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ABSTRACT With the rapid development of deep learning in the field of computer vision, few-shot
learning has emerged as an effective approach to tackle the challenge of data scarcity, garnering widespread
attention from researchers. Despite significant progress in few-shot learning, current few-shot image
classification methods have not fully exploited the feature extraction capabilities of the backbone network
and the existing labeled data. To address this issue, we introduces a few-shot image classification method
based on metric learning, which aims to more fully explore and utilize these resources. During training,
we employed the PatchUp technique to perform block-level operations in the hidden layer feature space,
obtaining more diverse feature representations, thereby expanding the range of data representation and
aiding in the formation of smoother classification decision boundaries. Additionally, the introduction of a
self-supervised auxiliary loss helps the network to learn deep semantic information stably, thereby enhancing
the classification performance for new categories. Furthermore, the centralization and normalization of
features extracted by the backbone network significantly enhance the model’s performance in few-shot
image classification tasks. This paper conducted extensive experiments onmultiple public datasets (including
miniImageNet, tieredImageNet, FC-100, and CUB-200-2011), demonstrating the effectiveness and superior
performance of the proposed method. The experimental results show that the method significantly improves
themodel’s classification accuracy and generalization ability in the 1-shot learning scenario, providing strong
support for further research and application in the field of few-shot learning.

INDEX TERMS Few-Shot Learning, Image Classification, Metric Learning.

I. INTRODUCTION
In recent years, with the widespread application of large-scale
datasets and powerful computing resources, deep learning
has made significant advances in various fields [1], [2], [3].
In particular, image classification technology has developed
rapidly in the field of computer vision, leading to the
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emergence of many mature models for visual task classifi-
cation [4], [5], [6]. However, these models typically require
a large number of labeled samples for training. In practical
applications, obtaining a large-scale, high-quality labeled
dataset often faces numerous constraints. For example, within
the medical sector, there exists a dearth of data pertaining
to infrequent occurrences, coupled with the high costs
associated with data labeling. Similarly, in the realm of
metal damage detection, the acquisition of a substantial
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dataset of images depicting metal surface defects presents
a considerable challenge. Furthermore, in the domain of
semiconductor chip defect detection, the diversity of chip
models and the paucity of defect-related data significantly
impede the process of image collection. Therefore, effectively
learning and completing specific tasks under conditions of
limited sample availability has become an urgent problem to
address.

When data samples are scarce, models struggle to train
sufficiently and are prone to overfitting. Furthermore,
traditional deep learning models typically exhibit good
recognition capabilities only for categories present in the
training dataset and find it difficult to generalize to unseen
categories. In contrast, humans can learn quickly from a
small amount of data. For example, a child who has never
seen a whale in real life can immediately recognize it as a
‘‘whale’’ when they see one at an ocean park, having seen
whales on television or in images. This rapid learning and
generalization ability significantly surpasses that of machine
learning. To effectively address the overfitting problem
caused by data scarcity and enable models to learn quickly,
researchers aim to mimic human learning methods. Inspired
by humans’ ability to rapidly acquire information about
object categories and perform classification and recognition
with minimal labeled data, the concept of few-shot learning
has emerged [7], [8], [9].

The concept of few-shot learning was first proposed by
Fei-Fei and others in 2003 [9]. Few-shot learning for image
classification can effectively utilize a small number of labeled
samples to learn a new category, thereby accomplishing
image classification tasks for that category. In few-shot
classification tasks, it is necessary to learn and understand
new categories from very few instances, but with only a
limited number of annotated samples per category. Tradi-
tional machine learning models struggle to succeed in such
scenarios, making it essential to leverage prior knowledge
acquired from previous learning to assist the model in its
learning process.

In the field of few-shot image classification, research
methods primarily fall into three categories: data augmen-
tation [10], [11], [12], meta-learning [13], [14], [15], and
metric learning [16], [17], [18]. Data augmentation gener-
ates new samples through networks, which can effectively
address few-shot tasks when there is a sufficient amount of
data [19], [20], [21]. Meta-learning integrates the concept
of meta-learning into few-shot classification tasks, enabling
rapid learning across different tasks through a cross-task
approach, effectively incorporating prior knowledge into
various tasks [22], [23], [24]. Metric learning involves iter-
atively training models to learn a robust feature embedding
network, utilizing this network to understand sample features
and completing few-shot classification tasks by measuring
similarities between samples [25].
While these methods have shown promising results, they

also introduce increased model complexity and reliance

on more training data [26], [27]. Although directly intro-
ducing large volumes of new training data to acquire
more knowledge is an appealing solution, it contradicts
the aim of reducing dependency on large datasets in few-
shot learning. Another viable approach is to enhance the
efficiency of models in accumulating knowledge from
existing data. Research indicates that current models may
not fully leverage the feature extraction capabilities of
backbone networks and existing training data. Currently,
some scholars have proposed using regularization techniques
to enhance model generalization [28]. For instance, [29]
proposed a method combining Manifold Mixup [30] with
self-supervised auxiliary loss to achieve a backbone network
with strong generalization capabilities. However, due to the
linear interpolation strategy of Manifold Mixup, it may not
generate samples across a wider range in feature space,
potentially leading to a lack of diversity in learned feature
representations.

Addressing these issues in the context of few-shot
image classification tasks, this paper proposes a metric
learning-based approach. During training, we strengthen
the feature extraction capabilities of the backbone network
using PatchUp [31] and self-supervised auxiliary loss. Unlike
Manifold Mixup’s [30] linear interpolation in feature space,
PatchUp operates at the block level in the hidden layer’s
feature space (mixing or swapping), yielding diversified
feature representations. Expanding the representation range
of data aids in forming smoother decision boundaries
for classification, enhancing the model’s adaptability to
data variations. Furthermore, to tackle the challenge of
generalizing to new categories, particularly in potential data
distribution shift scenarios, we introduce a self-supervised
learning auxiliary loss. Integrating this auxiliary loss helps
the network stabilize in learning feature representations
rich in deep semantic information. Finally, during the
classification task, we perform simple feature distribution
optimization [32] on the features extracted by the feature
extraction network. Remarkably, our method achieves signif-
icant advances in inductive few-shot image classification.

The main contributions of this paper are as follows:
1. We have discovered that PatchUp [31], a feature space

block-level regularization technique, significantly enhances
the generalization capability of models compared to other
regularization methods. Additionally, we have analyzed and
validated the effectiveness of various data augmentation
techniques, such as CutMix [33], MixUp [34], PatchUp,
and Manifold Mixup [30], in the context of few-shot image
classification.

2. Introducing self-supervised loss during training has
proven effective in achieving robust semantic feature learn-
ing, leading to a notable improvement in the performance
of few-shot classification tasks. Additionally, we pro-
pose a strategy that combines data augmentation with
self-supervised auxiliary loss to further enhance the model’s
ability to generalize to new categories.
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3. By centralizing and normalizing the features extracted
from the backbone network, we have significantly improved
the model’s performance in few-shot image classification
tasks, especially in the highly challenging 1-shot learning
scenarios.

4. We propose a comprehensive method that integrates
PatchUp, self-supervised auxiliary loss, and feature prepro-
cessing for in-depth research on few-shot image classifica-
tion tasks. Extensive experiments across multiple datasets
have validated the effectiveness of our proposed method
and demonstrated its superior performance in few-shot
classification tasks.

The structure of the subsequent sections in this paper is
organized as follows: Section II provides a brief overview of
common data augmentation techniques and self-supervised
learning approaches. Section III details the methodology
proposed in this paper. Section IV presents the classification
results and further substantiates the effectiveness of each
component through ablation studies. The paper concludes
with a summary in the final section.

II. RELATED THEORY
A. DATA AUGMENTATION
In the field of deep learning, data augmentation is a key
technology that simulates various possible testing scenarios
by diversifying training data, thereby improving the model’s
generalization ability and reducing overfitting, especially
in situations with limited data volume. Common data aug-
mentation methods include Dropout [35], DropBlock [36],
Mixup [34], Manifold Mixup [30], Cutout [37], CutMix [33],
Puzzle Mix [38], and PatchUp [31].

Dropout technology enhances the robustness of the model
and prevents overfitting by randomly discarding neurons
in the network during training, introducing noise. Spatial-
Dropout and DropBlock are extensions of Dropout, which
further regularize and reduce dependencies between features
by randomly discarding the entire feature map or continuous
blocks within the feature map. Mixup technology linearly
interpolates samples in the input space to generate new
training data, while Manifold Mixup extends this concept
to the feature space and interpolates on the hidden layer
representation to promote smooth behavior between training
samples and enhance generalization ability. The Cutout
method forces the model to learn different local features
by randomly masking regions in the input image, thereby
improving the generalization ability of local features. CutMix
further combines the Cutout idea by cutting and exchanging
image blocks to generate new samples, enhancing themodel’s
ability to recognize local and global structures. Puzzle Mix
utilizes significance analysis to optimize the sample mixing
strategy, selectively interpolating and mixing in key areas of
the image, avoiding inappropriate mixing in key recognition
areas, thereby improving the quality of mixed samples. The
PatchUp method operates on continuous blocks in the feature
space, enhancing the diversity and robustness of feature

representations through operations such as swapping or
interpolation. By applying regularization on feature maps in
hidden layers, the model’s generalization ability for different
feature dimensions is further improved.

B. SELF-SUPERVISED LEARNING
Self-Supervised Learning (SSL) is a form of unsupervised
learning where models are trained to predict certain attributes
or features of the data they generate themselves, rather
than relying on explicit labels [39]. This approach leverages
the intrinsic structural properties of the data as supervisory
signals, enabling the model to learn useful representations
without the need for external annotations. The core idea of
SSL is to use the inherent structure and relationships within
the data as supervisory information, guiding the model to
learn effective representations of the data through the design
of prediction tasks or constructive tasks.Self-Supervised
Learning encompasses a variety of tasks, including but not
limited to image rotation prediction [40], image coloriza-
tion [41], and time series forecasting [42]. By utilizing
unlabeled data to learn robust feature representations, SSL
enhances the generalization capabilities of models while
reducing reliance on costly annotated data. Consequently,
it improves the performance of machine learning models at
a lower cost.

III. METHODOLOGY
A. PROBLEM DEFINITION
Within the framework of few-shot learning, we distinguish
between two key datasets: the base class dataset and the novel
class dataset. The base class dataset serves as auxiliary data,
primarily used for training, to enhance the model’s ability
to recognize novel classes through knowledge transfer. The
novel class dataset is the target dataset for classification
tasks, containing classes that the model needs to recognize
but has not seen during training. These two datasets are
mutually exclusive in terms of class labels, representing
entirely different entity sets. Here, the base dataset Dbase is
represented as:

Dbase = {(Xi,Yi) | Xi ∈ Xbase,Yi ∈ Ybase}
Nbase
i=1 (1)

where each instance Xi is labeled with Yi. Similarly, the novel
class dataset Dnovel is represented as:

Dnovel =
{
(X̃j, Ỹj) | X̃j ∈ Xnovel, Ỹj ∈ Ynovel

}Nnovel
j=1 (2)

and there is no overlap in the label space, i.e.,
Ybase ∩ Ynovel = ∅.
In the context of few-shot image classification tasks,

we typically divide the novel class dataset into two parts: the
support set and the query set. The support set consists of a
small number of labeled samples provided during the testing
phase, used for rapid adjustment and adaptation of the model.
The query set comprises unlabeled samples during the testing
phase, requiring the model to classify based on the learning
outcomes from the support set. Few-shot classification tasks
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FIGURE 1. Overall framework of the model.

can be further divided based on the number of samples in the
support set. When the support set contains N classes, each
with K labeled samples, the task is referred to as an N -way
K -shot classification. If each class in the support set has only
one labeled sample, i.e.,K = 1, this special case is referred to
as one-shot classification. In practical testing, N -way K -shot
classification tasks are performed by randomly selecting K
samples from N classes in the support set. The performance
of the classifier is evaluated based on its prediction accuracy
on the query set, i.e., the proportion of correctly predicted
classes compared to the actual classes. This accuracy is a key
metric for assessing the performance of few-shot classifiers,
reflecting the model’s ability to recognize and generalize to
new classes.

B. OVERALL FRAMEWORK
The paper introduces a novel approach to few-shot image
classification that is predicated on a metric learning frame-
work and is structured into two principal components:
network training and few-shot image classification, as illus-
trated in Figure 1. In the network training phase, the PatchUp
technique is employed, a block-level regularization method
in the feature space that effectively enhances the model’s
generalization capabilities. Additionally, a self-supervised
auxiliary loss is incorporated to encourage the model to
learn robust semantic features. During the few-shot image
classification phase, the network, once trained, is utilized for
feature extraction. The extracted features are then centralized

and normalized to improve their discriminative power.
Ultimately, a prototype network based on metric learning
is employed as the fundamental few-shot learning (FSL)
classifier to fulfill the task of image classification.

C. BACKBONE TRAINING
Inspired by S2M2 [29], during the Backbone Training phase,
in addition to the main classifier Cn(·) (where n denotes the
total number of base categories within the dataset Dbase; for
instance, if using the 64 base categories of the miniImageNet
dataset Dbase, then n = 64), we introduce an additional
four-way classifier Cr (·). The goal of this four-way classifier
is to recognize which of the four possible rotations the input
sample has undergone: {0◦, 90◦, 180◦, 270◦}. In this self-
supervised task, the input images are rotated by different
angles, and the auxiliary objective of the model is to predict
the rotation angle of these images. During the model training
process, each epoch consists of two stages of forward-
backward propagation.

In the Stage-I, the input data is only used for the main
classifier, and the PatchUp algorithm is applied for data
augmentation. PatchUp includes both soft and hard modes.
In PatchUp-hard, the hard mode directly replaces a selected
region of one image with the corresponding region of
another image in the hidden representations, resulting in
augmented samples with clear boundaries. The soft mode,
on the other hand, blends the selected regions in the hidden
representations using linear interpolation, thereby enhancing
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FIGURE 2. PatchUp-hard process for two hidden representations associated with two samples randomly selected in the mini-batch (a, b),
X1 = gk (a), X2 = gk (b).

data diversity and model generalization. In this paper, we use
the PatchUp-Hard mode. The specific processing flow of
PatchUp-hard is shown in Figure 2.

When training a neural network f (x) = fk (gk (x)), where
gk represents the part of the network that maps the input data
to the hidden representation of the k th layer, and fk represents
the part that maps the hidden representation to the output f (x).
The process involves the following steps:

1. Randomly select the k -th layer from the set of eligible
layers S, which may include the input layer g0(x).

2. Process two random mini-batches of data (xi, yi) and
(xj, yj) until the k -th layer, obtaining the representations
(gk (xi), yi) and (gk (xj), yj) at the k -th layer of the network.
3. Create a binary maskM on the feature maps of the k -th

layer, where 1 indicates unchanged features and 0 indicates
features to be swapped or mixed.

4. For PatchUp-Hard, swap the corresponding feature
blocks in gk (xi) and gk (xj) under the effect of mask M ,
generating a new hidden representation φhard(gk (xi), gk (xj)).

5. Starting from layer k , continue the forward propagation
of the network using the new hidden representation until the
output z̃.

6. Calculate the loss Lpatchup using the output and update
all the parameters of the neural network. For Hard PatchUp,
the loss function can be represented as:

Lpatchup = puℓ(Cn(z̃), yi)+ (1− pu)ℓ(Cn(z̃), yj) (3)

where pu is the proportion of unchanged feature map parts,
and ℓ is the cross entropy loss function
In the Stage-II, the original input is applied with angle

rotation Ar = {0◦, 90◦, 180◦, 270◦} and provided to both
the main classifier and the auxiliary classifier to obtain
loss Ltotal = Lrot + Lclass. Then, update all parameters of the

neural network again based on this loss.

Lrot =
∑

x∈Dbase

∑
r∈Ar

ℓ(Cr (fθ (xr ), r)) (4)

Lclass =
∑

x∈Dbase

∑
n∈class(Dbase)

ℓ(Cn(fθ (xr ), n)) (5)

where xr signifies the input image that has been rotated by an
angle associated with r from the set Ar .
After the training is completed, the backbone network will

be frozen, and then the prototype classifier will be used
to perform image classification tasks. The entire training
process is shown in pseudocode 1.

D. FEATURE PREPROCESSING
To enhance the robustness and generalization ability of
feature representations, we sequentially applied feature
centering and feature normalization preprocessing steps
to the features extracted by the feature extraction net-
work. The detailed descriptions of these steps are as
follows:

1) FEATURE CENTERING
Feature centering aims to standardize the features by
removing the mean, thereby reducing bias among features.
Suppose the training feature matrix is Xtrain ∈ RN×D, where
N is the number of samples and D is the feature dimension.
We first compute the mean of all feature vectors:

µ =
1
N

N∑
i=1

X(i)
train (6)

Next, for each feature X, we perform feature centering by
subtracting the mean vector µ:

X′ = X− µ (7)
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Algorithm 1 Backbone Training
Require: Dataset Dbase, main classifier Cn(·), auxiliary

classifier Cr (·), learning rate η

Ensure: Trained backbone network fθ
1: Initialize fθ
2: for epoch e = 1 to E do
3: for each mini-batch (x, y) from Dbase do
4: Stage-I: PatchUp Augmentation
5: Select k-th layer randomly from S
6: Process (xi, yi) and (xj, yj) to obtain gk (xi) and

gk (xj)
7: Create binary maskM
8: φhard(gk (xi), gk (xj))← M ·gk (xi)+(1−M )·gk (xj)
9: Obtain z̃ by forward propagation from layer k

using φhard(gk (xi), gk (xj))
10: Lpatchup = puℓ(Cn(z̃), yi)+ (1− pu)ℓ(Cn(z̃), yj)
11: θ ← θ − η∇θLpatchup
12: Stage-II: Self-Supervised Rotation
13: xr ← Rotate(x, r) where r ∈

{0◦, 90◦, 180◦, 270◦}
14: Lrot =

∑
x∈Dbase

∑
r∈Ar ℓ(Cr (fθ (xr )), r)

15: Lclass =
∑

x∈Dbase

∑
n∈class(Dbase) ℓ(Cn(fθ (x

r )), n)
16: Ltotal = 0.5 ∗ Lrot + 0.5 ∗ Lclass
17: θ ← θ − η∇θLtotal
18: end for
19: end for

This processing ensures that the mean of all feature vectors
is zero, thereby removing the bias in the data and improving
the stability and consistency of the features.

Subtracting themeanµ of the training dataset is intended to
ensure the consistency of feature distributions, so that training
and testing features are compared and processed under the
samemean baseline. This step effectively reduces bias caused
by different data distributions, thereby improving the model’s
generalization ability.

2) FEATURE NORMALIZATION
After feature centering, apply feature normalization to further
standardize the magnitude of the features. Specifically,
we use the L2 norm for normalization. For each feature vector
X(i), we compute its L2 norm.

Then, we divide each feature vector by its L2 norm to
ensure that each feature vector has a length of 1. In this way,
all feature vectors are normalized to the unit sphere, thereby
enhancing the robustness of the features.

X(i)
normalized =

X(i)

∥X(i)∥2
(8)

Combining the above two steps, we first apply centering
to the training features, and then normalize the centered
features. For the test features, we first apply the mean of the
training features for centering, followed by normalization.

TABLE 1. The category split of three datasets.

This preprocessing process can be formally expressed as:

Xpreprocessed = Normalization(X− µ) (9)

By applying centering, eliminate the mean bias of the fea-
tures, making the feature distribution more uniform, thereby
reducing the bias introduced by different feature means
during training. Subsequently, by applying normalization,
we standardize the magnitude of the features, ensuring that
all feature vectors have an L2 norm of 1, thereby reducing
the magnitude differences among features. These two steps
not only improve the stability and consistency of the features
but also enhance the robustness and generalization ability of
the feature representations.

E. PROTOTYPE CLASSIFIER
We adopt a metric-based prototypical network as the fun-
damental few-shot Learning (FSL) classifier. This network
consists of a feature extractor and a simple parameter-free
classifier, where the training process only requires learning
the parameters of the feature extractor. The prototypical
network learns a nonlinear mapping from the input to the
embedding space through a Convolutional Neural Network
(CNN), projecting each sample into the same embedding
space. For each class of samples in the support set, the
average value in the embedding space is extracted as its class
prototype, and the Euclidean distance is used as the metric.
Through training, the distance between query set samples
and the prototypes of the same class is minimized, while
the distance to prototypes of other classes is maximized. For
an N-way K-shot few-shot task, the specific steps of the
prototypical classifier are as follows:
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TABLE 2. Few-shot classification accuracy and 95% confidence interval on miniImageNet and FC-100 with the ResNet12 backbone.

TABLE 3. Few-shot classification accuracy and 95% confidence interval on tieredImageNet and CUB-200-2011 with the ResNet12 backbone.

1) CALCULATE THE CLASS PROTOTYPES
For each class k in the few-shot learning task, its class
prototype is calculated by taking the mean of the feature
representations of all samples of that class in the support set.
The class prototype can be represented as:

Ck =
1
|Sk |

∑
x∈Sk

fθ (x) (10)

where fθ (x) denotes the feature representation of the sample
x, Sk is the set of all samples of class k in the support set, and
N represents the total number of classes in the support set S.

2) CLASSIFY THE QUERY SET
For each sample qi in the query set, the same feature embed-
ding function is used to extract its feature representation
to obtain fθ (qi). Calculate the distance between the feature

vector of the query sample qi and the prototypes of each class
in the support set, and then use the softmax function to obtain
the probability distribution of the query sample qi belonging
to a certain category, which is specifically calculated as:

pθ (y = k|qi) =
exp(−d(fθ (qi),Ck ))∑N

k ′=1 exp(−d(fθ (qi),Ck ′ ))
(11)

where d(·, ·) is the distance metric function, using the
Euclidean distance, k represents the true category of the query
sample qi, y represents the predicted category of the query
sample qi, and k ′ is the index of all classes in the support set.
In this way, the prototypical network can effectively handle

few-shot classification problems by learning a mapping from
the input to the feature space, and using class prototypes and
distance metrics for classification decisions in this feature
space.
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FIGURE 3. Comparison of different methods on 1-shot and 5-shot accuracy.

FIGURE 4. Visualization of t-SNE features for 50 images per category randomly selected from 5 categories in the test set of the MiniImageNet dataset.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETTING
To verify the feasibility of the proposed method, this paper
tests and validates the model’s performance on three classic
few-shot public datasets: miniImageNet [43], tieredImageNet
[24], FC-100 [44], and CUB-200-2011 [45], and compares
it with other advanced methods. The division of the above
dataset is shown in Table 1. Train indicates the number
of base categories, Val indicates the number of validation

categories, Test indicates the number of novel categories
and Total indicates the original number of categories in the
dataset. All images in the datasets are uniformly cropped to
84 × 84 for network training.

1) BACKBONE NETWORK
To make a fair comparison with current advanced methods,
this paper uses the commonly used ResNet12 as the backbone
network for feature extraction. It consists of 4 residual
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blocks, each with 3 convolutional layers of 3 × 3 kernels,
followed by a 2 × 2 max pooling layer at the end of each
block. Intermediate layers of the backbone network use max
pooling, ReLU nonlinear activation functions, and batch
normalization operations. To generate dense features, a global
average pooling layer is added at the end of the backbone
network to produce a one-dimensional vector for each input
image block.

2) EXPERIMENTAL DETAILS
During the model training phase, we follow the standard
machine learning training paradigm to train our classification
model. Specifically, we use ResNet12 as the backbone
network, with the main classifier being an n-class linear
classifier (n=total number of classes) for classifying all types
in the training set. The auxiliary classifier predicts the rotation
angle of the image. We use stochastic gradient descent (SGD)
as the optimization algorithm, with the following parameters:
initial learning rate of 0.1, momentum of 0.9, and weight
decay of 5e-4. During training, we use a batch size of 128 and
introduce a cosine annealing scheduler to adjust the learning
rate, with the training process lasting for 150 epochs.

In the validation phase of training, we adopt the few-shot
learning mode and perform classification testing on the
validation set. Specifically, we randomly extract 500 episodes
of 5-way k-shot (k=[1,5]), with k samples from each category
as the support set and 15 samples as the query set for
executing classification tasks.

In the testing phase, the model’s performance is evaluated
on 10,000 episodes, and accuracy with a 95% confidence
interval is used as the evaluation metric.

B. EXPERIMENTAL RESULTS
In this study, our method was initially compared with the
current state-of-the-art methods in terms of average accuracy
for few-shot classification tasks. The comparative results
for the 5-way 1-shot and 5-way 5-shot classification tasks
are presented in Tables 2 and 3, respectively. The findings
reveal that, in most cases, the performance of our method
is significantly superior to that of existing methods. Specif-
ically, on the MiniImageNet dataset, our method achieved
an accuracy improvement of 2.90% and 2.20% over the
second-best method for the 5-way 1-shot and 5-way 5-shot
tasks, respectively. For the CUB dataset, the corresponding
improvements in accuracy over the second-best method
were 3.77% and 0.77%, respectively. On the tieredImageNet
dataset, the respective improvements were 1.50% and 0.96%.
Furthermore, on the FC-100 dataset, the results of our method
were on par with the best-performing method, thereby
demonstrating its competitive edge.

C. ABLATION EXPERIMENT
In order to further evaluate the contribution of each com-
ponent in the proposed method, we conducted a series of
ablation studies on the miniImageNet dataset. The results
of the ablation experiment are summarized in Table 4

TABLE 4. Ablation study analysis on miniImageNet dataset by using
ResNet12 as the backbone network.

TABLE 5. Comparison results of different data augmentation effects
using ResNet-12 as the backbone network on miniImageNet.

and Figure 3. The baseline model adopts ResNet12 as its
backbone network for feature extraction, and is trained based
on standard training paradigms. At the same time, a prototype
classifier is used for small sample classification validation.

1) ANALYSIS OF ABLATION EXPERIMENT RESULTS
In the 1-shot setting, the baseline model’s accuracy signifi-
cantly improved from 58.30% to 64.60% with the addition of
feature preprocessing, marking an increase of 6.30%. In the
5-shot setting, accuracy increased from 80.14% to 81.27%,
a rise of 1.13%. When angular loss was added to the baseline
model, the accuracy in the 1-shot setting rose from 58.30%
to 59.90%, an increase of 1.60%, while in the 5-shot setting,
it slightly increased from 80.14% to 80.27%, a gain of 0.13%.
Employing PatchUp for data augmentation resulted in the
1-shot setting accuracy improving from 58.30% to 61.14%,
an increase of 2.84%, and in the 5-shot setting, accuracy
rose from 80.14% to 82.28%, a gain of 2.14%. When both
PatchUp data augmentation and angular loss were used
simultaneously, the accuracy in the 1-shot setting increased
from 58.30% to 63.73%, a gain of 5.43%, while in the 5-shot
setting, it increased from 80.14% to 83.62%, an increase
of 3.48%. Combining all optimization components resulted
in a significant increase in the 1-shot setting accuracy to
68.81%, an improvement of 10.51% from the baseline,
and in the 5-shot setting, accuracy increased to 84.61%,
an improvement of 4.47% from the baseline. These results

124998 VOLUME 12, 2024



L. Zhang et al.: From Sample Poverty to Rich Feature Learning Method

FIGURE 5. Accuracy variation with training for different data augmentation methods on 500 episodes in the
miniImageNet val set.

highlight the importance of each component in enhancing the
performance of few-shot classification tasks, especially when
used together, demonstrating a significant synergistic effect.

2) VISUALIZATION OF ABLATION EXPERIMENT RESULTS
In order to comprehensively evaluate the effectiveness
of the method proposed in this article, we employed
t-SNE technology to conduct in-depth visual analysis of

the generated features. We randomly selected 5 different
categories from the test set of the MiniImageNet dataset,
with 50 images selected for each category, and performed
feature extraction and visualization processing. As shown in
Figure 4, the visualization results of t-SNE clearly demon-
strate the significant advantage of the features generated by
our method in clustering performance. Specifically, these
features exhibit smaller intra class distances and larger inter

VOLUME 12, 2024 124999



L. Zhang et al.: From Sample Poverty to Rich Feature Learning Method

FIGURE 6. Comparison of different methods on 1-shot and 5-shot accuracy.

class distances, which enhance the discrimination between
different categories and thus enhance the classification ability
of the model.

D. THE EFFECTIVENESS OF PATCHUP
To evaluate the effectiveness of PatchUp [31] in few-shot
image recognition, we conducted ablation studies on the
miniImageNet dataset. We compared PatchUp with sev-
eral other popular data augmentation techniques such as
CutMix [33], Mixup [34], and Manifold Mixup [30].
To ensure fairness in comparison, all experiments were based
on the same architecture, ResNet12 as the base network, and
angle self supervised loss Lrot was addedwhen applying other
data augmentation strategies.

The convergence curves of the model on the miniImageNet
dataset under the 5-way 1-shot and 5-way 5-shot settings are
shown in Figure 5. The 95% confidence interval accuracy
of the model on miniImageNet is presented in both Table 5
and Figure 6. The experimental results demonstrate that the
PatchUP method performs the best among the data augmen-
tation techniques. It achieved the highest accuracy of 63.73%
in the 1-shot setting and 83.92% in the 5-shot setting. Cutmix
performed well in the 1-shot setting but was slightly inferior
to Mixup and Manifold Mixup in the 5-shot setting. Mixup
excelled in the 5-shot setting with an accuracy of 83.00%,
while Manifold Mixup showed consistent performance in
both settings, particularly outperforming Mixup in the 5-shot
setting. Overall, PatchUP significantly enhances the model’s
generalization ability, making it the most effective data
augmentation method.

V. CONCLUSION
In conclusion, this study addresses the challenges of few-shot
learning in image classification by proposing a novel
approach based on metric learning. Our method leverages
PatchUp techniques to perform block-level operations in
the hidden layer feature space, enhancing feature diversity

and expanding the range of data representations. This
enables the model to form smoother classification decision
boundaries, thereby improving its adaptability to variations
in data. Additionally, the introduction of a self-supervised
auxiliary loss function stabilizes the learning of deep
semantic information, contributing to enhanced performance
on new categories. Furthermore, centralizing and normalizing
features extracted from the backbone network significantly
bolster the model’s performance in few-shot image clas-
sification tasks, particularly in challenging 1-shot learning
scenarios. Through extensive experiments on multiple bench-
mark datasets including miniImageNet, tieredImageNet,
FC-100, and CUB-200-2011, we validate the effectiveness
and superior performance of our proposed method. While
our approach has achieved significant advancements in the
field of few-shot learning, there remains room for further
optimization. Future work could explore more efficient data
augmentation strategies and regularization techniques to
enhance the model’s generalization ability and robustness.
Additionally, extending the application of this method to
broader tasks and domains will validate its universality and
applicability.
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