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ABSTRACT The next generation architectures of computer networks and systems and commercial tech-
nologies such as Big Data, Decentralized Storage, and 6G require novel approaches to prevent cybersecurity
breaches which can negatively affect organizations, operations, and individual customers and stakeholders.
In this proposal, we present an approach for identifying transformed features via statistical analysis which
can be used in Artificial Intelligence (AI) and machine learning (ML) based systems. We also present a
deep learning framework, Small Set of Linearized Variables (SSOLV), for training neural networks based
on labeled Zeek datasets containing both malicious and benign activity in real or near-real time. In addition,
we present a mechanism for transfer learning using domain adaptation techniques to adapt neural networks
trained on one labeled Zeek dataset to another neural network trained on a different labeled Zeek dataset. This
research uses a combination of 3 techniques commonly used in network traffic flow analysis: deep neural
networks, linear regression, and ANOVA. Our results show that we can classify malicious activity with up
to 97-99% accuracy in select cases and high precision (>95%) and recall (>90%) rate. This framework
demonstrates a mechanism that stand-alone systems disconnected from larger networks can use to recognize
adversarial activity in real time and is transferrable to other stand-alone systems. This work is patent pending
under U.S. Patent App. Ser. No. 18/121,716 ‘“Linearized Real-Time Network Intrusion Detection System”
and U.S. Patent App. Ser. No. 17/900,982 “‘Real-Time Network Intrusion Detection System.”

INDEX TERMS Artificial intelligence, machine learning, cybersecurity, real-time, statistics, ANOVA, linear
regression, artificial neural networks, KDDCUP99, KDD99, UNSW-NB15, CICIDS2017.

I. INTRODUCTION

The next generation architectures of computer networks and
systems and commercial technologies such as Big Data,
Decentralized Storage, and 6G require novel approaches
to prevent cybersecurity breaches which can negatively
affect organizations, operations, and individual customers
and stakeholders. According to a recent 2022 IEEE Industry
Standards Report, as of 2021 the average cost of an industry
cybersecurity breach is $4.24 million US dollars, the number
of current major breaches increase yearly, and over 90%
of healthcare organization have reported a security breach
within the past three years [1]. These breaches have both
individual and organizational consequences and can leave
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customers at increased risk of identity theft, result in loss
of data and operations, and erode organizational confidence.
These losses can even affect the national supply chain as
in the case of the Colonial Pipeline incident. The impor-
tance of securing organizational computer systems has risen
in so many countries that in September 2022, the United
States White House issued a memorandum which covers
enhancements for increasing the security of the national
software supply chain [1]. The cybersecurity of computer
systems has become a major concern; in particular, there is
an increased need for network traffic analysis and detect-
ing the presence of threat actors which include Zero Day,
or new unpublished threats. In industry, commercial intru-
sion detection and prevention systems (IDSs/IPSs) have been
useful for protecting systems on the general internet for
existing documented threats, but they are lacking in that they
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cannot detect Zero-day or previously unpublished cyber
threats. To accommodate large amounts of traffic, flow anal-
ysis using such technologies as the Zeek network security
monitor have shown clear advantage for real-time concerns
since the flows can be rendered in real time or near real
time. Whereas deep neural networks would take considerable
time to process raw network PCAP files, training a deep
neural network on Zeek flow data would show significant
time improvement in recognizing modern cyberattacks.

Recent advancements in artificial intelligence and machine
learning have made it possible to detect anomalies in network
traffic that indicate cyberattacks in real time using Time-
Series Analysis [2], using popular network monitoring tools
such as Zeek (formerly Bro-IDS) or CICFlowmeter [3], [4],
[5], and include Zero Day or novel exploit detection using
Deep Learning networks [6]. These new artificial intelli-
gence and machine learning methods can be integrated into
a novel architecture known as a Zero Trust architecture as
part of its Intrusion Detection System (IDS) to proactively
detect and act against cybersecurity breaches before they
traverse the network [7]. Proactively preventing cybersecurity
breaches using these novel techniques can result in financial
benefits, improved operations, improved data protection, and
improved customer experience.

In this proposal, we present an approach for identifying
transformed features via statistical analysis which can be used
in Artificial intelligence and machine learning based sys-
tems. We also present a deep learning framework for training
neural networks based on labeled Zeek datasets containing
both malicious and benign activity in real or near-real time.
In addition, we present a mechanism for transfer learning
using domain adaptation techniques to adapt neural networks
trained on one labeled Zeek dataset to another neural network
trained on a different labeled Zeek dataset. Our results show
that we can classify malicious activity with up to 97-99%
accuracy in select cases and high precision (>95%) and recall
(>90%) rate. This framework demonstrates a mechanism
that stand-alone systems disconnected from larger networks
can use to recognize adversarial activity in real time and is
transferrable to other stand-alone systems.

Il. RELATED WORK

Much of the work that has been done for AI/ML based cyber-
security has focused on a single dataset and is based upon the
network flows for a single network. For example, the popular
KDDCUPY9 dataset benchmark features normal traffic and
multiple classes of cyberattack but suffers from duplicates
which affects the dataset distribution and accuracy and does
not address modern cyberattacks such as malware [8]. The
duplicates can negatively affect the Statistical Conclusion
Validity of the dataset since they can change the distribution
of the data, making statistical inferences derived from the
data less valid [9]. Unlike [9], which focuses on using statis-
tics in general, this research focuses on statistical analysis
for cybersecurity applications. This research also uses the
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KDDCUP99, and newer UNSW-NB15 and CICIDS2017
datasets which remove duplicates and addresses modern
cyberattacks.

The popularly cited UNSW-NB15 dataset and its feature
analysis represents an improvement with normal traffic and
8 different classes of modern cyberattacks including mal-
ware. The dataset also uses the popular Zeek network traffic
analysis tool to generate flows for analysis. However, the
dataset deals with over 30 features, much of them generated
post network capture, which negates real-time network traffic
analysis [4]. Statistical analysis was done by the dataset
authors on the UNSW-NB15 Dataset but still resulted in a
reduced set of features which included customized features
which negate real-time analysis [8]. This research uses two
base features which are available in real-time network flows
such as Zeek and derived an additional four features that
can be generated in real-time for AI/ML real-time network
anomaly detection.

Statistical analysis with methods such as ANOVA to derive
features has been accomplished for different tasks such as
Common Spatial Pattern analysis for brain-computer inter-
faces [10]. However, there is a lack of research in using
similar techniques to derive features for network anomaly
detection cybersecurity. This research uses ANOVA and sta-
tistical analysis to derive a set of two base features which are
available in real-time network flows such as Zeek and derived
an additional four features in real-time for AI/ML real-time
network anomaly detection.

Iil. BACKGROUND

This research uses a combination of 3 techniques commonly
used in network traffic flow analysis: deep neural networks,
linear regression, and ANOVA.

A. DEEP NEURAL NETWORKS

Deep neural networks (DNNs) are a category of artificial neu-
ral networks (ANN5). Deep learning has already transformed
traditional internet businesses like web search and advertis-
ing and is also enabling brand new products and businesses
and ways of helping people to be created. It enables better
healthcare, including improvements in reading X-ray images,
delivering personalized education, precision agriculture, self-
driving cars and many other applications. ANNs have a graph
representation as shown in Fig. 1.
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FIGURE 1. Deep neural network graph representation.
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For an ANN to be a deep neural network, the number
of layers L is very large and characterized by a very high
number of hidden units. In the era of big data, it has been
generally found that there are functions you can compute with
a “small” L-layer deep neural network that shallower net-
works require exponentially more hidden units to compute.
The values of predicted outputs given the inputs are computed
in forward propagation, which is given by equation 1.

ZU — iy 4 pltl
Alll — 1] (Z[I])
7121 — w2400y pl2]
A2l — gl2] (Z[Z])

AlL] — glL] (Z[L]) —y (1

where X is the R™*” input matrix, Wl is the weight matrix
at layer [, bl'l is the bias vector at layer [, gl is the activation
function at layer /, L is the number of layers in the network,
and Al is the predicted output vector. The values of the
weight and bias vectors are updated via backpropagation.
These equations apply to the general category of ANNS,
but it should be noted that specific DNN varieties such as
recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) have shown promise in language modeling
and computer vision applications, respectively.

B. LINEAR REGRESSION

Linear Regression is a special case of the General Linear
Model (GLM), a method to determine if a linear relationship
exists between two or more variables which can be expressed
as an equation with linear coefficients. Simple linear regres-
sion is a special case of the GLM which has a fixed intercept,
and fixed linear coefficient. GLM and Linear Regression are
often used in Machine Learning research to model relation-
ships between multiple variables [11].

C. ANOVA

Analysis of Variance (ANOVA) is a special case of GLM
which is used to determine whether two variables are from
the same distribution and has a set of assumptions which
include normality of the data distribution and homogeneity of
variances. However, some methods have less assumptions for
non-normally distributed data such as Kruskal-Wallis One-
Way ANOVA [12], which is used in this research.

IV. MATERIALS AND METHOD
This research proposed a novel approach, Small Set of Lin-
earized Variables (SSOLV) to network traffic flow analysis as
described in this section.

Before performing feature selection two openly available
datasets were selected for analysis. The details of the datasets
and analysis are in the remainder of this section.
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FIGURE 2. SSOLV process diagram.

A. DATASETS

Openly available datasets were selected from literature
to enable re-producibility of results. The popularly cited
UNSW-NBI15 dataset was selected from literature for initial
analysis and to determine a common set of features available
from the Zeek network monitoring tool, which was used to
generate the dataset. The Training and Testing datasets were
selected since they are curated by the dataset authors to have
a similar distribution to the overall data collected and are
intended for AI/ML applications [4]. To verify the features,
the popular KDDCUP99 dataset was selected, and the 10 per-
cent subset was used for testing [13]. A key advantage of the
UNSW-NBI15 dataset over the KDDCUP99 dataset is in the
removal of duplicate records, and incorporation of modern
malware attacks [4]. These measures improve the overall sta-
tistical conclusion validity of the results since statistics often
assumes that the statistics are similar to the overall population
of the observed phenomena [9]. In addition, for incorporation
of more modern cyberattacks data, the CICIDS2017 dataset
was selected as a second verification of the features and
has the advantage that it is a more recent dataset than the
KDDCUP99, and UNSW-NB15 datasets [5].

All datasets are in the open CSV format to ensure repro-
ducibility. The datasets were also selected on a basis of
their span in years and coverage of different computing envi-
ronments. Since the UNSW-NB15 dataset and KDDCUP99
dataset are 16 years apart [8], result that perform well in both
datasets are likely to extend to different dataset. In addition,
since the UNSW-NB15 and CICIDS2017 datasets are 2 years
apart, results that perform well in both datasets are likely to
extend to different datasets and more modern datasets.

B. ANALYSIS

Initial analysis of the data indicated that source bytes (sbytes),
destination bytes (dbytes), source packets (spkts), and des-
tination packets (dpkts) were real time features available
from the Zeek network monitoring tool that are available in
all datasets. Linear Regression was used to determine the
independence of relevant features and then ANOVA was used
to verify the uniqueness of the data. The statistical proper-
ties of the data were then examined, and a transformation
was performed on the data to improve the normality of the
data distribution. The transformation, which uses the natural
logarithm is also a method used to perform linearization of
variables. The data statistical properties were then examined
before and after the transformation to verify that the statistical
properties were normalized after transformation.
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Four additional features were then derived from the trans-
formed features and all features were tested with a deep
learning neural network and random forest on all datasets to
determine accuracy, precision, and recall performance met-
rics. The assumption is that the AI/ML algorithms would
perform better on data that follows a more normal distribution
since a normal distribution is an assumption of many statisti-
cal and regression algorithms [9].

C. ENVIRONMENTS

This research used several environments and software suites
to perform data preparation and cleansing, descriptive and
inferential analysis, and AI/ML modeling and metric gath-
ering. Prior to analysis, the dataset CSVs were loaded and
cleansed using Microsoft Excel. Afterwards. statistical anal-
ysis was performed in RStudio version 2022 and R version
14, to perform descriptive and inferential analysis on the
cleansed dataset CSVs. Lastly, AI/ML analysis and metric
gathering was performed in the Google Colab@®)Pro cloud-
based environment.

V. EXPERIMENT

RStudio version 2022 and R version 14 were used for statis-
tical analysis and Google Colab®Pro was used for AI/ML
analysis and metric gathering.

The UNSW-NB15, KDDCUP99 and CICIDS2017 CSVs
were cleaned so that column heading appeared at the top of
the CSVs. Then features were derived from the UNSW-NB15
CSV file using RStudio. Prior to analysis, linear regression
was used to determine independent features which were ver-
ified using ANOVA.

Afterwards, the features were transformed in Google Col-
lab Pro by loading the dataset CSVs. The TensorFlow and
Keras libraries were used to create a multilayer deep neural
network, and the Scikit Python library was used to implement
random forest. Then the Scikit classification_report func-
tion was used to retrieve the accuracy, precision, recall and
macro average metrics of the AI/ML algorithm performance.

Lastly, to demonstrate transferability of results, the
ADAPT Python Library was used to implement domain adap-
tation from the UNSW-NB15 dataset to the KDDCUP99 and
CICIDS2017 datasets and test the adapted dataset on the
KDDCUP99 and CICIDS2017 datasets [14].

The UNSW-NBI15 dataset was used to derive the initial
features, and transformations which include Linear Regres-
sion, ANOVA within RStudio. The remaining portion of the
experiment then used Google Colab®Pro and Python for
implementation. The final transformed features were trained
on the UNSW-NBI1S5 training set and tested on the UNSW-
NB15 dataset on both the Random Forest and Deep Learning
network. Afterwards the transformed features were tested
using a randomly selected without replacement subset of
80% of the KDDCUP99 10 Percent dataset and tested on the
remaining 20% on both the Random Forest and Deep Learn-
ing network. Lastly, the transformed features were tested
using a randomly selected without replacement subset of 80%
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of the CICIDS2017 dataset and tested on the remaining 20%
on both the Random Forest and Deep Learning network.

After performance metrics were gathered for each dataset,
the ADAPT Instance-Based Feature Augmentation (FA)
domain adaptation algorithm [14] was used to adapt the
UNSW-NBI15 dataset using only the first 100 data points of
the KDDCUP99 10 percent dataset and CICIDS2017 datasets
and tested on the full KDDCU99 10 percent and CICIDS2017
datasets respectively for both the Random Forest and Deep
Learning network.

VI. RESULT

This section contains the results of the statistical analysis,
and AI/ML experimental results. The first two subsections
contain the results of statistical analyses which include linear
regression and ANOVA. Next, the third subsection con-
tains feature transformation results. The last subsection then
includes the results of AI/ML modeling which include Ran-
dom Forest, and a Deep Neural Network and details on the
results of domain adaptation.

A. LINEAR REGRESSION

The simple linear regression revealed that source packets and
source bytes have a strong linear relationship with a low
p-value (p<0.001), and that destination packets and destina-
tion bytes have a strong linear relationship with (p<0.001).
In addition, linear regression on source bytes and destination
bytes suggest that these features are independent (p<0.001).
Therefore, source bytes and destination bytes were selected as
initial independent features. Figs. 3, 4, and 5 show the results
on linear regression.

UNSWSlabel
1.00

075
050
025
000

Source Packets (spkts)

Source Bytes (sbytes)

FIGURE 3. Source packets vs. source bytes linear regression.

B. ANOVA

Afterwards, statistical analysis was performed on the source
bytes and destination bytes features showing that they are
right-skewed and leptokurtic. Therefore, methods tolerant to
non-normal distributions of data such as Kruskal-Wallis one-
way ANOVA should be used for further analysis [9], since
due to the severe non-normal distribution of the data, the
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FIGURE 4. Destination packets vs. destination bytes linear regression.
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FIGURE 5. Destination bytes vs. source bytes linear regression.

standard factorial ANOVA is not expected to yield statis-
tically significant results. Kruskal-Wallis one-way ANOVA
with a sample of 10,000 data points was then used to verify
that source bytes and destination bytes and the result is that
source bytes and destination bytes are independent with a
significance ofp<0.001 indicating that the results are statisti-
cally significant, sincepis less than 0.05. Prior to conducting
Kruskal-Wallis ANOVA, the assumption of equal variances
was tested using Levene’s test, which indicated with a high
degree of confidence (p<0.001) that the variances between
source bytes and destination bytes were significantly different
for Source Bytes [15], [16].

Before the null hypothesis can be rejected in the ANOVA
analysis, Type 1 error should be controlled by one or more
post-hoc analyses, which each have their pros and cons. The
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Bonferroni test was selected due to it conservativeness, and
tolerance to non-normal distributions of data [16].

Since the adjusted P value as a result of the Bonferroni Test
is still very low (p<0.001), the null hypothesis that source
bytes and destination bytes are from the same distribution can
be rejected with a high degree of confidence due to the low
probability of Type I error [16].

Table 1 shows the results of statistical analysis on source
bytes and destination bytes before transformation and Table 2
shows the results of Kruskal-Wallis one-way ANOVA.

TABLE 1. Statistical analysis before transformation.

Variable M Sd Skewness Kurtosis
Sbytes 8,573 173,773.9 47.91689 2,616.499
Dbytes 14,387 146,199.3 44.33998 3,272.347

TABLE 2. Kruskal-Wallis One-Way ANOVA of source bytes and destination
bytes before transformation.

Chi-squared Df P
186,247 8,652 <0.001

Source Bytes and Destination Bytes were transformed by
taking their natural logarithm and statistical analysis was
re-performed. The results indicate that the transformation
normalized source bytes and destination bytes. Table 3 shows
the statistics of the transformed source bytes and destination
bytes and Table 4 shows the results of Kruskal-Wallis one-
way ANOVA of the transformed source bytes and destination
bytes using 10,000 randomly selected data points.

TABLE 3. Statistical analysis of transformed source bytes and destination
bytes after transformation.

Variable M Sd Skewness Kurtosis
Sbytes 6.292 1.645736 1.1464537 1.606885
Dbytes —6.867 15.19052 —0.103887  —1.947333

TABLE 4. Kruskal-Wallis One-Way ANOVA of source bytes and destination
bytes after transformation.

Chi-squared Df P
186,247 8,652 <0.001

C. FEATURE TRANSFORMATION

Afterwards, since source bytes and destination bytes are
independent, four additional features were derived from the
transformed features; the logarithm of source bytes plus the
logarithm of destination bytes, logarithm of source bytes
minus the logarithm of destination bytes, logarithm of source
bytes multiplied by the logarithm of destination bytes, loga-
rithm of source bytes divided by the logarithm of destination
bytes. These features were added to the two transformed
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features logarithm of source bytes and the logarithm of des-
tination bytes, for a total of six features. In the transformed
features, logarithm is the natural logarithm and a small 1010
value is added to source bytes and destination bytes before
calculating the logarithm to prevent a division-by-zero error.

D. Al/ML AND DOMAIN ADAPTATION

These six features were tested on both the UNSW-NB15 and
KDDCUP99 datasets for both the Random Forest and Deep
Learning networks. The classification metrics were gathered
via the Scikit classification_report feature. Tables 5 6 and 7
show the macro average performance metrics for the UNSW-
NB15, KDDCUP99 and CICIDS2017 datasets for both the
Random Forest and Deep Learning networks.

TABLE 5. Performance metrics for UNSW-NB15.

Network Precision Recall F1-score
Random Forest 87% 83% 84%
Deep Neural Network 87% 86% 86%
TABLE 6. Performance metrics for KDDCUP99.
Network Precision Recall F1-score
Random Forest 99% 97% 98%
Deep Neural Network 98% 96% 97%
TABLE 7. Performance metrics for CICIDS2017.
Network Precision Recall Fl-score
Random Forest 98% 92% 94%
Deep Neural Network 96% 90% 93%

Afterwards, the ADAPT Instance-Based Feature Augmen-
tation (FA) domain adaptation algorithm [14] was used to
adapt the UNSW-NB15 dataset using only the first 100 data
points of the KDDCUP99 10-percent dataset and tested on
the full KDDCU99 10-percent dataset for both the Random
Forest and Deep Learning network. Tables 8 and 9 show the
results of domain adaptation between the UNSW-NB15 and
KDDCUP99 and CICIDS2017 datasets respectively.

TABLE 8. Domain adaptation results for the UNSW-NB15 and KDDCUP99
Datasets.

Network Precision Recall F1-score
Random Forest 97% 94% 96%
Deep Neural Network 97% 94% 96%

TABLE 9. Domain adaptation results for the UNSW-NB15 and CICIDS2017
datasets.

Network Precision Recall F1-score
Random Forest 89% 80% 83%
Deep Neural Network 89% 80% 83%
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The results for the KDDCUP99 dataset and the domain
adaptation between UNSW and KDDCUP99 datasets have
high accuracy (>95%) with a high precision (>95%) and
recall (>90%) rate. Likewise, the results for the CICIDS2017
dataset and the Random Forest domain adaptation datasets
have high accuracy (>95%) with a high precision (>95%)
and recall (>90%) rate with exception of the Deep Learn-
ing domain adaptation which had medium accuracy (89%)
and recall (80%). Therefore, the features are both relevant
and able to yield high accuracy results across different
datasets especially when using machine learning methods
such as Random Forest. The domain adaptation differences
for the UNSW-NB15 dataset to CICIDS2017 dataset may be
attributable to the fact that the CICIDS2017 dataset includes
modern cyberattacks not captured in the KDDCUP99 and
UNSW-NB15 datasets [5].

The improvement of performance due to the transfor-
mation are evident in the Confusion Matrix diagrams of
the Random Forest and Deep Neural Networks on the
transformed features. Fig. 6 shows the transformed fea-
tures performance for the Random Forest Machine learning
algorithm on the UNSW-NB15 dataset.

-40000

- 35000
0 e

- 30000

- 25000

- 20000

- 15000
| .. |

True label

- 10000

- 5000

0 b g
Predicted label

FIGURE 6. UNSW-NB15 random forest confusion matrix.

Fig. 6 shows a low false positive rate and overall high
accuracy. Fig. 7 shows the transformed features performance
for the Deep Learning algorithm on the UNSW-NB 15 dataset.
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FIGURE 7. UNSW-NB15 deep learning confusion matrix.

The performance was slightly lower than random forest in

precision and false positive rate. Fig. 8 shows the transformed
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FIGURE 8. KDDCUP99 random forest confusion matrix.

features performance for the Random Forest Machine Learn-
ing algorithm on the KDDCUP99 dataset.

Fig. 8 shows high performance in terms of true posi-
tives with a very low false positive rate. Fig. 9 shows the
transformed features performance for the Deep Learning
algorithm on the KDDCUP99 dataset.

0 .--
1

- 70000
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- 20000
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FIGURE 9. KDDCUP99 deep learning confusion matrix.

Fig. 9 shows high performance in terms of true positives
with a very low false positive rate. Fig. 10 shows the trans-
formed features performance for the Random Forest Machine
Learning algorithm on the CICIDS2017 dataset.
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FIGURE 10. CICIDS2017 random forest confusion matrix.

Fig. 10 shows high performance in terms of low false
positive rate and overall high accuracy. Fig. 11 shows the
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FIGURE 11. CICIDS2017 deep learning confusion matrix.
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transformed features performance for the Deep Learning
algorithm on the CICIDS2017 dataset.

Fig. 11 shows high performance in terms of low false
positive rate, and overall high accuracy. Fig. 12 shows the
transformed features performance for the Machine Learning
algorithm on Domain Adaptation from the UNSW dataset to
the KDDCUP99 dataset using the FA algorithm.

o.=
l:
0

FIGURE 12. UNSW-NB15 to KDDCUP99 domain adaptation random forest
confusion matrix.
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Fig. 12 shows high performance in terms of low false pos-
itive rate, but a lower performance on recognizing true neg-
atives. Fig. 13 shows the transformed features performance
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FIGURE 13. UNSW-NB15 to KDDCUP99 domain adaptation deep learning
confusion matrix.
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for the Deep Learning algorithm on Domain Adaptation from
the UNSW dataset to the KDDCUP99 dataset using the FA
algorithm.

Fig. 13 shows high performance in terms of low false
positive rate, but a lower performance on recognizing true
negatives. Fig. 14 shows the transformed features perfor-
mance for the Machine Learning algorithm on Domain
Adaptation from the UNSW dataset to the CICIDS2017
dataset using the FA algorithm.

Fig. 14 shows high performance in terms of low false
positive rate, but low accuracy on recognizing true positives.
Fig. 15 shows the transformed features performance for the
Deep Learning algorithm on Domain Adaptation from the
UNSW dataset to the CICIDS2017 dataset using the FA

algorithm.
0 443953 .IIi

| .-.
0 1
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FIGURE 14. UNSW-NB15 to CICIDS2017 domain adaptation random forest
confusion matrix.

True label

Fig. 15 shows high performance in terms of low false
positive rate, but low accuracy on recognizing true positives.
These findings suggest that a different domain adaptation
method may be necessary to obtain better performance met-
rics on some domains.

- 400000
- 350000
- 300000
- 250000

- 200000
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- 150000

- 100000
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FIGURE 15. UNSW-NB15 to CICIDS2017 domain adaptation deep learning
confusion matrix.

DISCUSSION

Source Bytes and Destination Bytes were determined to
be independent features via statistical analysis which used
methods tolerant to non-normal distributions of data such
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as Kruskal-Wallis one-way ANOVA. Most cases have high
performance with high accuracy (>95%) and high preci-
sion (>95%) and recall (>90%) rate with exception of
the Random Forest UNSW-NB15 results. Including domain
adaptation cases demonstrate that the six derived and trans-
formed features are applicable to network traffic from
different systems as demonstrated in tests using the popular
KDDCUP99 dataset, and domain adaptation between the
UNSW-NB15 and KDDCUP99 and CICIDS2017 datasets.

The six features are the logarithm of source bytes, the
logarithm of destination bytes, logarithm of source bytes
plus the logarithm of destination bytes, logarithm of source
bytes minus the logarithm of destination bytes, logarithm
of source bytes multiplied by the logarithm of destination
bytes, logarithm of source bytes divided by the logarithm of
destination bytes where logarithm is the natural logarithm and
a small 10719 value is added to source bytes and destination
bytes before calculating the logarithm to prevent a division-
by-zero error.

CONCLUSION AND FUTURE WORK

In this work, we proposed an approach for identifying trans-
formed features via statistical analysis, which can be used
in AI/ML-based systems. We also present a deep learning
framework for training neural networks based on labeled
Zeek datasets containing both malicious and benign activ-
ity in real or near-real time. In addition, we presented a
mechanism for transfer learning using domain adaptation
techniques to adapt neural networks trained on one labeled
Zeek dataset to another neural network trained on a different
labeled Zeek dataset. Our results show that we can classify
malicious activity with up to 97-99% accuracy in select cases
and high precision (>95%) and recall (>90%) rate. This
framework demonstrates a mechanism that stand-alone sys-
tems disconnected from larger networks can use to recognize
adversarial activity in real time and is transferrable to other
stand-alone systems.

The six features identified are the logarithm of source
bytes, the logarithm of destination bytes, logarithm of source
bytes plus the logarithm of destination bytes, logarithm
of source bytes minus the logarithm of destination bytes,
logarithm of source bytes multiplied by the logarithm of
destination bytes, logarithm of source bytes divided by the
logarithm of destination bytes where logarithm is the nat-
ural logarithm and a small 10-10 value is added to source
bytes and destination bytes before calculating the loga-
rithm to prevent a division-by-zero error. Most cases have
high performance with high accuracy (>95%) and high
precision (>95%) and recall (>90%) rate with exception
of the Random Forest UNSW-NB15 results. Including a
domain adaptation case demonstrates that the six derived and
transformed features are applicable to network traffic from
different systems as demonstrated in tests using the popular
UNSW-NB15, KDDCUP99 and CICIDS2017 datasets.

It is recommended that additional datasets be tested using
these six features to determine if the results hold for future
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research. To apply these results to current Zeek traffic for a
particular network, it is recommended that a small, labeled
dataset (N = 100) be obtained from the target domain so that
domain adaptation can be used to adapt a trained network on
a public dataset such as UNSW-NB15 to the target domain
as done in this research in the cases of UNSW-NBIS5 to
KDDCUP99 and UNSW-NB15 to CICIDS2017.

In addition, it is recommended that additional research be
done to identify additional features which can be transformed
in real or near real time. The inclusion of additional unique
features can result in accuracy and precision and recall perfor-
mance improvements on the UNSW-NB15 and CICIDS2017
datasets.
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