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ABSTRACT With the rapid growth of the mobile computing techniques, a wide variety of mobile edge
computing (MEC) applications have emerged recently, aiming to provide computationally intensive and
delay-sensitive network services. Through MEC, various complex tasks of mobile devices can be offloaded
to the edge of network system for execution by edge servers, which greatly reduces the local computing
burden. However, how to effectively allocate computational and communication resources in edge-cloud
remains a challenging task, especially when multiple mobile users and edge servers are involved. In this
paper, we propose a decomposition-based multi-objective optimization algorithm based on estimation-of-
distribution models (MOEA/D-EoD) to deal with the task offloading and resource allocation problem in
MEC. Especially, considering the features of multi-user and multi-server cloud-edge-end collaboration
wireless MEC system, we construct a joint optimization model of task offloading and resource allocation,
where limited communication and computational resource constraints are considered. To deal with the
optimization model, we design an efficient decomposition-based algorithm, which incorporates two novel
estimation-of-distribution models to deal with discrete and continuous decision variables of the problem.
Experimental results obtained from benchmark test suites DTLZ and ZDT demonstrate that the proposed
method exhibits significantly superior performance compared to other comparative algorithms. The proposed
model and algorithm are simulated and tested on different test instances, and experimental results show the
effectiveness and efficiency of our proposed method.

INDEX TERMS Mobile edge computing, task offloading, resource allocation, multi-objective optimization,
estimation-of-distribution model.

I. INTRODUCTION
The swift advancement of mobile computing technologies,
such as 5G networks [1], [2], a wide variety of mobile
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devices, including smartphones, mobile robots and wear-
able devices [2], have emerged explosively, which also leads
to a variety of computationally expensive intelligent appli-
cations [3], [4], such as natural language processing [5],
virtual reality [6], big data analytic [7], face recognition [8],
and ultra-high-definition video [9]. Such applications usually
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involve stringent latency and computation requirements, but
their mobile devices often grapple with resource constraints,
characterized by limited processing power andmodest battery
capacity. Thus, it is rather difficult to deal with these com-
putationally expensive and latency-sensitive tasks. Moreover,
the explosive demand for massive data computing poses a
big challenge to traditional cloud computing paradigm. The
concentricity of cloud resources would incur many serious
issues, such as high communication latency, network insta-
bility and low bandwidth, which is contrary to the essential
requirements of emerging applications, and then greatly hin-
ders the development of these applications. A natural way
is to tackle the complex tasks where data is generated, i.e.,
sinking the capabilities of cloud computing to the network
edge side where massive data is generated.

Accordingly, MEC [10] is developed based on the above
basis, which offloads the computation-intensive and latency-
sensitive tasks from mobile users burdened by resource
constraints to nearby edge servers with rich resources. As a
complement to cloud computing, MEC focuses on the intel-
ligence at the network edge, which is able to play a key
role in small-scale, real-time intelligent analytic. The core
concept of MEC is to place a server at the near end of the base
station connected to the backhaul network, which enables the
efficient processing of data generated at the network edge,
obviating the necessity for its transmission to the central
cloud infrastructure, which substantially diminishes trans-
mission latency and alleviates the demands on the backhaul
network [11]. In fact, theMEC server is owned by the network
operator, and mobile users need to pay a fee for processing
tasks with the help of edge servers [12].
Through the offloading of latency-sensitive and compute-

intensive tasks from local devices to nearby edge servers,
MEC is able to reduce the latency and energy consump-
tion and increase the service quality of service. However in
fact, the process of the task offloading still relies on reli-
able wireless communication between mobile devices and
edge servers, which generates additional energy consumption
and latency, and then results in undesirable network conges-
tion and even paralysis during data transmission. Moreover,
compared to cloud servers, edge servers suffers from the
limitation of computing resources in dealing with various
compute-intensive tasks at the same time [13], which also
limits the development of MEC. Therefore, the efficient
offloading of computing tasks and the efficient allocation
of execution resources have become the key to ensure the
effectiveness and efficiency of the operations in the MEC
system [14].
Currently, joint decision-making of task offloading and

resource allocation within multi-user MEC system with con-
sideration of interference have not been well studied [15],
[16], where multiple optimization targets need to be con-
sidered simultaneously [17], [18], [19], [20], [21], [22].
In response to the imperative of efficiently allocating the
limited computing and communication resources in the MEC
system, a joint task offloading and resource allocation model

for multi-user and multi-server MEC networks is proposed,
which can improve network performance and bring better
service experience to mobile users. The primary goal of
the model is to minimize energy consumption, latency and
cost of MEC. More specifically, the proposed model consists
of the following parts: (i) Where should tasks of mobile
devices be performed? That is, how to determine whether
the decision mobile users’ tasks are placed locally or on
the edge cloud, and on which edge servers; (ii) If the task
decides to offload, how is the uplink transmission power dur-
ing the offloading process determined? How are the wireless
channels required for transmission allocated? (iii) If the task
decides to offload, how can the edge cloud rationally allocate
compute resources?

Existing research has not adequately investigated the task
offloading and resource allocation problem in multi-user
MEC systems. To enhance network performance and pro-
vide a superior service experience for mobile users, a joint
optimization model that simultaneously considers energy
consumption, delay and cost is required. To deal with the
joint optimization model of task offloading and resource
allocation, we design an efficient decomposition-based
algorithm based on dual estimation-of-distribution (EoD)
models, termed as MOEA/D-EoD. The proposed model and
algorithm aim to address the optimization problem under
limited communication and computing resource constraints,
while handling both discrete and continuous decision vari-
ables to find representative solutions on the Pareto front of
the problem. Then, to deal with such mixed-variable joint
optimization model, an EoD model combining histogram
estimation and kernel density estimation algorithms is pro-
posed for sampling points on continuous variables to deal
with continuous decision variables, while an EoD model is
designed to sample points on the discrete one, aiming to deal
with the discrete decision variables. These two models are
incorporated into a decomposition-based framework to solve
each subproblem of the joint optimization model. In this way,
representative solutions on the Pareto front of the problem can
be obtained. Through simulations and testing of different test
instances, the experimental results demonstrate significant
improvements in both effectiveness and efficiency of the
proposed method.

Our contributions are as follows.

• A joint optimization model of task offloading and
resource allocation for multi-user and multi-server
MEC system, including task placement decisions,
transmission power control, communication resource
allocation, and computational resource allocation,
is proposed.

• An effective scheme is proposed to minimize the
3-objective optimization problem, which include the
energy consumption, latency and price cost, while
ensuring excellent resource utilization and flexibility
of the MEC system. More specifically, we design an
efficient MOEA/D-EoD algorithm.
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• Comparative experiments conducted between our pro-
posed algorithm and other existing algorithms have
consistently revealed that our task offloading and
resource allocation strategy leads to a substantial
enhancement in performance.

II. RELATED WORK
To address the limitations about constrained computing
power and battery capacity in mobile devices, mobile cloud
computing (MCC) systems are first proposed and devel-
oped [23]. Accordingly, MCC can alleviate the two challeng-
ing issues encountered by resource-poor mobile devices, i.e.,
two major mobile computing deficiencies of resource-poor
mobile devices and battery limitations. Mobile devices can
transfer compute-intensive tasks over the network to run in
remote cloud data centers to relieve the pressure locally [24].
Ravi et al [25] introduces a multi-criteria decision offload-
ing method and a fuzzy switching strategy to diminish the
local energy consumption of mobile devices and to improve
the service availability. Ravi et al. [26] focus on the addi-
tional energy consumption generated during communication
by proposing a new framework to diminish the communica-
tion overhead. Sanaei et al. [27] proposed a service-based
arbitration multilayer infrastructure to minimize offloading
latency. Chen et al. [28] simultaneously considered energy
consumption and maximum delay to model the problem as
a mixed-integer problem and put forth an efficient scheme to
solve it. However, cloud data centers are frequently situated at
a considerable distance frommobile devices, and the network
conditions can have a significant impact on computing tasks.
The latency that accompanies the data transfer process may
result in latency-sensitive tasks not being completed success-
fully, or the transfer energy consumption may be too high for
the mobile device’s battery storage to support.

To address the shortcomings of MCC, many researchers
have started to study MEC systems with servers located
near mobile devices. MEC servers typically represent com-
pact data centers deployed by cloud operators and telecom
operators. Multi-user MEC systems are mainly classified as
centralized and distributed. For centralized MEC systems,
Chang et al. [29] devised a threshold-based optimal resource
allocation strategy aimed at minimizing the local energy con-
sumption to extend the device battery life. Reference [30]
provides optimal resource allocation schemes to minimize
system latency for three models: local, edge cloud and partial
compression offloading, respectively. Liu et al. [31] jointly
considered the influence of transmission power control on
energy consumption and latency in the MEC system while
implementing a task offloading strategy and proposed an effi-
cient semi-distributed algorithm for solving it. For distributed
MEC systems, an iterative algorithm is developed in [32]
to minimize the overall user energy consumption based on
the continuous convex approximation technique. Both [33]
and [34] concentrate on the impact of energy usage and delay
in MEC systems to design offloading strategies.

Efficient and fair resource allocation to meet multi-
objective demands is a crucial challenge in cloud computing,
vehicular cloud computing and edge computing. Feng et al.
[35] formulated the resource allocation problem in cloud
computing as a multi-objective optimization problem con-
sidering overall task execution time, resource reservation,
and quality of service (QoS) for each task. They proposed
a Pareto-dominated particle swarm optimization algorithm
to search for the multi-objective optimal solution. In 2022,
Wei et al. [36] addressed the resource allocation problem
in vehicular cloud computing by proposing an improved
NSGA-II algorithm, effectively optimizing resource alloca-
tion schemes. In the same year, Apinaya Prethi [37] tackled
the resource management and task scheduling problem in
the edge layer by proposing a multi-objective Krill Herd
optimization algorithm. Their approach achieved optimized
resource allocation and task scheduling during VM migra-
tion, enhancing the lifecycle of fog-edge networks. In 2021,
Xue et al. [38] proposed a joint optimization strategy for
task offloading and resource allocation to maximize system
processing capacity. They decomposed the problem into three
subproblems: resource allocation, task allocation and sub-
channel allocation. In 2024, Umer et al. [39] proposed a
multi-objective task-aware offloading and scheduling frame-
work (MTOSF) for the IoT logistics domain. The framework
prioritizes delay-sensitive tasks and compute-intensive tasks,
employing a priority-based offloader for classification.

Multi-objective optimization algorithm has emerged as a
prominent research area in recent years [40], [41], [42], [43],
[44], aiming to simultaneously satisfy multiple performance
metrics such as latency, throughput and energy consump-
tion. To tackle the intricate resource allocation challenges,
researchers have employed a diverse range of advanced
multi-objective optimization algorithms, seeking optimal or
near-optimal resource allocation schemes while considering
multiple objectives. Existing approaches for task offload-
ing and resource allocation with discrete and continuous
mixed variables exhibit limitations. To address this challenge,
we propose an EoD-based MOEA/D algorithm that effec-
tively tackles the optimization problem involving discrete
and continuous mixed variables. In summary, task offloading
and resource allocation domain continues to face numerous
challenges and opportunities. As technology advances and
application demands grow, research in this field will continue
to deepen, providing more efficient and reliable solutions for
practical cloud computing applications.

III. MODELS
As illustrated in Fig. 1, the typical MEC system comprises
a single macro base station (MBS), M wireless small base
stations (SBSs) and N mobile users, where each user ui has a
pending computational task Ti that is computational intensive
or delay-sensitive. The set of users can be designated as
U = {u1, u2, · · · , uN }. The computational task Ti is com-
posed of three variables, denoted by Ti = (si, ci, ti), i ∈ N ,
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FIGURE 1. Depiction of the multi-user MEC system in a multi-channel
wireless environment.

where si represents the offloaded data size of this task Ti, ci
and ti represent the cumulative count of the required CPU
cycles and the maximum permissible delay in accomplishing
the task, respectively. Each BS including MBS and SBSs
is associated with an edge server that can be used to deal
with the computational tasks offloaded by the mobile users.
Let BS = {bs0, bs1, bs2, · · · , bsN } denote the set of BSs,
where bs0 represents the MBS. In addition, MBS covers all
the SBSs and it is connected to the cloud server via the core
network. Since edge servers are closer to mobile devices, they
can well tackle the delay-sensitive tasks of mobile users at
the same time greatly decrease the total delay. Cloud servers
have abundant computing power and storage space and can
serve more mobile devices than edge servers, and thus they
can better handle computational intensive and delay-tolerant
tasks and highly reduce total energy consumption.

The communication state, computation state and the price
cost are the three key factors to affect the offloading and
resource allocation decisions. Thus, these three models are
presented in detail separately. The important parameters are
listed in Table 1.

A. COMMUNICATION MODEL
During the wireless transmission in the MEC system, the
same base station can access multiple mobile devices, which
may lead to transmission interference and decrease the reli-
ability of the system [45]. To mitigate mutual interference
during the transmission process within the same base sta-
tion, the wireless channel bandwidth B used for transmission
can be equally divided in to a set of α sub-channels, with
each sub-channel’s size denoted as W = B/α. In order to
maintain the orthogonality of wireless transmission across
mobile users within the same BS, an orthogonal sub-channel
is assigned to each mobile user.

Based on the above mentioned, each SBS can serve up to
α mobile users simultaneously. Each accessed mobile device
uses a separate wireless sub-channel. In the MEC system,

TABLE 1. Parameters.

mobile users can decide to handle their tasks locally or offload
onto a nearby edge server (or cloud server) for execution
via the MBS. Let X = {xn, n ∈ U} denote the offloading
decision vector and xn = {0, 1, 2} represent the offloaded
decision variable of user un. If the mobile user un chooses
to offload to edge server through nearby SBS or MBS, that
is to say xn = 1, the sub-channel used for transmission will
be assigned to un via the base station bsm, where the mobile
user selects the destination BS for offloading. For simplicity,
the target base station bsm selected by the mobile user un can
also be denoted as ηmn . Thus, we have the wireless channels
allocation profile 3 = {ηmn , n ∈ U ,m ∈ BS} which satisfies∑N

n=1 ηmn ≤ α, ∀m = 0, 1, . . . ,M . Here, xn = 2 means that
the mobile user chooses to offload to cloud server for execu-
tion via the MBS. xn = 0 means that the mobile user chooses
to process the task locally.

1) LOCAL COMPUTING
If xn = 0, it means that the mobile user un decides
to perform the computational task locally, and the com-
munication resources are not allocated to this mobile user
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un. Accordingly, both transmission delay and transmission
energy consumption of this mobile user un are 0.

2) MOBILE EDGE COMPUTING
For mobile users that offload tasks to MBS, which satisfy
η0n = 1, the noise power only involves the background
noise power, rather than the inter-cell interference power.
For mobile users that offload tasks to SBSs, although those
users connected to the same SBS through different orthogonal
sub-channels can effectively reduce the mutual interference
within the base station, they are still affected by the inter-
ference among different base stations. Let pn,m denote the
uplink transmission power of user un that offloads tasks to the
edge server. Then, the user uplink data rate ruln,m is defined as
follows

ruln,m

=



B
α

× log2

(
1 +

pn,m × hn,m
σ 2

)
m = 0

B
α

× log2

1 +
pn,m × hn,m

σ 2 +
∑

j∈BS\{m}

∑
i∈U xi × pi,j × hi,j


m = 1, 2, . . . ,M

(1)

where σ 2 denotes the background noise power,
∑

j∈BS\{m}∑
i∈U xipi,jhi,j denotes the inter-cell interference power, hn,m

represents the channel gain between the user un and the
destination base station bsm, which considers the effects of
path loss, antenna gain and shadowing.

Subsequently, the transmission delay of mobile user un
during the offloading process is formulated as

t tn =
sn
ruln,m

(2)

Similarly, we can further gain the access to the transmission
energy consumption of user un by

εtn =
pn,m × sn
ruln,m

(3)

3) CLOUD COMPUTING
The transmission delay of mobile user un, who offloads tasks
to the cloud server, is the aggregate of the delay associated
with offloading to MBS and the delay of transmission in the
core network. It is formulated as

t tn,Cloud =
sn
ruln,0

+
sn

rn,core
(4)

where rn,core is the user uplink data rate in the core network.
In our work, the transmission energy consumption of the

core network is ignored. Then the transmission energy con-
sumption εtn,Cloud of the user un offloading tasks to the cloud
server can be defined as

εtn,Cloud =
pn,0 × sn
ruln,0

(5)

In real scenarios, the distance from the mobile users to
cloud server is usually very large, that is, rn,core ≪ ruln,m,
so t tn,Cloud ≫ t tn.
Since the computation result size of the user task is typ-

ically considerably smaller than the amount of data at the
time of offloading, we ignore the transmission delay of the
returned processing result. It is important to highlight that
our algorithm can still be used for offloading and resource
allocation when the returned latency cannot be omitted.

B. COMPUTATION MODEL
In the MEC system, the mobile users have the discretion to
determine whether to carry out their tasks locally or offload
them to the edge server, which is influenced by local hardware
capabilities, the prevailing network conditions, and the cost
of renting an edge server. This section delves into a detailed
examination of the execution latency and energy consumption
entailed in task execution.

1) LOCAL COMPUTING
When xn = 0, it implies that the mobile user un decides to
perform the computational task locally, and accordingly the
systemmust take into account both the time delay of complet-
ing the task and the energy consumed for the local processing.
We assume that the local processing power of mobile devices,
denoted by FL = {f L1 , f L2 , · · · , f LN }, is differentiated. Let
f Ln ∈ FL denote the computation capability of user un. Then,
the local execution time for computation task Tn is defined as
follows

texe,Ln =
cn
f Ln

(6)

In MEC system, the CPU clock frequency is about linearly
related to the voltage supply under low voltage limits [23],
[27]. Thus, the energy consumption associated with a CPU
cycle can be symbolized as κ(f Ln )

2, where κ reflects a coef-
ficient linked to the hardware architecture. As a result, The
following formula may be used to calculate the energy used
locally while computation job Tn is being executed

εexe,Ln = κ(f Ln )
2
× cn (7)

2) MOBILE EDGE COMPUTING
In MEC system, there is variability in the computing power
of different edge servers. Let FC = {f C0 , f C1 , f C2 , · · · , f CM }

denote the computing power provided by the edge cloud to
mobile users for processing tasks. The edge cloud execu-
tion delay and energy consumption can be calculated by,
respectively:

texe,Cn =
cn

λmn × f Cm
(8)

and

εCn =
pCn,m × cn
λmn × f Cm

(9)
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where λmn denotes the proportion of computing resources
allocated to mobile device un via the offload destination base

station bsm, which satisfies
N∑
n=1

λmn ≤ 1, ∀m = 0, 1, . . . ,M ,

and pCn,m represents the energy consumption per cycle of the
edge server of SBS bsm to process task of mobile users un.

3) CLOUD COMPUTING
When xn=2, the cloud execution delay texe,Cloudn can be cal-
culated by

texe,Cloudn =
cn

f CCloud
(10)

where f CCloud is the computing power provided by the cloud
to mobile users for processing tasks, which usually satisfies
f CCloud ≫ f Cm ≫ f Ln .
In theMEC system, our primary focus centers on assessing

the energy depletion of mobile devices and edge servers.
At this juncture, we do not calculate the energy consumption
entailed in processing tasks by the cloud server; this aspect
will be explored in our future research endeavors.

C. COST MODEL
Edge servers and cloud servers are not free to mobile devices,
while users will need to pay a fee to the edge cloud provider
or cloud provider when they decide to offload. We make the
assumption that the cost per unit of the edge cloud server
owned by the base station bsm is dm and the per price of
cloud server is 2 × dm. This actual cost r(xn) is related to
the computing resources allocated by the edge server bsm or
cloud server to that mobile user un, as shown below:

r(xn) =


0 xn = 0
λmn × dm xn = 1
2 × dm xn = 2

(11)

IV. PROBLEM FORMULATION
We present a joint optimization scheme of MEC that
consists of task offloading, transmission power control,
and resource allocation, where the resource allocation
involves both communication resource allocation and com-
putation resource allocation. We commence by formulat-
ing a multi-objective optimization model, accompanied
by a set of constraints. Following this, we develop a
multi-objective optimization algorithm designed to resolve
this
problem.

A. JOINT OPTIMIZATION MODEL
In real MEC system, it is necessary to consider a set of con-
straints, such as the limited communication and computing
resources at the edge side, and the limited battery capacity
and computing power at the user side in the MEC system.
Accordingly, we in this work consider the following three
issues:

(1) How to Offload Tasks. Our task involves ascertain-
ing whether the tasks of mobile users should undergo local
execution or be offloaded to a nearby edge server or the
cloud server. A discrete decision problem might be employed
to describe this situation. In addition, it is also needed
to identify the destination base station for the offloaded
task.
(2) How to Control Transmission Power. When a mobile

user opts to offload its tasks, we are faced with the task of
establishing how the mobile device determines the suitable
transmission power during offloading.
(3) How to Allocate Resources. For the mobile user decid-

ing to offload its tasks, we need to establish the procedures by
which the destination base station allocates communication
resources and the corresponding edge cloud server allocates
computation resources.
The actual total energy consumption e(xn) of mobile user

un consists of energy consumption of transmission and com-
putation, which can be expressed as

e(xn) =


εexe,Ln xn = 0
εtn + εCn xn = 1
εtn,Cloud xn = 2

(12)

Similarly, the actual total delay t(xn) of mobile user un
includes transmission delay of mobile user un and computing
delay, which can be defined as

t(xn) =


texe,Ln xn = 0
t tn + texe,Cn xn = 1
t tn,Cloud + texe,Cloudn xn = 2

(13)

The optimization problem in MEC system is multi-
objective optimization problem, characterized by multiple
objectives. These objectives encompass minimizing mobile
device energy consumption, task delay, and the total cost
while adhering to defined constraints, which is defined as
follows

minimize E =

N∑
i=1

e(xi) (14a)

minimize T =

N∑
i=1

t(xi) (14b)

minimize R =

N∑
i=1

r(xi) (14c)

subject to xi ∈ {0, 1, 2}, ∀i = 1, . . . ,N . (14d)

0 ≤ pi,j ≤ pmax
i , ∀i = 1, . . . ,N ,

∀j = 1, . . . ,M . (14e)

pi,j = 0, ∀xi = 0. (14f)

Di ≤ ti, ∀i = 1, . . . ,N . (14g)
N∑
i=1

λ
j
i ≤ 1, ∀j = 1, . . . ,M . (14h)
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FIGURE 2. Framework of MOEA/D-EoD.

N∑
i=1

η
j
i ≤ α, ∀j = 1, . . . ,M . (14i)

N∑
i=1

η0i +

N∑
i=1

xi ≤ α, ∀(η0i = 1 ∨ xi = 2).

(14j)

The first objective function (Eq. 14a) aims to minimize
the total energy consumption of all the mobile devices. The
second objective function (Eq. 14b) aims to minimize the
total delay of all the tasks, including the transmission delay
and computing delay. Similar to the above, the third objective
function (Eq. 14c) is to minimize the total cost of all mobile
users.

In the above objective functions, there are a set of con-
straints. The constraint Eq. 14d shows that each task can
either be executed locally or offloaded onto any of the edge
servers or cloud server. The two constraints Eq. 14e and
Eq. 14f offer the upper and lower limits of the transmitted
power during the task offloading, where pmax

i denotes the
maximum acceptable transmission power for mobile user un.
No transmission power is required when the task is decided
to be executed locally. The constraint Eq. 14g ensures that the
completion time delay for computation task Tn cannot exceed
its given upper limit tn. The constraint Eq. 14h indicates that
any edge server cannot allocate more computing resources
to the associated mobile devices than its computation capac-
ity. The constraint Eq. 14i implies that each SBS can only
serve the maximum of α mobile devices. Then, the constraint
Eq. 14j means that the MBS and cloud server can serve the
maximum of α mobile devices together.
Mathematically, the above optimization problem is amixed

integer nonlinear program, which is difficult to solve due
to its exponential complexity. To deal with this complex
problem, we convert it into a hybrid coding problem, and use
the multi-objective evolutionary optimization strategy [14]
to solve this joint optimization problem. With the con-
tinuous development and improvement of multi-objective
evolutionary optimization algorithms [10], these algorithms

FIGURE 3. Gene string by hybrid coding.

are also applied as a means of policy solving in mobile edge
computing.

B. ALGORITHM DESIGN
The problem studied is a multi-objective mixed-variable opti-
mization problem, and to address it, we develop an efficient
decomposition-based algorithm based on dual estimation-of-
distribution (EoD) models, termed as MOEA/D-EoD, which
uses MOEA/D as the basic algorithmic framework and com-
bines two novel EoD learning models as reproduction oper-
ators for generating offspring. Fig. 2 presents the framework
of MOEA/D-EoD. This algorithm employs a hybrid Individ-
ual generation strategy, utilizing both histogram estimation
and kernel density estimation models to learn discrete and
continuous variable knowledge, respectively. Subsequently,
it samples new individuals based on the acquired knowledge
and inputs them into MOEA/D for further evolution and
evaluation.

1) HYBRID CODING IMPLEMENTATION
The genes in MOEA/D-EoD represent the task offloading
strategy, the destination base station, the proportion of com-
putational resources allocated to the destination base station,
and the task transmission power, respectively. A complete
individual comprises four genes, collectively representing
a solution. Since the four decision variables are of diverse
types, we use mixed coding. First of all, due to the divi-
sion of each wireless channel into α sub-channels of equal
size, we denote the set of sub-channels of the target base
station bsm used for task transmission as SCm = {1, · · · , α},
and the set of sub-channels of all base stations is denoted
by SC = {SC1, SC2 · · · , SCM }. In order to simplify the
coding, we concurrently take into account the selection of
sub-channels during the task offloading process. Because the
mobile user’s offloading decision is a binary variable, for
encoding purposes, we consolidate the offloading decision
and channel selection into a integer representation, denoted
by xn = {0} ∪ SC , xn = 0 implies that the task is executed
locally. Next, we discuss the second coding segment. ηmn
represents the destination base station bsm selected by the
mobile user un when deciding to unload, and is the same as
the first coding segment, which is also an integer variable
in the range of {0, 1, · · · ,M}. Thirdly the computational
resource λmn allocated to the destination base station is a
continuous variable taking values in [0, 1]. Finally, the corre-
sponding transmission power variable pn,m is a floating point
variable in [0, pmax

n ]. The gene string for the hybrid encoding
comprises various types of variables, and its encoding is
illustrated in Fig. 3.
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2) FITNESS FUNCTIONS
The fitness functions are the criteria employed to assess the
quality of individuals within a population and are expressed
through formulas (14a), (14b), and (14c). The constraints are
delineated by (14e) through (14j).

3) OVERALL FRAMEWORK
The primary framework of MOEA/D-EoD is illustrated in
Algorithm 1. 1) Initialization: The initial step involves the ini-
tialization of Npop reference vectors (line 1 of Algorithm 1),
which are uniformly distributed. Here, Npop denotes the
size of the population. Subsequently, the neighborhood
of each subproblem is established by considering the T
neighbors associated with each reference vector (line 2 of
Algorithm 1). Following this, the indices of both continu-
ous and discrete decision variables are determined, guided
by the problem’s characteristics (line 3 of Algorithm 1).
Based on these indices, an initial population P of size
Npop is generated through random initialization (line 4 of
Algorithm 1). Subsequently, all individuals within popula-
tion P undergo evaluation via constraint functions. In cases
where the constraints are not met, appropriate remedies are
applied for constraint satisfaction. Following the constraint-
related adjustments, the ideal point z∗ is computed (line 5 of
Algorithm 1). 2) Reproduction: Following this step, the pro-
cess of reproduction ensues. Initially, for each subproblem,
we identify all individuals in the corresponding neighbor-
hood, referred to as archive. Subsequently, adhering to the
predefined number of bins, we proceed as follows: for con-
tinuous variables, we partition the bins through clustering
and then create the histogram model denoted as mc, along
with estimating the probability density function for the data
within each bin using kernel density estimation. For discrete
variables, we employ an incremental learning approach to
construct the histogram-based probabilistic model, denoted
asmd (Algorithm 1, lines 9-11). These models are influenced
by the individuals in the archive and the indices of both
continuous and discrete variables. Through sampling from
these probability models, a novel individual, denoted as xnew,
is generated (line 12 of Algorithm 1). Notably, in the case
of continuous variables of xnew, a bin k is determined by
a random number r . Subsequently, continuous variables are
generated in the interval [xj,k , xj,k+1] based on the estimated
probability density function. For a discrete variable, an avail-
able value d from {0, 1, · · · , xui } is chosen by a probability
that is produced randomly. Subsequently, xnew is subjected
to constraint-based evaluation, and if any constraints are
breached, remedial measures are implemented (line 13 of
Algorithm 1). This process concludes with the subsequent
updating of the ideal point z∗ (line 14 of Algorithm 1). 3)
Environmental selection: Utilizing the scalarization function
g∗ (such as Chebyshev, PBI, etc.), the individuals within the
present neighborhood, along with the newly generated indi-
vidual xnew, are transformed into scalar values. Subsequently,
a comparison is made between xnew and other individuals

Algorithm 1MOEA/D-EoD
Input:
Npop : Population size
Ngen : Number of iterations
T : Size of neighborhood
K : Size of clusters
Output:
P: Final population
1. Initializing Npop weight vectors (w1,w2, · · · ,wNpop );
2. Determine the set of neighbors B for each weight vector;
3. According to the coding strategy, the index of continuous

variables sc and the index of discrete variables sd are
obtained;
4. P = Population-Initialization (Npop, sc, sd );
5. z∗ = (z∗1, z

∗

2, · · · , z∗Nobj ), z
∗
i =

min(fi(x1), fi(x2), · · · , fi(xNpop ));
6. for each G = 1 to Ngen do
7. Normalize objective functions;
8. for each i = 1 to Npop do
9. Select the neighborhoods of the i-th individual,
named archive;

10. (mc, dc) = Continuous-Variable-Model
(archive, sc,K );
11. md = Dicrete-Variable-Model (archive, sd ,G);
12. xnew = Offspring-Generation (mc, dc,md , sc, sd );
13. If all constraints are not met, xnew is repaired;
14. Update z∗;
15. for each j ∈ B (i) do
16. if g∗(xnew|wj, z∗) < g∗(xj|wj, z∗)
17. xj = xnew;
18. end
19. end
20. end
21. end
22. return P

within the present neighborhood, and retain those individuals
who perform better (line 15-19 of Algorithm 1).

4) EOD MODELS
Our target is on optimizing a multi-objective mixed-variable
problem. Notably, EoD algorithm’s applicability remains
unaffected by the nature of decision variables. To accommo-
date diverse variable types, this paper introduces two novel
EoD operators. These operators serve the purpose of gener-
ating new individuals by conducting sampling for continuous
and discrete variables individually.

(1) Continuous variable model (CVM): The fundamental
concept behind CVM involves estimating the distribution
across the entire continuous variable space through the uti-
lization of marginal histograms derived from samples within
that continuous space. Initially, for every continuous variable
xi, a division intoK bins is executed. Each bin is characterized
by an interval, denoted as [xi,j, xi,j+1], where xi,j and xi,j+1
represent the lower and upper bounds of the interval. First
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determine the first bin and the last bin according to the
following formula:

xi,1 =
1
2

× (x li + xmin
i ) (15)

xi,K+2 =
1
2

× (xui + xmax
i ) (16)

where xmin
i and xmax

i are the smallest value and the largest
value of the continuous variable xi, respectively, and x li
and xui are the lower boundary and upper boundary of
the continuous variable xi. Regarding the intermediate
range [xi,2, xi,K+1], which is partitioned into K clusters
{Cluster1,Cluster2, · · · ,ClusterK } through K-Means clus-
tering, the j-th bin of the continuous variable xi is represented
as follows:

xi,j =
1
2
(max(Clusterj−1)

+ min(Clusterj)), j = 2, · · · ,K + 1 (17)

Subsequently, the count of points containedwithin each bin
is tallied. Given the potential existence of empty bins, and
to ensure comprehensive coverage of the entire search space,
such bins lacking points are assigned an exceedingly minute
count denoted as ϵ. The count of individuals within the j-th
bin of the continuous variable xi, denoted as Counti,j, is then
defined as follows:

Counti,j =

{
Counti,j, Counti,j > 1
1, Counti,j ≤ 1

(18)

Continuous variables are characterized through a model
reliant on the count of individuals within each bin. The height
of the j-th bin pertaining to the continuous variable xi can be
denoted as follows:

mci,j =
Counti,j

K+1∑
k=1

Counti,k

(19)

When constructing the histogram model for each interval
[xi,j, xi,j+1], and assuming that the set of points falling within
this interval is denoted as {x1i,j, x

2
i,j, · · · , xNini,j }, we apply the

kernel density estimation method to estimate the probability
density function for the data within that interval. In cases
where no points are present within the interval, we assume
that the data points within the interval follow a uniform distri-
bution. The resulting distribution function within an interval
is defined as follows:

dci,j (x) =


1

Nin × h

Nin∑
k=1

Kernel(
x − xki,j
h

), Nin > 0

Uniform(xi,j, xi,j+1), Nin = 0

(20)

where Nin represents the solutions’ amount within the current
interval, h is a parameter governing the smoothness of the
kernel function, and Kernel(·) denotes the selected kernel

Algorithm 2 Continuous-Variable-Model
Input:
P: Population
sc : Indices of continuous variables
K : Number of clusters
Output:
mc : Set of continuous probability models
dc : Set of probability density functions
1. for each i ∈ sc do
2. Determine xi,1, xi,K+2 using Eq. (15) and Eq. (16);
3. {Cluster1,Cluster2, · · · ,ClusterK } = KMeans (P);
4. Employing Eq. (17) to calculate the boundary
[xi,j, xi,j+1];
5. for each k ∈ {2, · · · ,K + 1} do
6. Employing Eq. (18) to get the number of individ-
uals

in k-th bin;
7. Employing Eq. (19) to update the probability
model mc;
8. Employing Eq. (20) to estimate the probability
density

function dc of each interval;
9. end
10. end
11. return mc, dc

function. In this study, we opt for theGaussian kernel function
GKernel(·), which is defined as follows:

GKernel(x) = exp(−
x2

2 × h2
) (21)

where h is defined as:

h =

(
4 × std5(x1i,j, x

2
i,j, · · · , xni,j)

3 × n

) 1
5

(22)

where std(·) is the function for computing the standard devi-
ation. The pseudocode of the CVM is shown in Algorithm 2.

(2) Discrete variable model (DVM): To facilitate sampling
within the discrete space, this paper employs an incremental
learning approach for constructing models pertaining to dis-
crete variables. This approach integrates both historical and
current information. First, define the height of the j-th bin of
the discrete variable xi:

mdi,j =
WCounti,j

xui∑
k=1

WCounti,k

, j ∈ {0, 1, · · · , xui } (23)

where WCounti,j represents the weighted count of solutions
whose discrete variable xi is equal to j. Subsequently, the
Narchive individuals in archive are arranged in ascending order
through a sorting technique, such as non-dominated sorting.
The individual positioned at rank r will then contribute to an
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Algorithm 3 Discrete-Variable-Model
Input:
P: Population
sd : Indices of discrete variables
G: Number of current generations
Output:
md : Set of discrete probability models
1. for each i ∈ sd do
2. for each j ∈ {0, 1, · · · , xui } do
3. Determine the individuals whose xi equals to j;
4. Employing Eq. (22) to calculate the weighted
count;
5. Employing Eq. (23) to update the probability
model;
6. end
7. end
8. return md ;

increment in the height of the j-th bin to which it is affiliated:

1mdr,j =
Narchive − r + 1
Narchive∑
k=1

Narchive−k+1
Narchive

(24)

Then WCounti,j and 1mdr,j are related as follows:

WCounti,j =

Narchive∑
r=1

1mdr,j × δi,r,j (25)

when xr = j, δi,k,j = 1; otherwise, δi,k,j = ϵ, which is a
small value. Following this, the probability model undergoes
an incremental update as follows:

mdi,j (G) = (1 −
G
Ngen

) × mdi,j(G− 1) +
G
Ngen

×
WCounti,j

xui∑
k=1

WCounti,k

(26)

where G and Ngen are the current and maximum number of
generations, respectively. The pseudocode of the DVM is
shown in Algorithm 3.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of population evolution based
on the MOEA/D algorithm is O(MN ) where M denotes the
number of objective functions and N represents the pop-
ulation size. The computational complexity of associating
solutions with reference vectors within the population is
O(MKN ), with K being the dimension of the reference vec-
tors. The computational complexity of the EoD model is
O(N 2D), where D signifies the dimension of the decision
vector. In summary, the overall computational complexity of
the proposed MOEA/D-EoD algorithm is O(N 2D).

Algorithm 4 Offspring-Generation
Input:
mc : Set of continuous probability models
dc : Set of probability density functions
md : Set of discrete probability models
sc : Indices of continuous variables
sd : Indices of discrete variables
Output:
xnew : new individual
1. for each i ∈ sd do
2. r = Uniform(0,1);
3. According to md and, sampling a value d from
{0, 1, · · · , xui,j};
4. xnew,i = d ;
5. end
6. for each i ∈ sc do
7. r = Uniform(0,1);
8. According to mc and r, selecting a bin k;
9. According to dci,k (x), sampling a value c;
10. xnew,i = c;
11. end
12. return xnew;

TABLE 2. Parameters.

V. SIMULATION STUDY
A. EXPERIMENTAL RESULTS ON BENCHMARKS
First, we conduct comparative experiments on the proposed
MOEA/D-EoD algorithm using benchmark test functions.
The algorithms compared include NSGA-III [46], ANSGA-
III [47], MOEAD [48], MOEADAWA [49], and RVEA [50].
The benchmark test sets include DTLZ and ZDT, with the
objective functions and decision variable dimensions used
in the tests shown in Table 2. In addition, the population
size for all algorithms was uniformly set to 100, and the
maximum number of function evaluations was 10,000. Each
algorithm is independently run 30 times on each instance,
and the performance metric used is the inverted generational
distance (IGD) [51].

We conduct comparison experiments to validate the perfor-
mance of the proposed MOEA/D-EoD algorithm in solving
multi-objective optimization problems on the DTLZ and
ZDT benchmark test sets. Table 3 presents the IGD results
corresponding to the Pareto fronts obtained from 30 runs
of six algorithms, with the best results highlighted in
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TABLE 3. Performance results on the DTLZ and ZDT benchmark sets.

bold. Statistical analysis was performed using the Wilcoxon
rank-sum test with a significance level of 0.05. The symbols
‘‘+’’, ‘‘−’’ and ‘‘=’’ indicate that the performance of the
comparison algorithm is significantly better than, signifi-
cantly worse than or not significantly different from that of
the proposed MOEA/D-EoD algorithm, respectively.

Based on the experimental results shown in Table 3,
it is evident that the decomposition-based MOEA/D-
EoD algorithm achieves the best IGD mean values on
more than half of the benchmark test functions com-
pared to other decomposition-based algorithms, namely
MOEA/D, MOEADAWA, and RVEA. When compared
with all algorithms, MOEA/D-EoD ranks first on 6 out
of the 12 benchmark test functions. These results demon-
strate that MOEA/D-EoD exhibits superior optimization
performance compared to NSGA-III, ANSGA-III, MOEAD,
MOEADAWA and RVEA.

Fig. 4 illustrates the Pareto front distributions of var-
ious algorithms on the DTLZ and ZDT benchmark test
sets. The analysis indicates that, compared to other algo-
rithms, MOEA/D-EoD achieves convergence close to the
true Pareto front in two-objective optimization problems,
with solutions widely distributed across the feasible solu-
tion space. In three-objective optimization problems, while
other algorithms struggle to converge effectively, MOEA/D-
EoD enables solutions to be evenly distributed along the true
Pareto front. This demonstrates that the solution set obtained
by MOEA/D-EoD is very uniformly distributed, indicating
that the proposed estimation distribution model not only
maintains population diversity but also adapts to different
Pareto fronts during the optimization process.

B. SENSITIVITY ANALYSIS
K-means clustering, an integral component of the EoDmodel,
exerts a significant impact on the algorithm’s optimization

TABLE 4. Sensitivity analysis of K.

performance. The setting of the K value directly influ-
ences both population diversity and algorithm convergence.
To investigate the impact of K value on algorithm perfor-
mance, we conducted comparative experiments on the DTLZ
and ZDT test suites while maintaining other parameters con-
stant. As illustrated in Table 4, the MOEA/D-EoD algorithm
achieved the best performance on both test suites when K
was set to 10, indicating that the algorithm’s optimization
performance is maximized at K = 10.

C. SIMULATION DESIGN
Next, we apply the proposed MOEA/D-EoD algorithm to a
real-world scenario to address task offloading and resource
allocation issues in MEC systems, thereby further validating
the effectiveness of the proposed method. We assume that the
wireless base station has a coverage of 100 meters, which is
similar with [23], [25]. Then, we express the uplink channel
gain between the mobile device un and its connected base
station bsm as follows: hn,m = L−β

n,m, where β denote the
path loss factor. Due to the variability in computing power
across mobile devices, FL is assigned from the set [0.5, 1.0]
GHz. Likewise, the computational resources allocated from
edge servers FC are limited to the range of [5], [10] GHz.
Cost for mobile users to perform tasks with edge servers
sets within [1], [5]. Table 5 lists the additional experimental
variables [52].
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FIGURE 4. Pareto front on the DTLZ and ZDT benchmark sets.

TABLE 5. Parameters.

D. COMPARISON WITH OTHER MECHANISMS
The comparison involves evaluating MOEA/D-EoD against
three computation offloading strategies, as follows:

(1) Random Offloading Scheme (ROS): Mobile users
decide whether its computational task is to be executed
locally or on the nearby edge server in a random way. Sim-
ilarly, if mobile users decide to unload, the connected base
stations are assigned orthogonal sub-channels for communi-
cation by a random process. We use this scenario to evaluate
the offloading decision in the MOEA/D-EoD algorithm and
the effect of the assigned wireless sub-channels.

(2) Fixed Transmission Power Scheme (FTPS): Mobile
users are offloaded using the same offloading scheme as
MOEA/D-EoD, however, all users who decide to perform

offloading use a fixed transmission power. We employ this
scenario to assess the effectiveness of the transmission power
control in the MOEA/D-EoD algorithm.

(3) Fixed Computing Resource Scheme (FCRS): Mobile
users are offloaded using the same offloading scheme as
MOEA/D-EoD, but these edge servers allocate a fixed
amount of computational resources to each user. We employ
this scenario to assess the impact of the MOEA/D-EoD
algorithm on the allocation of computational resources within
edge servers.

E. PERFORMANCE EVALUATION
We focus on three main metrics in the comprehensive per-
formance investigation: (i) the total energy consumption of
mobile devices; (ii) the total task delay of tasks; (iii) the
total cost of mobile users. That is, the three objectives we
established.

1) IMPACT OF DEVICE AMOUNT ON SYSTEM EFFICIENCY
First of all, we consider this MEC scenario in which the
mobile devices’ amount varies from 5 to 50, with a constant
data size of 5MB per task. The comparative results to the total
energy consumption, the total task delay and the total cost are
depicted in Fig. 5, 6 and 7, respectively.

As seen in Fig. 5 and 6, MOEA/D-EoD shows a clear
advantage over ROS, FTPS and FCRS. When the mobile
users’ amount is relatively small, all four mechanisms remain
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FIGURE 5. Effect of device amount on the total energy consumption.

low in terms of energy consumption and task latency. How-
ever, when the mobile users’ amount grows to 35, the
remaining three strategies exhibit a notable upsurge in energy
consumption and latency. This is because the increasing
mobile users are competing for the limited edge cloud
resources, and in order to be able to successfully offload tasks
to nearby base stations, the mobile users have to expand their
transmission power asmuch as possible, but this will intensify
the mutual interference in the transmission process and even
lead to communication congestion. The ROS performs the
worst because the random offloading approach does not have
a dynamic adjustment mechanism. Similarly, although FTPS
and FCRS use the same offloading scheme as MOEA/D-
EoD, both of them either fix the transmission power or the
computational power allocated to the server during offload-
ing, which cannot be adjusted to the actual situation and
is less effective than our MOEA/D-EoD. When the users’
amount increases to 50, the whole MEC system is at satu-
ration because there are only 5 wireless base stations in the
system and each base station can accept up to 10 users. At this
point, energy consumption and delay are at their maximum.
In Fig. 7, as the mobile users’ amount increases, tasks in
mounting numbers are offloaded to the edge for execution,
and the total cost rises. As ROS randomly determines whether
to offload, it results in the highest total cost. Since FTPS and
MOEA/D-EoD use the same offloading strategy, the total cost
is the same for both. From Eq. (7), we can learn that the
spending on task execution is directly linked to the allocation
of computing resources by the edge server. To ensure that
the tasks offloaded can be completed successfully, sufficient
computing power needs to be guaranteed in FCRS, and the
fixed allocation of computing resources cannot be too small,
which costs more in FCRS.

2) IMPACT OF DATA SIZE ON SYSTEM EFFICIENCY
Secondly, our focus lies in assessing the influence of data
size on offloading performance, while maintaining a constant
number of 30 mobile users. The data size of tasks varies
from 1MB to 11MB. Fig. 8, Fig. 9 and Fig. 10 present a

FIGURE 6. Effect of device amount on the total task delay.

FIGURE 7. Effect of device amount on the total cost.

FIGURE 8. Effect of data size on the total energy consumption.

comparative analysis of the total energy consumption, total
task delay, and total cost concerning different sizes of offload-
ing data, respectively. As indicated in Fig. 8 and 9, we can
deduce that as the date size of tasks grows, the energy con-
sumption and latency required to complete them also rises.
Also we can find that MOEA/D-EoD is significantly better
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FIGURE 9. Effect of data size on the total task delay.

FIGURE 10. Effect of data size on the total cost.

than ROS, FTPS and FCRS. This is because the five base sta-
tions in the scenario are adequate for supporting the tasks car-
ried by 30 mobile devices. When the data size of task reaches
11, both energy consumption and latency peak. As revealed
in Fig. 10, as the amount of task data increases, edge servers
need to allocate more computational resources to offloading
tasks to ensure completion, so the cost is increasing.

3) OFFLOADING STRATEGY VALIDATION
In the end, we evaluate the effectiveness of the offloading
strategy in MOEA/D-EoD. As shown in Table 6, MOEA/D-
EoDwill adjust the offloading strategies dynamically with the
number of mobile users. The MOEA/D-EoD algorithm pos-
sesses the capability of dynamically adjusting task offloading
and resource allocation strategies, enabling flexible adap-
tation to real-world scenarios. This eliminates the resource
wastage and performance bottlenecks inherent in fixed strate-
gies. By integrating histogram estimation and kernel density
estimation methods, MOEA/D-EoD achieves more accurate
handling of both continuous and discrete decision vari-
ables, leading to a significant enhancement in optimization
performance. Furthermore, leveraging the decomposition

TABLE 6. Comparison of offloading strategies with different numbers of
mobile users.

algorithm framework, MOEA/D-EoD effectively addresses
multi-objective optimization problems, striking a balance
among multiple metrics such as energy consumption, execu-
tion delay and total cost.

VI. CONCLUSION
We investigate the multi-objective task offloading problem
within MEC for a scenario involving multiple users and
multiple base stations, with joint take account of the impact
of transmission power and the resource allocation problem
during offloading. We designed a scheme MOEA/D-EoD
to solve the above joint problem. Our developed algorithm
can solve for the optimal offloaded strategy and resource
allocation while satisfying the constraints. The proposed
MOEA/D-EoD algorithm exhibits remarkable performance
on the DTLZ and ZDT benchmark test suites, outper-
forming existing multi-objective optimization algorithms.
Furthermore, its application to task offloading and resource
allocationmodels demonstrates its effectiveness in real-world
scenarios. However, the algorithm’s computational complex-
ity is relatively high due to its involvement in multi-objective
optimization and mixed variables. Additionally, its adaptabil-
ity under varying network environments and user demands
warrants further refinement.
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