algorithm 1) with
P to build homogenously-classified polytopes.

if mixed-classification polytopes remain then
Apply the Separation Algorithm

Remap G to G′ on the (nearest) polytope Ŷt
classified Ĉ .

Improve confidence by moving G′ toward the NFG
with the steepest probability gradient in Ŷt .
Call the new location Ĝ.

return Ĝ
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IV. EXPERIMENTS
This section presents an experiment to evaluate the NFG-
remapping system. Since no comparable benchmark mech-
anisms exist, we test GUIDE’s output versus a panel of
classifiers. The experiments also assess the effect of moving
G′ into the interior of the target polytope, Ŷt , to create
Ĝ on the quality of the remapping. The panel consists of
known classifiers trained on our dataset of played NFGs.
Appendix -C provides details on the classier panel.

A. EXPERIMENT DESIGN
We trained GUIDE using datasets from the combined
observations of several experimental game theory studies in
which participants were paid to play NFGs. Participants did
not always play the equilibrium strategy or might have played
games with multiple equilibria, so participants’ sometimes
irrational behavior is captured in the data.

Sixty-one, 3 × 3, 2-player NFGs were extracted from [3],
[5], [6], [25], [26], [27], [28], [29], and [30]. These games
were played 4,812 times overall. However, many outcomes
were identical, which resulted in a distribution of outcomes
for a smaller number of games. The availability of human
data, not a limitation of GUIDE, dictated the use of 3 ×
3 matrices. The result examines the action selected by the
row player, a choice made for clarity despite the possibility
of examining a combination of actions. The available actions
were named actions A, B, and C, respectively. In the dataset,
any single NFG was played multiple times with different
results. So, every NFG had a distribution of classifications
rather than a single classification. This distribution could
result from players choosing non-equilibrium actions or
playing multiple equilibria. We resolved this by mapping
each NFG to the most frequently played action and retaining
the probability of that played action. Even if human players
played equilibrium actions in a multi-equilibria game,
we associate such an NFG with the most frequently played
equilibrium action and the probability that the action was
played. Thus, we note when other equilibria exist but are
not frequently played. Lastly, tie-breaking was unnecessary
as this dataset did not contain ties between classifications.

The system was evaluated with 2000 randomly generated
test NFGs to be remapped. Prior to evaluation, the system
was trained with 71 NFGs taken from the experimental data.
TheNFGswere classified using their most probable outcome,
per GUIDE’s mechanism. As the system performed well with
sparse actual data, there was no need to generate synthetic
training data to assist GUIDE.

The following approach was used to estimate the accuracy
of our remapping algorithm:

1) We selected severalML classifiers: SVM [10], Random
Forest [12], [35], Multi-layer Perceptron [13], and
NFGnn [3].

2) The classifiers were trained on the original 4,812 game
matrix instances from [3], [5], [6], [25], [26], [27], [28],
[29], and [30].

3) The accuracy of each classifier was evaluated.
4) Each classifier labeled each of our solution NFGs, Ĝ.
5) The agreement between each classifier and Ĉ was

recorded.
6) The solution NFGs were moved in steps toward the

interior of their respective Ŷts and reevaluated against
the benchmark classifiers at each step.

GUIDE converts the dataset’s 3× 3 two-player NFGs into
a 18-dimensional vectors and then separates those NFGs into
homogeneously-classified polytopes.

As the RL algorithm will decide whether and how to use
the available hyperplanes, the initial hyperplane count, k is
not critical to success so long as sufficient hyperplanes are
provided. We chose to start with the number of distinct NFSs
minus one. This is the number of hyperplanes needed to
bound each distinct NFG. Overfitting is not a problem given
that GUIDE’s goal is to clearly define the boundaries as
defined by another properly trained classifier, in this case
NFGnn. Tightly fitting the classification boundaries is in fact
the objective.

B. EXPERIMENT RESULTS
The experimental results demonstrated high agreement with
the classifier panel. Particularly noteworthy is the agreement
at the initial boundaries. The agreement at the boundaries
indicates the quality of the polytopes constructed by the RL.
Wewere pleased to see that the initial agreement with NFGnn
was slightly higher than 50%, indicating that the ensemble
RL technique successfully influenced the placement of the
bounding hyperplanes to fall on or near the 50% probability
boundaries. As expected, classifier agreement approaches
100% as the sample points progressed along the steepest
probability gradient within the target polytopes.

The level of agreement in the polytope interiors is subject
to the strength of the desired classification in the target
polytopes as well as the idiosyncrasies of each classifier on
the panel. Though classifier agreement increase as sampled
points follow the steepest probability gradient, the strength
of the desired classification in the target polytope affects
the uptake in agreement. The interior samples also reflect
the consistency of each classifier in the space of the
target polytopes. Even so, the fact that interior agreements
are monotonically increasing is a good indication that the
polytopes are correctly sized and are not inadvertently
capturing subregionswith a classification other than the target
classification.

The detailed experimental results and the classifier panel
are presented in tables in appendix -C and -D. The tables are
summarized below in Fig. 8, which also provides whiskers for
the 95% Wilson confidence interval [36] for each datapoint.
We chose the Wilson interval for its accuracy with small
samples and relative indifference to the idiosyncrasies of the
various classifiers on the panel.

In our experiment, the null hypothesis (H0) posits that
the variance in the system’s agreement with NFGnn is no
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different from the variance observed in a series of coin
tosses, both assumed to center around a 50% success rate.
The alternative hypothesis (H1), however, suggests that
the system’s agreement with NFGnn is more consistently
centered around this 50% mark, displaying less variance
compared to random coin tosses.

Levene’s test [37] is well suited for our scenario because it
specifically assesses variances rather than means. While both
the system and the coin tosses might average a 50% success
rate, our hypotheses focus on the consistency of achieving this
rate, which is fundamentally a question of variance. Levene’s
test, known for its robustness against non-normality, is ideal
for determining if the differences in variance between the
two distributions are statistically significant, without being
misled by any deviations from a normal distribution that
might otherwise affect the test’s accuracy.

In this case, a p-value of 0.017 (less than 0.05 is typically
considered significant) supports the alternative hypothesis
(H1). This low p-value indicates that the variance in the
system’s results is statistically significantly less than that of
the coin tosses, confirming that the system achieves a 50%
success rate more consistently than would be expected by
random chance.

The results show the classifier agreement for each
classification vs. the fraction of distance the solution NFG
moved betweenG′ and the closest NFG in Ŷt . E.g., 0 indicates
that Ĝ stayed at G′ while 1 means that the solution NFG is a
previously played NFG. Fig. 8 summarizes this relationship
and shows that the system can be configured for a preferred
accuracy. One can see how classifier agreement changes
as we move Ĝ further into Ŷt’s interior. As expected, the
confidence rises as Ĝ moves from polytope boundaries and
closer to the existing NFGs.

FIGURE 8. Classifier agreement on Ĉ vs % distance to nearest point.

V. CONCLUSION AND DISCUSSION
We introduced GUIDE, an ensemble reinforcement-learning-
based mechanism for helping game designers create games
with desirable outcomes. Human players played the influ-
enced games, so players did not always play the equilibrium
strategy. The mechanism is general and applies to other game
theory problems; see appendix -F. The experimental results

showed that the system operated as expected and was reliable
relative to the performance of the testing classifiers.

A. NFG DISTANCE
Consider the NFG in Fig. 10, a matching pennies variant with
a modified payoff for each player. The game has two players
with ‘‘Heads’’ or ‘‘Tails’’ actions. Analysis reveals a single
mixed Nash equilibrium: the row player plays Heads with
probability p = 2/5 and Tails with probability 1− p = 3/5;
the column player plays Heads with probability q = 1/3 and
Tails with probability 1 − q = 2/3. The most frequently
played class is the joint action Tails (row player), Tails
(column player), which classifies the game such that player 1
wins and player 2 loses.

The designer that might be concerned that the second
player will leave the game5 or for some other reason, wants
to change the game such that the most frequently played class
is the joint action Heads (row player), Tails (column player).
Assuming the designer has a space of classified NFGs and
the NFG in Fig. 9 is located in one of the classes with
classification Heads (row player), Tails (column player). The
distance between the NFG in Fig. 10 and the NFG in Fig. 9
is 2.84. The change in potential payoffs that the designer has
to obligate for is 1 less in one component and 2 and 2/3 more
in another component, overall 1 and 2/3. Now the designer
can influence the original NFG from Fig. 9 to turn into an
NFG in the desired classification of Heads (row player), Tails
(column player) by finding a closer NFG within the same
classification space. Such NFG can be found in Fig. 11. The
distance between the NFG in Fig. 10 and the NFG in Fig. 11
is 1.536. The change in potential payoffs that the designer has
to obligate for is 1 less in one component and 1 and 1/6 more
in another component. I.e., overall 1/6.

FIGURE 9. Game 1.

FIGURE 10. Game 2.

FIGURE 11. Game 3.

5Calculating the expected utilities of the two players in this equilibrium
gives us u1 = 1/3 for the row player, and u2 = −1/5 for the column player.
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B. CONSTRUCTING M, H AND D
1) EXAMPLE FOR CONSTRUCTING M
Given w = 5 NFGs transformed to vectors of dimensionm =
8, i.e., five NFGs of 2-players with two actions each, we can
describe matrixM in the following way:

x11 x12 x13 x14 x15 x16 x17 x18
...

...
...

...
...

...
...

...

x51 x52 x53 x54 x55 x56 x57 x58


where x11 = r11,1, x

1
2 = r11,2, x

1
3 = r12,1, x

1
4 = r12,2, x

1
5 =

r21,1, x
1
6 = r21,2, x

1
7 = r22,1, x

1
8 = r22,2 etc.

2) EXAMPLE FOR CONSTRUCTING H
Given k = 5 hyperplanes and NFGs coefficients of
dimension m = 8, we can describe matrix H in the following
way: 

b1,1 b2,1 b3,1 b4,1 b5,1
...

...
...

...
...

b1,8 b2,8 b3,8 b4,8 b5,8


3) EXAMPLE FOR CONSTRUCTING D
Given k = 5 hyperplanes and w = 5 NFGs transformed to
vectors, we can describe the 5× 5 matrix D in the following
way: 

d1 d2 d3 d4 d5
...

...
...

...
...

d1 d2 d3 d4 d5


C. THE CLASSIFIER PANEL
We selected several standard ML classifiers for the panel.
The classifiers are SVM, Random Forest, Multi-layer Per-
ceptrons, and NFGnn. NFGnn [3] is a state-of-the-art neural
network designed to predict the action played by NFGs.
NFGnn performs well in this domain compared to other
classifiers.

Selected classifiers were trained on the original 4,812 game
data instances, which were divided into a 2/3 training set
and a 1/3 test set. SVM and Random Forest were configured
with parameter class_weight = balanced, and MLP was
configured with three hidden layers. All classifiers were
trained for 10,000 epochs.

The classifiers, except NFGnn, were not particularly
accurate, which was also noted in [3]. The Classifier
Accuracy Benchmark results in Table 3 compare the accuracy
of the Random Forest, Multi-layer Perceptron Classifier,
SVM, and NFGnn trained with 800 epochs.

NFGnn required special handling as it outputs a con-
ditional distribution of human play rather than a specific
classification for a given NFG. We handle this by setting
NFGnn’s prediction to the classification it gave with the
highest probability.

TABLE 3. Classifier accuracy benchmark (%).

D. DETAILED EXPERIMENTAL RESULTS
This section provides a summary of the findings related
to Fig. 8, focusing on the agreement between GUIDE and
various classifiers in terms of the selected action and the
percentage of distance covered toward the nearest classified
point within the containing polytope. The concordances are
detailed in Table 4 for the panel’s SVM, Table 5 for the
Random Forest, Table 6 for the MLP, and Table 7 for the
NFGnn.

TABLE 4. SVM agreement with Ĉ (%).

TABLE 5. Random forest agreement with Ĉ (%).

TABLE 6. MLP agreement with Ĉ (%).

TABLE 7. NFGnn agreement with Ĉ (%).

E. EXPERIMENTAL RESULTS FOR NON-NFG DATASET
The Iris [38] dataset was used to evaluate how the system
would perform when operating on datasets not based on
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NFGs. Each randomly generated test point was remapped to
all possible classifications, and agreement with a panel of
classifiers was tested to estimate the system’s performance.
Since [38] does not contain NFGs, the NFGnn classifier was
not included in the panel for these datasets.

F. GUIDE FOR GENERAL USE
GUIDE was designed and developed to apply to a wide
range of problems that can be represented as classification
problems. To evaluate performance with non-NFG data,
we executed tests on the Iris [38] dataset. In these tests
GUIDE ran without an ensemble reward function by setting
θ (G) = 1.

We used ∼85% of the Iris dataset [38]’s 150 data
points to train our mechanism and kept the remaining
∼15% for testing. We used the same methodology used in
the experimental results section. Results are provided for
70 hyperplanes, 10 episodes, and 2000 steps each (total
20,000 steps). The agreement between GUIDE’s classifier
and the panel is presented in Table 8.

TABLE 8. Iris dataset classifier agreement (%).
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