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ABSTRACT Urban planning must coordinate expanding public electric vehicle charging infrastructure
(EV-CI) with energy distribution companies to satisfy growing demand. To this end, measurements and
charger load curves are indispensable to execute appropriate operational studies and expansion planning.
However, the necessary databases are small in cities with low EV penetration, and may not adequately
characterize future consumption patterns. This article proposes an ‘‘Extensive Method for Demand
Estimation in Charging Infrastructures’’ (X-Modeci) to fill this gap, which is especially beneficial for large
metropolitan areas. The method employs statistical regressions to model the different phases of EV adoption,
using traffic simulations to incorporate new travel dynamics that may arise due to increased charging and
new EV battery range values. The proposal result is a spatial database that shows EV-CI load curves for
typical urban traffic days in locations that would be more appropriate for installing new chargers. This results
class can help energy companies identify the best connection locations and necessary reinforcements in the
distribution grid to meet electromobility demand. The method was applied in the most significant capital in
the Northeast of Brazil, showing that the estimated load curves tend to reach their maximum point between
the end of the afternoon and the beginning of the night, following the high rate of vehicle circulation during
this period. The case study clarified that the characterization of EV-CI use provided a 10% gain in the EV-CI
usage rate about the national average, respecting regulated levels. In this way, the results of the proposed
method can help the agents involved better understand the energy demandwithin the scope of electromobility
plans with high spatial resolution at the location of the main avenues in urban areas.

INDEX TERMS Electric vehicle, electromobility, energy consumption, load curves estimation, power
distribution system planning, public charging stations.

I. INTRODUCTION
The Electric Vehicles (EV) global fleet reached 40 million
units in 2023, and the market to waiting to sell 17 million in
2024 [1], showing the exponential progress of electromobil-
ity. On the other hand, as the electrification march advances,
an Electric Vehicle Charging Infrastructure (EV-CI) with
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fast chargers and publicly accessible is essential to achieve
similarity with conventional refueling [2].

EV-CI offers significantly shorter charging times than
home charging as it employs chargers with high-rated
power (above 10 kW and already exceeding 200 kW).
Nevertheless, this fact imposes additional concerns for the
planning and expanding energy distribution systems.With the
electrification of the transport sector, the loadwill penetrate in
an accelerated and random manner, increasing peak demand
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and imposing disorderly fluctuations in the load curve
[3], [4].

EV charging is entirely different from the regular pattern
in the industrial and residential sectors because of high
volatility and fluctuating aspects. The leading causes are
consumption dynamics, the disruptive pattern, and the spatial
dispersion between drivers and chargers. These represent
more challenges for urban and energy planners, considering
the risk of congestion and compromising the electrical
system’s reliability [5].

In this context, load curve estimation emerges because it
contributes to formulating appropriate plans that guarantee
the market’s sustainability and a harmonious relationship
between energy and transport systems. The distribution
planner must consider the possibility of simultaneous heavy
grid usage and changes in peak demand when examining
its assets, determining appropriate feeder and transformer
sizes, and suggesting upgrades [6], [7]. Serious consequences
can result from non-compliance with these factors, such
as an imbalance in the supply-demand relationship and an
increased probability of system collapse [8]. Furthermore,
it is necessary to reduce investment costs in grid reinforce-
ments based only on peak periods of high simultaneity [4].
However, modeling energy demand and estimating load

curves for EV charging (although it is one of the solutions
for planningmodern energy systems) is problematic for many
reasons. The load duration changes the travel time, drivers’
route planning, and traffic flow patterns [8]. Furthermore,
there are intrinsic spatio-temporal conditions, especially in
regions in the EV-CI expansion phase where charging is even
more stochastic [9].

Measurement campaigns can only be effective when
the fleet and EV-CI stabilize. Until then, databases are
minor and can inadequately characterize load dynamics.
Therefore, techniques based on data analysis are not helpful
in these cases, as the prevalence of charging is minimal
or non-existent, and more chargers are needed to carry out
conclusive measurements. Additionally, although there has
been excellent progress in the use of data science, obstacles
related to privacy laws restrict the data availability and
applicability of these techniques.

A. APPLICATIONS AND CONTRIBUTIONS
The Extensive Method for Demand Estimation in Charging
Infrastructures (X-Modeci) proposed in this article addresses
the estimating load curves problem and determines the
demand profile for public charging for each EV penetration
level while considering the drivers’ spatial dispersion.

The X-Modeci comprises five modules and distinguishing
characteristics not found in the available literature. Refer to
Section II-B for further details. Nonetheless, five of these
differentiating features can be condensed as follows: 1) the
study examines the potential adopters market of EVs and
addresses the heterogeneous spatial distribution of drivers;
2) it takes into account the dynamics of urban traffic,

characterizing the various stages of adoption and use; 3) it
considers the State of Charge (SOC) of the battery; 4) also
takes into account the precise geographical location of each
charging point and 5) real public access data was used.

The main target of the proposal (although there are
others) is distribution companies. The method’s essence is to
provide inputs to complement analyses in the system planning
stages and grid access request cases. The aim is to mitigate
impacts related to uncertainties regarding the dynamism of
EV penetration growth. The spatial estimation of demand
is crucial for several reasons, including the connection’s
dependency on the electrical grid and the comparison
with residential, industrial, commercial, and other load
curves [3]. Moreover, with the calculation of maximum
demand, it becomes possible to recognize peak periods,
which can assist in determining whether the electricity grid
can handle new loads or if there is a need to increase capacity
or feeders.

From input data to outputs, databases and results are
modeled spatially via Geographic Information Systems
(GIS). Spatial databases facilitate the development of the-
matic maps that visually depict information at all planning
stages, as previously demonstrated in [10]. Georeferenced
maps include identifying the most appropriate locations for
installing charging points. The proposal allows integration
with urban and energy planning tools, land use, and
topography mapping. In addition to demand, the proposal
offers hourly load curves, peak hours, and typical factors
contributing to charging station connection studies.

The main contributions, while not limited to these, can be
summarized as follows:
• The X-Modeci considers the EV fleet’s dynamic growth
and EV drivers’ travel patterns based on statistical
regressions and transport flow simulation. Thus, the
increase in load density can be better characterized,
especially in large metropolitan areas;

• Load curves are estimated by statistical modeling and
considering the EV adoption stage and diffusion in
addition to the real urban traffic dynamics and travel
patterns. The method provides a spatial database with
load curves for the entire EV-CI, considering different
levels of EV penetration;

• Power Distribution System (PDS) calculations eluci-
date new utilization factors in electrical installations,
considering the demand for charging increases. Energy
distributors can use X-Modeci to assess the impacts
and uncertainties of each penetration scenario when
receiving requests to connect the new electric vehicle
charging station.

II. LITERATURE REVIEW
A. RELATED WORK
Some approaches to the problem of estimating charging
station load curves are based on data analysis techniques
(big data, deep learning, machine learning, etc.), which
always require the availability of historical series. The authors
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focus on obtaining annual energy consumption, and the
methodologies selected would depend on the context and
purpose of each model. In [11], planning is approached
from an optimization model that includes grid operation
and user preference factors. The focus given by [12] is
on load prediction through the massive application of deep
learning techniques. As with [12], [13] used time series-based
methods to forecast demand. Likewise, a procedure to
identify typical large-scale loading profiles was proposed
by [14].
However, the solutions mentioned above did not consider

the possibility of the unavailability of historical loading
data. Furthermore, they require complexmodeling, parameter
adjustment, and multiple data sources, making implemen-
tation difficult. Although there are countries with mature
EV-CI, in most parts of the world, electrification is still
in an early stage of development. Therefore, they do not
have a consolidated market and cannot adopt this approach.
Another severe limitation of these studies is access to data,
which modern privacy policies have increasingly restricted.
Furthermore, the proposals do not incorporate either EV
stochastic or traffic flow behavior.

Recently, some authors have designed the load curve based
on a traffic simulation result, considering the spatial-temporal
aspect and hourly and daily vehicle flow variations. In [15],
the location of buyers, the number of EVs, and demand
were estimated. The [16] approach is similar, but several
simplifications had to be imposed, limiting applicability
to small locations. The non-linear programming model is
developed in [17] and considers demand, utility, and battery
characteristics. In [18], the estimated load curves are super-
imposed to obtain the overall curve. The demand variability
and peak load were predicted in [19] by formulating an
optimization problem. Finally, in [20], the estimation process
is based on traffic information and highway patterns.

The above approaches gain prominence compared to those
based on data, but they assume that travel patterns are fixed
throughout the journey. Therefore, they fail to consider that
the need for charging on route completely changes this
pattern, imposing volatile behavior on the driver’s driving
modes. Considering exogenous factors, such as seasonality in
route selection and the influence on traffic conditions, is one
of the gaps in improving the granularity in generating load
curves.

B. DISCUSSIONS AND PROPOSED INNOVATIONS
Few proposals have considered the different stages of electric
mobility (purchase, modes of use, travel behavior, and
charging). Among these, it is assumed that charging patterns
will remain unchanged for any level of EV penetration.
However, the increase in the fleet implies a greater EV-
CI, bringing more route options to the driver. Therefore,
it must be considered that future scenarios will change the
route choice and, consequently, the load curves. In contrast
to previous works in the literature, X-Modeci considers the

variation in penetration in future scenarios, which promotes
more excellent quality in the estimates.

A deficiency of the proposals analyzed is the lack of a joint
analysis involving transport and energy systems, which must
be addressed as they are related. On the one hand, the location
of property owners and travel patterns affect urban flows.
On the other hand, the spatial distribution of charging points
and SOCs changes the operation and planning of the electrical
grid [21], [22]. Therefore, an innovation of X-Modeci is a
holistic vision, frommodeling urban traffic, its dynamics, and
routes to the need for charging batteries [8].

Most authors characterize load curves based on the
behavior of a small set of charging stations. Few studies can
estimate load curves in a large region (from neighborhoods to
entire cities). Studies have only been able to demonstrate their
contributions in small, fractional, or test networks, which is
an obstacle to replication in large metropolitan areas [16],
[19]. To overcome these limitations, X-Modeci focuses
heavily on large-scale applications, making it possible to
integrate analyses into a single solution within the co-
simulation concept [23].
Considering the preliminary discussions, X-Modeci helps

distribution agents plan to meet growing load demand and
deal with the significant change in load balancing dynamics.
One of the intrinsic novelties is the possibility of analyzing
peak load times, maximum demand values, and typical
factors that characterize the behavior of the EV-CI in aspects
such as homogeneity (the distribution of use between periods
of the day) and simultaneity /coincidence (power required
at the exact moment). In this sense, to the best of the
authors’ knowledge, no published study has considered all
these assumptions together.

III. EXTENSIVE METHOD FOR DEMAND ESTIMATION IN
CHARGING INFRASTRUCTURES (X-MODECI)
The X-Modeci consists of five blocks, where a hierarchical
relationship diagram is in Fig. 1, and is detailed in Fig. 2.
The main highlight of the proposal about others found in the
literature is that it makes it possible to characterize the growth
of load density in future scenarios. In this sense, a relevant
contribution is the possibility of estimating load curves to
assist distribution companies in connection analysis studies
for new charging stations and in planning reinforcements in
the electrical system infrastructure. Another benefit of the
work is the possibility of considering the different EV stages
of adoption and use, improving the quality of the planner’s
analyses.

Block 1 (Section IV-A) applies statistical techniques to
estimate the spatial distribution of EV adopters. The mod-
eling characterizes the evolution of fleet growth dynamics,
providing the driver’s location and the starting points of
EV travel. Spatial econometrics is developed, and regression
models are applied to estimate the adoption rate and obtain a
database on the geographic location of each driver.
X-Modeci stands out compared to other studies for char-

acterizing the interdependent relationship between transport
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and energy grid. In this sense, transport modeling contributes
to determining the EV driver’s behavior, which differs
from the standard behavior of the driver of a combus-
tion vehicle. In this sense, in Block 2 (Section IV-B),
a transport simulation determines the travel dynamics,
and an algorithm calculates the SOC for use in deter-
mining EV-CI and calculating demand in subsequent
blocks.

Block 3 (Section IV-C) uses the Location-Allocation
Problem (LAP) approach to determine the necessary EV-CI
to meet demand. An algorithm based on graph theory
proved suitable for optimizing the allocation and can be
adjusted according to the planner’s needs. A location ideal
for installing a charging station, it has more significant
EV movement and a low charge in their batteries. Con-
sequently, the best locations for installation are selected
considering the need to meet the growing demand for EV
charging.

In Block 4 (Section IV-D), an algorithm based on the Route
Choice Problem (RCP) directs the EVs for charging points,
calculates routes considering the shortest path, and updates
the SOC. An output database summarizes the number of
vehicles directed to each charging station and the SOCof each
one. Therefore, it is possible to determine the expected energy
consumption, which will also be used in the next block.

It is difficult to predict the electrical demand behavior
at a time when EV penetration is still low or non-existent.
Therefore, Block 5 (Section IV-E) completes the X-Modeci,
aiming to identify, graphically and spatially, any need for
grid reinforcement by identifying peak periods throughout
a typical day. Hourly demand curves and factors related to
load behavior are estimated for each charging point of EV-
CI. In the final output, a spatial database is obtained with a
demand estimate for installed chargers considering different
penetration levels.

A. INPUT DATA
• Sociodemographic (inpIV-A, Block 1): they are public,
can be obtained from government agencies, and contain
variables related to the demographic census, such as
maps of territorial division, age, education, and income.
They are usually segmented into sub-regions, known
as census sectors, and made available in layers of
information that can be processed in GIS. Economic
data, such as vehicle prices, energy tariffs, fuel prices,
taxes, and nominal interest rates, are also considered.

• Urban Mobility (inpIV-B, Block 1 and Block 2):
also publicly available and includes maps that divide
the area into traffic zones (ZT) and origin-destination
matrices (OD). The information is grouped in tables
that summarize the travel distribution for each hour
of the day and during peak periods. This data is
used to characterize travel demand and enable traffic
simulations. They form part of urban planning studies
and provide insights into traffic patterns and trends for
regions worldwide [24].

B. PRELIMINARY DATA
• EV adopters and OD Matrix (outV-B, Block 1):
indicates the locations of the drivers, the sectors in
which they are located, and the OD matrices of the
EVs;

• Flow and SOC (outV-C, Block 2): determines driving
patterns, driver preferences, and battery status;

• EV-CI location (outV-D, Block 3): determines the
spatial location of each charging point, which can each
have one or more, fast (AC) or ultra-fast (DC) chargers;

• Energy expectation (outV-E, Block 4): compiles the
number of EVs at each charging point and updates the
SOC of each one, providing the amount of energy (Watt-
hours) needed to meet demand;

C. OUTPUT DATA
• Demand and Factors (outV-F, Block 5): represents
the final results with the characterization of the hourly
demand (in watts), reached by the load curve, for each
point; the maximum demand, the average demand, and
the coincident and non-coincident demand are provided;
four typical factors are calculated: diversity, coincidence
(or simultaneity), demand and load; each block results
are compiled in a final database and can be processed a
posteriori in any GIS system.

IV. X-MODECI USED TECHNIQUES
A. BLOCK 1: DRIVER’S CLUSTER
The pattern of behavior of EV adoption rate depends on
geographical, socio-economic, and cultural factors peculiar
to each region [21]. This block links these factors and is based
on the diffusion of innovations theory developed by Everett
Rogers found in [25]. Because of the high cost, EV drivers
tend to conglomerate in a dispersed manner, characterizing
heterogeneous behavior in their spatial distribution. The
first adopters will influence the neighborhood over time,
triggering the future diffusion of EVs [26]. The objective
of this block is to estimate the starting point of EV travel
based on the characterization of the evolution of the rate
of EV adopters. In Block 2 (Section IV-B), this estimate
is associated with the OD matrices and feeds the transport
modeling proposed.

1) SPATIAL ECONOMETRICS
a: HIERARCHICAL SPATIAL AUTOREGRESSIVE MODEL
(HSAR)
The proposed method characterizes the dynamic growth
of possible travel EV starting locations. In this sense,
based on an initial rate (which may be available from the
distribution company or traffic control bodies), the HSAR
model determines the proliferation of adopters. It considers
the spatial influence of neighboring areas (group dependence
effect) based on socio-demographic variables [27]. Then,
the model updates the initial rate, making it possible to
characterize the heterogeneous distribution and determine the
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FIGURE 1. X-Modeci algorithm flowchart - overview.

market of adopters and its dynamism, according to (1) [28].

yi,j = ρWYi,j + βXi,j + γZi,j +1θi,j + ξi,j (1)

where ρ is the coefficient for the global spatial iteration; W
is the matrix of spatial weights that measures the influence
between sub-regions i, j; Y is the initial rate of adopters;
Xi,j and Zi,j characterize the socioeconomic variables;
β and γ are regression coefficients; 1 is the random
number weight matrix that allows describing the stochastic
nature of adopters, with θi,j calculated for different levels
and ξi,j characterizing the stochastic nature related to the
purchase.

b: LOGISTIC REGRESSION MODEL (LR)
As explained, the diffusion of EVs has a heterogeneous
behavior and is difficult to predict, as it varies depending
on socioeconomic factors. In this sense, the combination of
HSAR and LR techniques makes it possible to characterize
the growth profile, considering intrinsic uncertainty factors
adequately. The LR identifies new regions with profiles
for acquisition and determines the evolution of the EV
adopter rates over the planning horizon. An iterative sequence
is reproduced using new output data from a previous
scenario and employing it as input for the next one. Finally,
the spatial distribution of adopters for each sub-region is
obtained, considering penetration rates. Equation (2) is used
to determine the cumulative diffusion distribution function
(Ft ) [29]:

Ft =
1− e−(p+q)t

1+ q
pe
−(p+q)t (2)

Equation (2) calculates the probability of adopting an EV
over the planning horizon (t), considering the innovation (p)
and imitation (q) coefficients, which represent the external
and internal influences of diffusion.

B. BLOCK 2: ELECTROMOBILITY DYNAMICS
The X-Modeci can associate the spatially dispersed pene-
tration of adopters (described in Block 1, Section IV-A)
with the dynamics of their travels. These dynamics were
determined from traffic simulations using the software
Aimsun software [30]. Travel dynamics are characterized by
the flow and SOC of EVs on the roads in the study region.
Traffic flow (Section IV-B1) is defined as the number of

vehicles circulating on a given street in a period [31]. The
SOC (Section IV-B2) represents the residual energy of the
EV’s battery, considering that it employs power from its
batteries as it moves.

1) TRAFFIC SIMULATION
a: TRAFFIC ZONES AND CENTROIDS
The study area is divided into sub-regions, as done in
census studies. They group socio-economic and behavioral
characteristics of the population, allowing the understanding
of the trips produced and attracted within the zone [24]. Each
one is given a centroid to assign points of generation and
absorption of vehicle flows and to characterize the transport
demand.

b: TRANSPORTATION NETWORK
A transportation (or traffic) network is a graph that represents
a geographic space and models the infrastructure that allows
different modes of transportation to move around [31].
In this graph, the vertices (or nodes) represent the intersec-
tions/crossings, and the edges (or links), the urban roads.
It can be modeled by integrating the Aimsun [30] and a
georeferenced Open Street Map (OSM) database [32], easily
obtained from the Internet.

c: OD MATRIX, DEMAND, AND MESOSCOPIC SIMULATIONS
The ODmatrix is associated with ZTs (Section IV-B1a): each
trip’s start and end points are specified. In the matrix, each
cell represents the connection points of a journey, (i.e., from
an origin to a destination), and the number of trips made [24].
The spatial database obtained in Block 1 (Section IV-A)
is integrated into this modeling point for composing
scenarios.

The X-Modeci uses real traffic data and, in addition to
EVs, other transportation modes are characterized (conven-
tional vehicles, motorcycles, public transportation, etc.). The
matrices are applied to parameterize the traffic demand, and
then calibration and validation steps are carried out to allow
mesoscopic traffic simulations [24], [31].

2) SOC ALGORITHM
a: ENERGY CONSUMPTION MODELING
As with traffic simulation (Section IV-B1), the SOC must
be expressed for each road considering its route. The energy
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FIGURE 2. X-Modeci algorithm flowchart - detailed view.

consumption of an EV is calculated in 3 steps: 1) power
demanded in the i, j segment; 2) consumption on the i, j
segment, and 3) updated remaining SOC considering the
consumption on the i, j segment.
The relationship that calculates the mechanical power

required by the EV is given by (3), according to modeling
provided by [33]. In this relationship, the power demanded
is calculated for the route of a given segment, which is why
it is noted in the equation as Pi,j. A segment corresponds
to a street, avenue, lane, etc, through which the vehicle
moved. The [33] proposed the modeling fundamentals, and
details regarding its application were previously covered and

deepened in [34].

Pi,j =
(
1
2
CdρAv2i,j + mg sinα + Cr cosα

)
v⃗i,j

2 (3)

where Pi,j is the power demanded in the path between a point
i and an end j; Cd the aerodynamic drag coefficient; ρ the air
density; A the front area of the vehicle; vi,j the speed of the car
in a segment (obtained from traffic simulation); m the mass
of the vehicle; g the gravitational constant; α the slope and
Cr the coefficient of rolling resistance.
Consumption is also calculated for each street where

the vehicle travels, as (4). There are two relationships to
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be considered in consumption: when Pi,j ≥ 0 is more
significant than zero, the vehicle is consuming energy,
therefore operating in enginemode; otherwise, ifPi,j ≤ 0, it is
producing power by the regenerative braking system, through
the generator mode.

bi,j =

{
φdϕdPi,jti,j if Pi,j ≥ 0 kW
φrϕrPi,jti,j if Pi,j ≤ 0 kW

(4)

where bi,j corresponds to the consumption of energy in the
path between a point i and a point j; φd represents the
regression coefficient for electric motor efficiency (engine
mode); ϕd the regression coefficient for electric motor
efficiency (engine mode); φr the regression coefficient for
electric motor efficiency (generator mode); ϕr the regression
coefficient for battery efficiency (generator mode) and ti,j
the time taken to travel a segment (obtained from traffic
simulation).

Finally, to obtain the percentage SOC on each street
(SOCact ), (5) is applied. The first term is used for the first
segment and the second for others.

SOCact =


SOCint − bi,j

B
100 for 1th section

SOCi,j − bi,n
B

100 for n′ section
(5)

where SOCint is the initial SOC of the vehicle when leaving
its origin (characterized by a random seed adjustment), and B
is the EV battery capacity. A previous work further developed
the ideation for the SOC calculation [34].

b: COMPUTATIONAL IMPLEMENTATION
Algorithm 1 shows the steps for calculating the SOC. Initially,
the data is manipulated to retrieve each vehicle’s trajectory,
time, and speed by section (street, avenue, etc.). The
information is stored in an initial data frame. On line 1, each
EV is assigned an initial SOC value (randomly characterized
and varying between a range that can be pre-configured).
Lines 2 to 15 set up the repeating loop to calculate energy
consumption for each vehicle and in each section. During its
journey, the SOC is updated until it reaches its destination or
until it reaches the minimum limit (SOCmin is a sensitive and
parameterizable variable, which determines when the loop
stops in line 9). The information is compiled, and the data
frame is updated with the average SOC per section.

C. BLOCK 3: CHARGING INFRASTRUCTURE
This block is intended to estimate the EV-CI, which in most
places is still evolving, making electrical planning analyses
unfeasible. In this way, using traffic simulations as a pillar
(Section IV-B), the goal is to identify promising locations
within the region under study. The method identifies the best
places for installing charging stations to meet the growing
penetration of EVs. when the area has already established
infrastructure, the location points can be georeferenced in
GIS and used directly in Block 4 (Section IV-D).

Algorithm 1 SOC Calculation by Roads
Input: Aimsun’s SQLite (Section IV-B1); EV data sheet;

Variables and parameters
Output: Average SOC on each street in the region

Pre-Processing: collect data on vehicles, trajectories,
sections, and times
Compute: section speed v⃗m =

1⃗s
1t

Create: Datafame ← compiled values where i is a
trajectory of a set I and j is a section of a set J

1: SOCint ← random seed SOC in a range
2: Initialize i = 0 and j = 0
3: while i ≤ J do
4: for each section in J do
5: while j ≤ J do
6: Step 1: Computes the power Pi,j by (3)
7: Step 2: Computes the consumption bi,j by (4)
8: Step 2: Update SOCact by (5)
9: if SOCact ≤ SOCmin then

Break
10: end if
11: j← j+ 1
12: end while
13: end for
14: i← i+ 1
15: end while
16: return Updated Dataframe

In practice, the places chosen to accommodate EV-CI are
those with high EV movement, like parking lots, malls, and
commercial areas, predominantly in more central regions [8],
[35]. The proposal starts from this premise and establishes
the most likely locations with high flow and low SOC
considering the travel dynamics (Section IV-B).

1) LOCATION-ALLOCATION
When determining the best locations for installing chargers,
the goal is to define the best access routes to meet drivers’
demands. At the same time, one must comply with the
planner’s criteria and restrictions (good location, easy access,
security, etc.) to improve the quality of service [35], [36].

The EV-CI was determined using the Location-Allocation
Problem (LAP) [37], based on graph theory [38] andmodeled
by the p-Median Model (PMM) [39]. The objective is to
determine the infrastructure in a way that efficiently supplies
the demand points. The LAP concurrently determines suit-
able locations for installations and allocates demand points
to the determined locations [37]. The points are strategically
located to minimize the costs between demand and EV-CI,
weighted by (6) to create a matrix of distances Wi,j. Each
assigned point may have one or more fast (AC) or ultra-fast
(DC) chargers.

fi,j =

di,j
di,j(max)

Fi
Fj(max)

+
80−SOCi
SOCj(max)

(6)
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where fi,j is the weight function; di,j(max) is the maximum
coverage distance from the point of EV-CI; Fi is the average
flow of EVs; Fj(max) is the maximum flow that a station can
handle; SOCi average EV SOC on urban roads and SOCj(max)
is maximum SOC to be supplied by station.

a: P-MEDIAN MODEL BASIC STATEMENT
The search space for candidate solutions for the installation
was formulated based on the PMM [39]. With it, it is possible
to allocate a number p of installations, minimizing the
distance and cost relationship from places with high demand
(requesting vertex) to the closest installation (serving vertex),
which improves service supply [40]. The model choice is
justified by its wide use in situations where both the demands
and candidate locations for installation are known [10].

The core of PMM is to define the location of p facilities
(called medians) to satisfy all requirements according to (7)
[39]. In other words, given two subsets of vertices of a graph
G = {V ,E}, one consisting of candidate facilities VP ∈ V
and the other consisting of demand points Vi ∈ V weighted
by the function fi,j (according to (6)) and where E is the set
of edges representing urban roads; select a subset of facilities
VP∗ such that the sum of the weighted distances from each
vi ∈ VI to the nearest vp ∈ VP is minimized by (8) [10].

V∑
i=1

(dvi,vp∗)fi,p∗ ≤
V∑
i=1

(dvi,vp)fi,p (7)

From this definition, the absolute median is the 1-median
of G, with the VP∗ vertices being called median vertices.

ZB3 = Min
V∑
i,j

(Wi,j) (8)

b: COMPUTATIONAL IMPLEMENTATION
The PMM solution was based on the Teitz and Bart (TB)
vertex substitution heuristic [40]. TBwas chosen for its better
computational performance compared to similar techniques,
making it simultaneously possible to process solutions even
in large graphics networks [10].
As described in Algorithm 2, at first, a cost matrix that

weights all the facilities’ VP and the network’s demand points
(VI ) is generated. An initial set of random solutions (line 1)
is selected and refined (see loop started in line 2) until the
optimal solution is reached (when there are no more solutions
to be tested, line 8). In line 3, one of the vertices (called vk )
is tested. As with all heuristics, a metric 1i,k is assigned
to iterate the minimization calculations according to (8)
(line 4). Finally, in the steps described between lines 5-8, the
minimum weighted distance is sought at each iteration.

D. BLOCK 4: STATION CHOICE
On a day-to-day, an EV driver leaves his origin and heads
towards a destination. It can go directly there if there is
enough battery to reach it. If not, the route will need to be
rerouted for charging. In this block, the database fromBlock 2

Algorithm 2 Charging Infrastructure Allocation
Input: Average Flow and SOC (Section IV-B1)
Output: EV Charging Infrastructure Location

Implements: graph G ← V ,E , and gets distance matrix
Wi,j weighted by fi,j (6)

1: VP ∈ V ← randomly selects candidate facilities
2: while there were not analyzed vertices do
3: Selects an untested vertex vk ;
4: Computes 1i,k by Z (8)
5: if 1i,k ≤ Min 1i,1...i,2...i,n then
6: Replace: vk as the new lowest value vertex
7: Classifies: vk as tested
8: Inserts: vk into VP
9: end if

10: end while
11: return Updated VP as a set of EV Charging Infrastruc-

ture

(Section IV-B1) is processed to select which EVs reach the
minimum battery value SOCmin (variable configurable by the
distribution planner and sensitive to the proposal). In these
cases, the nearest station usually be the preferred choice for
drivers [26], [35].

The output of this block compiles the number of EVs
at each charging point (defined in Block 3, Section IV-C)
and updates the SOC. This information can estimate the
expected energy for the EV-CI being evaluated and is
essential for calculating the electricity demand in the next
block (Section IV-E).

1) STATIONS-ROUTES FOR SOC UPDATE
The development was based on an adaptation of the Shortest
Path Problem (SPP) [24] and, as in Section IV-C, modeled
using graph theory [38]. In this case, of the graphG = {V ,E},
VP ∈ V is the set of EV-CI obtained previously, VEV ∈ V the
set of EVs in need of charging and E correspond to urban
roads.

a: SHORTEST PATH PROBLEM BASIC STATEMENT
The SPP searches for the shortest path between two vertices
(one being the location of the EV (vev) and the other being the
location of the previously selected point vin) such that the sum
of the weights of their edges is minimized by (9). The weight
function f : E → R has been adjusted to equal the length Le
of each edge e ∈ E , so f = Le showing that the chosen is
based only on the shortest path, ignoring other costs.

ZB4 = Min
n−1∑
i=1

(Di,j)Le (9)

b: COMPUTATIONAL IMPLEMENTATION
The solution to this block was obtained using Algorithm 3.
A previous step was added to the SPP to optimize resources,
which consists of establishing a scan radius around each EV
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(vev ∈ VEV ) to create an initial set (VIN ∈ VP) of charging
options (lines 1-10). Then, each vi is compared with each
vin ∈ VIN using Euclidean distance, choosing the closest
point. According to (10), the information is stored in an
Euclidean Distance Matrix (EDM) [41].

D2
i,j = di,j←

√
(xi − xj)2 + (yi − yj)2 (10)

Next, the SPP can be approached using the Single-Pair
Shortest Path (SPSP) assumptions, i.e., looking for solutions
between just one pair of vertices and not for the entire set G
[38]. Dijkstra’s algorithm was used for this solution in lines
11-18 [42]. The algorithm creates a shortest path tree, starting
with an initial vertex and then exploring all its neighbors,
updating the cost to reach each one. The set S is established
to store the shortest paths, while the set Q holds the priority
queue (used to store the unprocessed vertices). In lines 14-16,
an iterative process extracts vertex u from Q and relaxes all
adjacent edges of u. The algorithm continues until the target
join is added to S, i.e., when the set Q is empty. Finally,
in lines 19-21, the Algorithm 1 is again used to update the
SOC of each vehicle between its stopping point and the
destination charging point.

E. BLOCK 5: DEMAND ESTIMATE
Demand forecasting involves determining the approximate
amount by which the electrical load will increase or decrease
in the future, which is common in the operation and expansion
planning of the electrical system [6], [23]. Traditionally, the
goal has been to know how much energy is needed and
when it is required. The demandmust be frequently estimated
because, among other factors, energy suppliers must meet
any demand when it occurs [43]. For this reason, this block
concludes the X-Modeci, with the aim of graphically and
spatially identifying possible needs for reinforcements in the
electricity grid, identifying critical periods during a typical
day.

1) DEMAND AND COINCIDENCE
Generally, demand D is understood as the average of the
electrical powers P (active or reactive) required by the load
in a given time interval 1t according to (11) [44]. The
demand at each charging point DCP can be calculated by
adding the individual demands of each EV according to
equation (12). It has been calculated as the ratio between
the amount of energy requested by the EV (given by the
term that determines the difference between 80% of the
battery capacity B and the value of its SOC when it arrives
at the charge point SOCact ) by the time 1t . The value 0.8 is
intended to limit charging to the maximum recommended by
the manufacturer, as explained above.

D =
1
1t

∫ t+1t

t
P(t)dt (kW )→

P
1t

(11)

DCP =
n∑
i=1

(
[0, 8B]− SOCact

1t

)
(12)

Algorithm 3 Stations and Routes Selection for SOC Update
Input: Location and SOC of each EV (VP, Section IV-B2);

EV Charging Infrastructure Location (VEV ,
Section IV-C)

Output: Number of EVs at each EV-CI point; Updated SOC
for each EVs
Implements: graph G← V ,E , | VP and VEV ∈ V

1: VIN ← [⊘]
2: for Each (vev ∈ VEV do
3: for vp ∈ VP do
4: Implements scan radius around vev ∈ VEV to find at

least one
5: Select options found
6: Update VIN
7: end for
8: Calculates euclidean distance with (9)
9: Selects the nearest point and stores it in Di,j weighted

by Le (10)
10: end for
11: S ← [⊘]
12: Q← [V ∈ G]
13: while Q ̸= 0 do
14: Computes Q← Q− [u]
15: for each v ∈ Adj[u] do
16: Relax [u, v]
17: end for
18: end while
19: for each vev ∈ VEV do
20: Repeat lines 1-15 of Algorithm 1

...

21: end for
22: return Updated Dataframes

The coincident (or diversified) demand Dcoin can be
calculated by summing the individual demands of each
consumer at time t [45]. This concept, applied to the
proposal, gives (13), which can be used to show how loads
are combined over some time. In addition, it is essential
to know when the maximum demand of the set of loads
occurs, which can be determined by the maximum coincident
demand MDcoin according to (14). Furthermore, the sum of
the maximum demands equals the maximum non-coincident
demandMDNcoin according to (15). [46].

Dcoin =
n∑
i=1

DCP(t) (13)

MDcoin = MaxDcoin(ta) (14)

MDNcoin =
n∑
i=1

MDcoin (15)

2) TYPICAL FACTORS
In general, PDS studies are carried out with the help
of indicators called typical factors, which show the
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behavior of the load more clearly and quickly. Such
factors are essential as they enable the sizing of instal-
lations (such as feeders or transformers, for example)
and benefit the systematic monitoring of a given set.
Among the many factors available, those most closely
related to the proposed method are described and equated
below [43].

a: DIVERSITY FACTOR
The ratio between the maximum non-coincident demand
(MDNcoin) of a group of loads and the maximum coincident
demand (MDcoin) of the set according to (16) [44]. The
diversity factor is dimensionless and always ≥ 1. When
fdiv = 1, it is demonstrated that the maximum demands of
all loads in a set occurred simultaneously.

fdiv =
MDNcoin
MDcoin

(16)

b: COINCIDENCE FACTOR (OR SIMULTANEITY)
The ratio between the maximum coincident demand (MDcoin)
and the maximum non-coincident demand (MDNcoin) accord-
ing to (17). Or, to put it more simply, it can be understood
as the inverse of fdiv [43]. The coincidence factor is
dimensionless, 0 ≤ fcoin ≥ 1. It indicates how much the
maximum individual demand co-occurs with the maximum
group demand. Consequently, fcoin decreases as the number
of customers in a group increases, typically reaching a value
between 0.5 and 0.33 [46].

fcoin = fdiv−1 =
1
fdiv
=

MDcoin
MDNcoin

(17)

c: DEMAND FACTOR
It is the ratio between the maximum demand Dmax and the
total demanded demand Cdem (i.e., the nominal connected
or total installed load) (18) [45]. The demand factor is also
dimensionless, 0 ≤ fdem ≥ 1. In the proposed methodology,
the demand factor informs how well the EV-CI is being used,
indicating the percentage of installations in operation when
maximum demand occurs [43].

fdem =
Dmax
Cdem

(18)

d: LOAD FACTOR
The ratio between the average demand Dmed and the maxi-
mum demand occurring in the same time interval according
to (19) [44]. The load factor is dimensionless, 0 ≤ fload ≥ 1.
It also indicates how well the installation is being used. When
tending to 1, the more uniform the consumption is about
demand; when closer to 0, the more variable the consumption
is. When close to 1, it indicates that instantaneous demands
throughout the day are close to maximum demand, that is, the
peak [43].

fload =
Dmed
Dmax

(19)

V. CASE STUDY AND ANALYSIS
A. TEST DESCRIPTION
To illustrate the application of X-Modeci, the city of Salvador
was chosen, located in the state of Bahia, in the north-eastern
region of Brazil (coordinates 12.9777◦S, 38.5016◦W) [47].
It is the fourth largest metropolis in the country, with a
population of around 3million and a vehicle fleet estimated at
over 1 million units. With an area of approximately 700,000
km2, it is the 15th most significant metropolis in Brazil in
terms of size.

All input data can be obtained free of charge from
government websites, as they are public and widely used
worldwide. For the selected location, socio-demographic data
were obtained from the Brazilian Institute of Geography
and Statistics (IBGE, by its Portuguese acronym) [48] and
urban mobility data from theMunicipal Department of Urban
Mobility of Salvador (SEMOB, by its Portuguese acronym)
[49].

Two global EV penetration scenarios were considered, 7%
(scenario 1) and 65% (scenario 2). The choice of scenarios
aims to emulate the current moment when penetration is still
low (scenario 1) and a future moment when sales and EV-CI
are more consolidated (scenario 2). In addition, technical data
from the EVs Chevrolet Bolt [50] and Jac Motors iEV40
was considered [51]. The overall penetration rate refers to the
percentage of EVs in the light vehicle fleet, where the portion
for each model corresponds to half.

B. BLOCK 1 RESULTS
1) PRELIMINARY INFORMATION
A previous correlation analysis showed that the variables
with the best correlation were 1) income (monthly income
of permanent private households) and 2) housing (owned and
paid for by permanent private households) [48]. The variables
were updated for each year, considering an annual growth
rate. According to Brazilian consumer behavior patterns, the
premise was established that each inhabitant would allocate
30% of income to purchasing an EV and that the cost would
be spread over time [48]. To be a potential adopter, the income
earmarked for the purchase of the EVmust be greater than the
installment amount to be paid for the purchase.

2) RESULTS AND ANALYSIS
The results of this stage are obtained in a spatial database
and can be visualized using heat maps as shown in
Fig. 3. Darker shades denote sub-areas with higher adhesion;
conversely, lighter shades show sub-areas with a lower
purchase probability. The graduated bar next to the maps
represents the probability, in p.u., of a resident buying an
EV in this area. In scenario 1 (Fig. 3a), there were 49,456
sub-areas with EVs; in scenario 2 (Fig. 3b), 364,285 were
estimated.

In scenario 1 (Fig. 3a), the acquisition is low and predom-
inantly in regions with higher social classes [48]. In addition
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FIGURE 3. Block 1 result: spatial distribution of global penetration of EV adopters in each scenario.

to the high initial cost, this phenomenon can be explained by
other factors, including the lack of charging infrastructure,
low battery autonomy, unreliable technology, and reach
anxiety [25], [35]. Under these conditions, regions with zero
adoption (blank areas) represent population conglomerates
with lower purchasing power and worse quality of life
indicators [48].

In scenario 2 (Fig. 3b), although it still represents a
context in which electromobility is advancing, it’s possible to
realize the phenomenon of neighborhood influence (change
in consumer behavior towards their peers) since a constant
and gradual increase in the overall penetration rate is
expected [26], [27], [37]. The areas with the highest take-up
in scenario 1 (Fig. 3) have maintained their status and
stimulated interest in the surrounding regions. As a result,
areas surrounding those with more EVs behave in the same
way and vice versa.

C. BLOCK 2 RESULTS
1) PRELIMINARY INFORMATION
In the study region, around 5,400,000 journeys are made on
a typical day considering all transport modals (light vehicles
account for approximately 20%) [49]. Several simulations in
Aimsun (Section IV-B1) aimed to cover the busiest periods:
morning peak, lunchtime, and afternoon peak. Journeys for
motorbikes, trucks, and buses are fixed for all simulation
periods. On the other hand, the trips made by conventional
vehicles and EVs vary with each scenario to characterize the
electrification effect of the fleet. Fig. 4 illustrates the traffic
demand pattern in the study location.

a: INITIAL SOC RANGE
The EV’s initial SOC (SOCint , Section IV-B2), i.e., when it
leaves its destination, is characterized randomly. During its
journey, it is updated until it reaches its destination or until it
reaches the minimum safety limit (SOCmin, set at 25%).

It is difficult to determine precisely the EV driver’s
behavior and movement patterns when charging is required.
However, the range of the SOCint has been configured as
follows: at the start of the day, the SOC is closer to the
maximum (80-100%); in the middle of the day, at medium
levels (40-60%) and the end of the day at lower levels

(25-40%). This behavior is also observed by [52], [53],
and [54].

2) RESULTS AND ANALYSIS
The results are presented in thematic maps (Fig. 5 and Fig. 6),
illustrating the distribution of the variables of interest along
the roads in the study area. They have been pair-grouped with
the mean flow and SOC for joint analysis. On the flow maps,
warmer colors represent the busiest locations. Conversely, the
warmer colors on the SOC represent locations where EVs are
less loaded. The scales have been standardized in the same
data distribution range to facilitate comparisons.

In Scenario 1 (Fig. 5), low penetration affects traffic
intensity and is concentrated on main roads. Movement
increases as the number of vehicles circulating in the
region increases, which is expected [24]. In this sense,
scenario 2 (Fig. 6) recorded the highest flow. The SOC
variations evidence the initial random range assigned to each
period (Section V-C1a). In the morning, for example, the
predominantly green indicates that most EVs have sufficient
charge for movement satisfactorily during the day.

a: SOC RANGE ANALYSIS
Fig. 7 illustrates the normal distribution of the results
obtained from Algorithm 1, showing how the initial SOC
(Section V-C1a) influences the results. It should be noted
that between 06:00 and 08:00 AM, the EVs do not reach the
minimum (SOCmin, adjusted at 25%). With an initial SOC
range of 80 to 100%, EVs do not need to be charged, and
this behavior is evidenced in the electrical demand calculation
(Section V-F).
The inserted parameters show that, although there is a

greater traffic flow in the morning, EVs with sufficient charge
in their batteries predominate. Drivers depart, in general, from
their homes with their vehicles already charged overnight
using the home charging [52], [53], [54]. However, the
distribution planner can adjust the initial range value to suit
his reality and perform sensitivity analysis.

D. BLOCK 3 RESULTS
1) PRELIMINARY INFORMATION
When executing the Algorithm 2, the initial set of candidate
locations is obtained considering all the costs (weighted
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FIGURE 4. Traffic demand hourly curve for a typical day in the study region for traffic simulations [49].

FIGURE 5. Block 2 result: average flow (above) and SOC (below) of electric vehicles on roads - scenario 1 (07%).

by (6)) to cover the demand. The algorithm only ends if at
least one charging point attends all demands. The flow and
SOC variables were adjusted by 10 and 20%, respectively,
considering that promising locations for installation are those
with high movement and low battery levels.

2) RESULTS AND ANALYSIS
The results for the two scenarios are shown in Fig. 8. The
number of charging points proved adequate to meet the
demand, being strategically positioned in places with easy
access and heavy traffic, such as squares, commercial centers,
shopping malls, etc. In scenario 1 (Fig. 8a), 46 points were
allocated, while in scenario 2 (Fig. 8b), 249.

E. BLOCK 4 RESULTS
1) PRELIMINARY INFORMATION
This block aims to determine the number of EVs in each
charging point and the SOC with which each one reaches

it (SOCact ). The SOCmin was adjusted to a 25% of battery
capacity for filtering vehicles needing charging.

2) RESULTS AND ANALYSIS
The results are presented for the two considered scenarios
(Fig. 9 and Fig. 10), however eliminating the period from
06h-08h AMwhere, as justified in Section V-C1a (Fig. 6), the
EVs have a satisfactory battery level. In graphs, the horizontal
axis lists the identifiers (IDs) of the charging points. Average
charging refers to the expected electricity consumption at
each point, calculated by the sum of the difference between
the batteries’ residual energy and the value needed to reach
80% of their capacity. The total SOC refers to the sum of the
energy remaining in the vehicles’ batteries, in MWh, at each
point. In all graphs, the three locations that received the most
cars are highlighted with the notation [Id of charging point;
Number of vehicles at this point].
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FIGURE 6. Block 2 result: average flow (above) and SOC (below) of electric vehicles on roads - scenario 2 (65%).

FIGURE 7. Histogram of the SOC frequency distribution.

The results show that the period closest to the night is when
more vehicles are looking for charging. This observation
reflects the premise explained in Section V-C1a: on trips
between 05:00-07:00 PM, it was considered that the SOC
is at lower levels. Travel in this period is characterized
by people leaving work or school and the end of business
hours, which places great demand on the transport system
[52], [54].

In scenario 1, 12h-02h PM (Fig. 9a), the charging points
ID25, ID46 and ID1 received 46, 19 and 14 EVs, respectively.
Fig. 9b shows that, between 05:00-07:00 PM, the ID25 point
received 424 vehicles, ID35 received 409 and 46 received
384.

In scenario 2, 12h-02h PM (Fig. 10a), points ID213, ID191,
and ID200 received 239, 213 and 203 EVs, respectively.
In Fig. 10b, point ID213 received 2,630 vehicles, ID180
received 1,421 and ID114 received 1,317 vehicles.

TABLE 1. Summary of technical data of the analyzed charging stations.

F. BLOCK 5 RESULTS
1) PRELIMINARY INFORMATION
Finally, this section analyzes the load curves and other
electricity demand indicators. For the calculations, fast and
ultra-fast charger models currently on the market were
considered, as shown in Table 1 [22], [55].

2) RESULTS AND ANALYSIS
a: INDIVIDUAL (CHARGING POINTS)
The load curve (hourly demand) of each charging point and
the coincident demand (Dcoin) in each scenario are shown in
Fig. 11. Multicolored lines represent the individual demand
(kW) while the Dcoin (MW) was plotted on the second axis
(demarcated by the blue area). Both scenarios emphasized the
demand peak at 5 PM, where a greater amplitude is observed
in scenario 2 (65%), justified by the high penetration rate
of EVs compared to scenario 1 (%07). At this time, Dcoin,
in scenario 1, reached 39.83 MW against 356.62 MW in
scenario 2, an increase of 895.36%. This result confirms the
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FIGURE 8. Block 3 result: charging infrastructure estimation in each scenario.

FIGURE 9. Block 4 result: expected demand and spatial distribution of vehicles at each charging point - scenario 1 (07%).

FIGURE 10. Block 4 result: expected demand and spatial distribution of vehicles at each charging point - scenario 2 (65%).

understanding of many authors who justify that the public
charging infrastructure tends to peak demand between late
afternoon and early evening [52], [53], [54].
There was no registered demand between 01:00 AM

(dawn) and 09:00 AM (morning). This fact demonstrates
how sensitive the initial SOC range is (SOCint , determined
in Algorithm 1 and analyzed in Section V-C1a). According
to established parameters, EVs have a satisfactory charge,
preventing the search for an attractive charging service. Thus,
the planner can vary this magnitude at the right time to create
scenarios and sensitivity analyses, seeking an optimized
configuration for the EV-CI.

From a PDS planning point of view, it is usual for the
feeder to be sized for the maximum demand condition [44].
Therefore, Fig. 12 graphically and spatially shows its
behavior. For scenario 1 (Fig. 12a), the highest peaks were at
points ID25, ID35, and ID46 whose values reached 3.7 MW,
3.4 MW, and 3.3 MW respectively. In scenario 2 (Fig. 12b),
the peaks were at points ID213, ID180, and ID114, which
reached 21.7 MW, 11.8 MW, and 11.0 MW.

Through the geographic location of the charging points
and possession of the maximum demand of each one,
the distribution planner can conduct connection studies.
Data can help support decisions, aiming to choose a more
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FIGURE 11. Block 5 result: hourly load curves for each charging point and coincident demand.

advantageous configuration from a technical/economic point
of view. One can seek, for example, to minimize costs
or maximize profits. Another advantage of associating
demand with spatial location is the possibility of analyz-
ing the consumer’s profile, behavior pattern, and income,
creating better-targeted marketing and customer acquisition
campaigns.

Fig. 13 shows each scenario’s load factor frequency distri-
bution (from each charging point). This factor demonstrates
how homogeneous energy use is and can assume a value
between 0 and 1 where, the closer to 1, the more grouped
the installation consumption [44]. The results confirm the
previously reported behavior: high concentration of EVs
charging simultaneously. As shown in Fig. 11, most EVs
charge mainly at the end of the day, leaving the infrastructure
little used or idle in other periods.

This result contributes to the entrepreneur or planner con-
ducting campaigns with the public to fragment consumption
at different times. It is often enjoyable for the distribution
agent and the customer that consumption is diluted in off-
peak periods [43]. From the distribution agent’s point of
view, this measure can mitigate/postpone reinforcements in
the electrical grid; from the customer’s point of view, the
best energy use prevents higher charges caused by deviations
between contracted and used demand (in the case of free
consumers).

b: SET (INFRASTRUCTURE)
While in the previous section, the behavior of demand
was individually analyzed (at each charging point), this
section proposes an analysis of the entire infrastructure.
Table 2 shows the main results. The maximum coincident
and non-coincident demand (sum of the maximum demand of
each point, which can occur at different instants of time) was
the same for both scenarios. This fact also happened with the
diversity and coincidence factors, indicating a large grouping
of charges connected simultaneously in the system [45]
and suggesting that all loads’ maximum demands occurred
simultaneously. As shown in Fig. 11, the parameters used
for the case study showed a preference for charging at 5:00
PM in both scenarios. The load factor for the set also reflects
this behavior, being similar because, during the earlymorning
hours, the demand was considered null.

Regarding the demand factor of the set, its behavior was
analyzed based on the variation in the use of the different
powers of chargers of Table 1. The demand factor measures
the relationship between the simultaneous use of charging
points and the connected demand [44]. The results were better
using 43 kW and 50 kW power chargers because they reached
the recommended level (between 0.3 and 0.5) [46].

The analysis of the set shows that the large concentration of
vehicles charging simultaneously impacted the demand and
the factors analyzed. Assuming this to be a realistic situation,
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FIGURE 12. Block 5 result: graphical and spatial analysis of the maximum demand at each charging point.

FIGURE 13. Block 5 result: histogram of the load factor frequency distribution.

stakeholders should take collaborative measures to ensure
the reliability of the power system, the sustainability of the
businesses involved, and the adequate provision of services
to the customer.

G. COMPARATIVE AND SENSITIVITY ANALYSIS
The X-Modeci has benefits over other recently released
proposals (see the detailed comparison in the literature
review in Section II). The most prominent contribution of
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TABLE 2. Block 5 Result: summary of results for the entire infrastructure in each scenario.

FIGURE 14. Sensitivity analysis: histogram of each charger’s demand factor frequency distribution - scenario 1 (07%).

the proposal is the possibility of estimating load curves to
assist distribution companies in connection analysis studies
for new charging stations and in planning reinforcements
in the electrical system infrastructure. In this sense, the X-
Modeci stands out concerning others found in the literature
by making it possible to characterize the growth of charge
density in future scenarios.

In hypothesis, consider that a new enterprise of a charging
station network requests the connection of 5 charging
stations with a unit power of 100 kW each. Thus, the
total nominal power of the new load is equivalent to a
medium-sized industry or hospital, 500 kW or 625 kVA.
With this information, the entrepreneur will request access
to the distribution concessionaire that requires connection
and hosting capacity studies, including local demand and
feeder loading analysis. However, over the system expansion
planning horizon (generally 3, 5, or 10 years), EV-CI will
be expanded in a heterogeneous pattern, depending on the
growth of the EV fleet. This will increase the demand with
a pattern of behavior that is unknown and difficult to predict
using traditional methods. In this sense, another benefit of the
work about other proposals is the possibility of considering

the different stages of EV adoption and use, improving the
quality of the planner’s analyses.

To better highlight the X-Modeci application for planning
purposes, a sensitivity analysis was proposed involving the
demand factor calculation and the five charger models
considered in the case study (Table 1). The results are
presented in Fig. 14 (scenario 1) and Fig. 15 (scenario 2).
As detailed in Section IV-E, the demand factor is understood
as the ratio between the maximum demand and the total
installed load according to (18) [45]. The 50 kW charger
(in blue) was proven more suitable in both scenarios. With
this loader, there was a greater distribution of records with
a demand factor close to 0.38 and 0.40, therefore within the
ideal range (between 0.3 and 0.5) [46]. This result is justified
because this charger allows for lower installed power and
demand than the maximum demand at each charging point.

From an investment perspective, it is not economically
viable to design an EV-CI to cover the demand for all EVs
simultaneously. Charging tends to occur dispersed at different
times of the day. Thus, the hourly distribution of the load
contributes to reducing peak demand, reducing the initial
investment cost. Furthermore, connecting a high power load
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FIGURE 15. Sensitivity analysis: histogram of each charger’s demand factor frequency distribution - scenario 2 (65%)).

to the distribution system may often require reinforcement
work. In this sense, the better planned and used the structure,
the lower the risk of system overload.

The X-Modeci was compared with the Brazilian reality,
the country where the case study was prepared. Considering
the most recent compiled data available [1], [26], [47],
in 2022, the EV fleet was 40 thousand units, and the national
EV-CI contained 1200 public charging points. Thus, the
average proportion can be estimated as 1/33 (1 charging point
for every 33 EVs). An established premise is that existing
infrastructure is capable of satisfactorily meeting demand.
The results obtained by the proposal reached a proportion
of 1/36 in both scenarios analyzed. The X-Modeci brought a
10% gain in utilization, guaranteeing the supply of demand
across the entire fleet and in compliance with the levels
determined in the load curve and indicators (Section V-F).
In other words, the hypothesis test shows that fewer chargers
would need to be installed to meet the same demand.

VI. CONCLUSION
The present work presented an Extensive Mehod for Esti-
mating Demand in Charging Infrastructures (X-Modeci) that
aims to mitigate impacts related to uncertainties regarding
the dynamism of growth in EV penetration and charging
infrastructure. The method provides inputs for distribution
companies to complement their analyses in the expansion
planning stages or cases of requests for access to the electrical
grid. The spatial database provided by X-Modeci can be
integrated with power grid analysis tools, urban planning,
land use mapping, topography, and others.

Significant differences exist in the trip distribution char-
acteristics of EV drivers due to range anxiety and adopters’
heterogeneous locations. From this perspective, trip-starting
locations affect behavior, traffic dynamics, and, ultimately,
the parameters of electrical demand.

Large volumes of traffic were observed in the morning
and evening; however, significant loading occurred in the late

afternoon and early evening, between 5:00 and 7:00 PM. The
factors analyzed indicated a considerable simultaneous level,
confirming a high concentration of EVs to be charged at the
end of the day.

A sensitivity analysis compared five chargers models.
The 50 kW nominal power model showed a more excellent
distribution of records with a demand factor close to 0.38 and
0.40, therefore within the ideal range (between 0.3 and 0.5)
[46]. Furthermore, X-Modeci brought a usage gain of 10%,
compared to the standards for meeting charging demand of
the current reality observed in Brazil (the study region).
Demand for the entire fleet was met, taking into account
maximum demand levels and load curves.
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