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ABSTRACT A robust time series basis decomposition and non-stationary trend extraction technique, known
as Empirical Mode Decomposition (EMD), will be combined with Regularised Covariance Regression
(RCR) to produce a novel covariance forecasting technique. EMD is designed for multiscale and adaptive
time-frequency decomposition in nonstationary time series. EMD-RCR generates multi-time-frequency
resolution adaptive forecasting models of predictive covariance forecasts for a universe of selected asset
returns. This provides a unique method to obtain predictive covariance regression structures for the
short-, mid-, and long-time-scale portfolio dynamics. EMD isolates structures in a frequency-hierarchical
fashion (with automated sorting of structures through EMD-MDLP available) which allows this multi-time-
frequency covariance forecasting framework that uses the structures isolated using EMD (referred to as
IMFs: Intrinsic Mode Functions) as the explanatory variables in the RCR framework. Having developed
these techniques, a case study is used for exposition for active portfolio asset management. The case study is
based on a dynamic long/short equity and risk premia parity (or risk parity) portfolio-of-portfolios investment
strategy using the 11 sectors dividing the 505 stocks of the S&P 500. Each of the 11 sector indices is
constructed using a market capitalisation ratio of the companies within the respective sector. The portfolio
will be reweighted monthly based on the covariance structure forecast using covariance regression, in which
covariance regression factors will be obtained at multiple time-frequency scales endogenously from the
ETF asset price returns from each sector. At the end of each month, the covariance is forecast for the next
month or investment horizon. This is done using low-, mid-, and high-frequency IMFs isolated using EMD
from the 11 sector indices over the previous year. The IMFs isolated from the 11 sector indices over the
previous year are fitted against the daily logarithmic returns in the RCR model to make multi-frequency
covariance forecasts. We construct long/short equity and risk premia parity portfolios using each different
covariance forecast and review the results. The performance of the portfolios will be measured usingmultiple
performance measures (the most relevant being risk-related measures with risk premia parity in focus) and
contrasted against multiple benchmark portfolios using several well-known portfolio optimisation techniques
such as PCA and multivariate GARCH extensions. This paper promotes what we term ‘‘implicit factor’’
extraction, empirical market factors, and RCR in portfolio optimisation, horizon-specific active portfolio
optimisation, long/short equity portfolios, and risk parity portfolios.
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INDEX TERMS Risk parity, long/short equity, active fund management, portfolio optimisation, empirical mode
decomposition (EMD), singular spectrum analysis (SSA), singular spectrum decomposition (SSD), regularised
covariance regression (RCR), expectation maximisation.

I. INTRODUCTION
Traditionally, factor models have been developed in the
context in which the factors have a direct association with
a particular component of market risk, such as:

• a market factor;
• a leverage factor;
• an ESG (environmental, social, and governance) factor;
• an emerging markets factor;
• a convexity or carry factor;
• a currency or interest rate basis risk factor; or
• or combinations of the above (or proxies) and others.
The above are a few of the common explicit factor

approaches. In such applications factors (used as time series
regression covariates) are constructed with an explicit inter-
pretation. These are usedwithin time series regressionmodels
for financial asset price dynamic forecasting applications.

In this work, the factors explored (implicit factors as
opposed to the above explicit factors), build upon concepts
from works such as [1]. Whilst they don’t admit the same
direct interpretation as the explicit factors mentioned above,
they are still obtained from asset price returns time series.
The contribution developed in this manuscript in this regard is
to create such implicit factors to produce frequency-specific
non-stationary adaptive trend information. This allows one to
develop time series forecasting methods using various time
resolutions within time series factor models.

To position the context of this ‘‘implicit factor’’ devel-
opment approach, we first provide a clear purpose for this
paper in the next section, Section I-A. The contribution and
structure are summarised in Section I-B with a diagrammatic
representation of the structure of this paper given in Figure 1.
This is followed by a brief review of modern portfolio theory
in Section I-C. How such factor models have been used in
financial econometrics to produce forecasts that act as inputs
to dynamic portfolio allocation strategy design is summarised
in Section I-C. This is the focus of the problems addressed in
this manuscript.

A. PURPOSE OF PAPER
This paper suggests using implicit or empirical (as distinct
from explicit factors such as US GDP, SOFR rates, mortgage
capital, etc.) as factors in forecasting the covariance of a
different set of financial time series. The decomposition
algorithms we review (to produce the factors used as inputs
for covariance forecasting) are EMD, SSA, and SSD. For
further information on EMD see [1], [2], [3], [4], and [5]
(among many others); for SSA see [6], and for SSD see [7].
There are numerous algorithm extensions available for EMD,
SSA, and SSD - see [1], [8], and [9].
The extensions are not the focus of this work. The factors

isolated using these techniques, or others, or the explicit
factors directly can be used in the covariance regression

framework from [10] and reviewed in Section II-B. Minor
extensions are also proposed that allow for the regularisation
of the covariance regression through different well-known
techniques such as LASSO, ridge, elastic-net, group-LASSO,
and subgradient descent with modifications being made to
the definition rather than estimation of the mean in [10]
algorithm.

This paper further gives the proposed technique expo-
sition with a real-world case study using this technique
against well-known benchmarks presented in Section V. The
methods in this paper and others can be used in portfolio
optimisation whereby risk and return can be optimised with
small correlation couplings being captured. See Figure 1 for a
diagrammatic summary of this paper and the steps involved.
Figure 1 is a gross over-simplification with many other
potential additions such as lagging versus formal forecasting
of independent variables. All these techniques are used in a
real-world case study explained in Section IV.

B. CONTRIBUTIONS AND STRUCTURE
This work begins with Section II outlining the methodology
developed for constructing risk parity portfolios using
implicit factor extraction techniques and regularised covari-
ance regression. Section II-A outlines the factor extraction
techniques. This includes EMD, SSA, and SSD explained in
Sections II-A1, II-A2, and II-A3, respectively. The outputs
of the implicit factor extraction techniques are used to
isolate different time-frequency trend structures from price
processes to differentiate the attributable volatility to different
time scales. In Section II-B, the original formulation of
covariance regression is outlined and uses the framework
of [10] before outlining the extension presented here as
RCR. The performance of the proposed covariance regression
model will be compared with the class of reference models
selected based on DCC-MGARCH which is an MGARCH
technique within the family of nonlinear combinations of
univariate GARCH models.

Finally, the methodology section concludes by describing
the risk parity portfolio weighting technique in Section III
to calculate the required weighting once all assumptions
are made about the covariance structure during the coming
period. The risk parity portfolio construction framework
is developed based on the covariance forecasts from the
proposed models, and the portfolio framework is based on
the approach of [11] and [12]. This is subsequently applied
to a portfolio-of-portfolios which is constructed from sector
indexes. All methodology is carefully analysed on a set of
real data case studies based on the S&P500 in order to
illustrate the proposed methods and their ability to capture
instantaneous correlation and correlation coupling during
significant periods of upward and downward momentum. It is
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demonstrated how such features from the model translate
into the equal risk-parity portfolio structuring and risk-return
performance. In this regard, various performance measures
will be used to compare the long/short equity risk parity
portfolios with the benchmarks detailed in Section V-A.

FIGURE 1. Diagrammatic summary of the sections of this paper and
stages in designing leveraged risk premia parity portfolios with implicit
factor models (such as EMD, SSA, SSD, and many others) in an l -lagged
and regularised covariance regression framework.

C. LITERATURE REVIEW
The modern portfolio selection criterion of mean variance
established in [13] and [14], and developed further in [15],
would continue to influence theories such as the Capital Asset
Pricing Model (CAPM) developed in [16], [17], and [18]
and later works. Extensions were made in [19] where short
sales are restricted or in [20] where different interest rates
are assumed for lending and borrowing of the risk-free
asset. Later work would use the entire distribution in the
formulation of the optimised portfolio, as in [21]. The
mean-variance criterion is formalised to produce the efficient
frontier and mutual fund theorem as in [22].
Arbitrage pricing theory was subsequently introduced

to such modelling settings in [23] and looks at relating
the price of an asset linearly to an underlying market
indicator as an extension of the Capital Asset Pricing
Model introduced in [16] and [17]. This covariate, known
as a market factor, paved the way for further extensions,
as in the market factor models of [24] and [25]. These
explicit market factors explained some of the underlying
discrepancies seen in the original CAPM model. In [8], the

concept of ‘‘implicit market factors’’ is introduced as an
explanation of returns above the risk-free rate, where such
factors are termed implicit as whilst they are derived from
asset return decompositions they are not easy to directly
associate to a unique identifiable source of risk and in fact
will often comprise multiple sources of risk. As such, implicit
market factors offer a treatment of mixed risk drivers that
can accommodate both linear, nonlinear, and nonstationary
return process structures, not easily facilitated in classical
factor methods. Such implicit factors are specifically derived
from asset price or macroeconomic time series dynamics that
may have explanatory power in explaining dynamics of first-
or second-order aspects of return processes in collections of
risky assets that comprise the universe of investible assets
under consideration.

In this work, implicit factors will be obtained based
on S&P500 sector portfolios return dynamics using
non-standard time series basis decomposition methods.
As such, they are therefore not characteristic of the standard
directly observed factors, which are more commonly used
in the aforementioned factor model frameworks. This work
will demonstrate how to construct such implicit factors,
which will be based upon time series decomposition methods
that use combinations of empirical mode decomposition
(EMD), singular spectrum analysis (SSA), and singular
spectrum decomposition (SSD). Such methods are developed
to produce trend decompositions, which are capable of non-
parametrically obtaining representations of factor structures
that isolate different frequency information adaptively over
time from the returns time series and ultimately produce a
collection of different factor regression time series that can
be used to develop targeted time series forecasting methods
with a particular frequency resolution of interest.

To illustrate this concept, this manuscript will develop
a class of models that utilises these implicit factors as
covariates in a covariance regression to optimise a risk-parity
portfolio with weighting restrictions. As such, this paper
serves to promote the use of implicit factor extraction
and time series forecasting methods based on regularised
covariance regression (RCR) in the interrelated fields of port-
folio optimisation, horizon-specific portfolio optimisation,
long/short equity portfolios, and dynamic active risk parity
portfolio management.

Over the last few decades, in parallel with developments in
such asset return factor models, there has also been a signifi-
cant advance in modelling of time series stochastic volatility.
The most commonly used approaches is to utilise a class of
Generalised Autoregressive Conditional Heteroskedasticity
(GARCH)models either in univariate or multivariate settings.
The autoregressive conditional heteroskedasticity (ARCH)
models of [26], [27], and [28] can be seen as direct appli-
cations of autoregressive (AR) and autoregressive moving
average (ARMA) models to modelling univariate variance.
In [29] theARCHmodelled is extended to theGARCHmodel
by incorporating a random error component. All multivariate
GARCH (MGARCH) models can be seen as various
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multivariate extensions of univariate GARCHmodels; a thor-
ough review of these extensions can be found in [30].

If one seeks to develop a factor regression model to
forecast and explain the dynamics of multivariate volatility,
in order to dynamically model the covariance structures for
a vector of asset returns, alternative approaches to classical
MGARCHmodels can also be developed based on covariance
regression. In this work, we consider such alternative time
series-based covariance regression methods for forecasting
and will combine these with implicit factors. This work uses
an extension of the methodology for covariance regression
of [10] and [31]. The extensions proposed in this work include
a variety of regularised estimation methods that extend the
original covariance regression setting of [10] while also
incorporating multiple time-frequency resolutions obtained
from the implicit factor extractionmethods introduced, which
are then subsequently used as distributed lag time series
factor covariates in such a covariance regression estimation
and covariance regression forecasting framework, which is
termed the EMD-RCR portfolio framework herein.

Several methods have been developed recently in the
time series literature to treat feature extraction for nonlinear
and nonstationary time series. This work explores three
important examples: the first is based on EMD which was
introduced in [2], [3], and [4]; secondly, Singular Spectrum
Analysis (SSA) will be considered; and thirdly, Singular
Spectrum Decomposition (SSD) is assessed in the context of
an extension of SSA. These implicit factors are then used as
distributed lag time series covariates in regularised versions
of the covariance regression developed in [10]. It will be noted
that the regularisation stages are not completely standard as
they take place within an EM iterative estimation framework
of the covariance regression.

Once the covariance structure has been forecast (id est,
assumptions have been made about the forthcoming perfor-
mance of the assets according to the portfolio optimisation
dichotomy first proposed in [13]), the portfolio weighting,
according to the individual’s risk appetite, would need to
be calculated. Risk premia parity portfolio weighting, first
proposed in [11], and later used in [12], [32], and [33],
is used to minimise the total variance of the portfolio
while maintaining a predefined risk distribution amongst the
available assets. The equal weighting is not necessary, with
other possible weighting strategies being allowed based on
the parameterisation of the problem. It is this final step that
concerns itself with the second component of the observations
originally made in [13]. All the previous work was concerned
with estimating and forecasting the covariance structure, but
it is the risk premia parity weighting that concerns itself
with the second aspect of portfolio optimisation, which is
the weighting of the portfolio once all assumptions about
forthcoming returns and covariance have been made.

II. COVARIANCE FORECASTING METHODOLOGY
This section begins with the discussion of the construction
of implicit factor extraction (IFE) techniques for EMD,

SSA and SSD time series basis decomposition methods,
see Section II-A. Additional details on various aspects
of SSA and SSD as well as their implementation are
also available in [9]. Then in Section II-B details of the
time series regularised covariance regression (RCR) model
incorporating the implicit factor covariate time series are
provided. This involves detailing a dynamic random-effects
covariance regression model representation in Section II-B1
before moving on to parameter estimation and inference
in Section II-B2. Finally, the EM algorithm is presented
in Section II-B3, which details the efficient estimation
steps in the estimation algorithm. With this framework in
place, the RCR is introduced in Section II-C with several
adjustments to the original EM algorithm made to introduce
regularisation steps of various types.

A. IMPLICIT FACTOR EXTRACTION
Implicit Factor Extraction (IFE) methods build upon the
work of previous factor and feature extraction techniques.
Constructing portfolios using Principal Component Analysis
(PCA), such as in [34] and [35], is a form of compression with
the attributes quantified in components based on variance,
and this can result in components being mixed in the
projections utilised. In [13] the global minimum variance
portfolio and the efficient frontier are constructed using
the realised mean and covariance, but all this was based
exclusively on the past performance of assets with little to
no factor or feature extraction. The CAPM model by [16]
and [17] related assets prices to the risk-free proxy, with the
arbitrage pricing model and the multifactor models as [24]
and [25] being extensions thereof. The models all rely
on asset data being used as observed with minimal pre-
processing, in addition possibly to some standardisation and
return transformations.

The Fama-French 3 Factor Model from [24] is compared
against the Carhart 4 Factor Model from [36] in [37]. The
Carhart 4 Factor Model from [36] is the same as the Fama-
French 3 FactorModel with a fourth factor that tries to capture
the salient risk present in the market with a momentum factor.
The Carhart 4 Factor Model is found to be more accurate
than the Fama-French 3 Factor Model in terms of the root
mean square error when applied to eight years of the Hanoi
Stock Exchange, but both models were found to be equally
significant using their t-tests.

Formal model comparisons are conducted by [38] where
the performance of a single index model, the Fama-French 3
Factor Model, and the Carhart 4 Factor Model are assessed
in their ability to forecast the returns of the 20 largest stocks
in the NASDAQ and NYSE exchanges. Much like [37] and
[38] found that the Carhart 4 FactorModel performed the best
in terms of the largest adjusted R2 values. These three-factor
models were, however, found to perform poorly when
compared against the Black-Litterman model in constructing
portfolios. The portfolio constructed using Black-Litterman
technique outperformed the portfolios constructed using the
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three-factor models by having relatively higher returns with
relatively lower variance and having the highest Sharpe ratio.

A different approach, by [39], performs feature selection
techniques on several candidate micro- and macro-economic
factors from a potential pool of 44 to select a set of
10 relatively independent factors. These factors are used to
construct a multifactor model (explicit factors with minimal
preprocessing as opposed to implicit factor models explored
herein) to measure the portfolio performance and backtest
the model by adjusting the factors based on varying the
retracement periods. Finally, this explicit multifactor model is
then combined with machine learning techniques to perform
stock selection. The machine learning-augmented explicit
multifactor stock selection method was shown to outperform
the traditional explicit multifactor stock selection model.

In another portfolio optimisation technique begun with
feature selection preprocessing, [40] uses double-selection
LASSO feature selection before using PCA on the selected
features. Double-selection LASSO feature selection uses tra-
ditional LASSO feature selection first between the covariates
and the dependent variables before, secondly, traditional
LASSO feature selection is then performed between the
covariates and the independent variables. PCA is then used to
isolate the principal components from the remaining features.
These factors are then used to predict asset prices using
both support vector regression (SVR) and vanilla multivariate
regression. SVR is shown to exceed multivariate regression
in the accumulated returns from the case studies conducted
using US and China stock market data.

There is an opportunity, therefore, to consider the devel-
opment of robust multiple-time-frequency factor extraction
techniques to be used in finance, especially as will be
illustrated in the examples in this manuscript; they can be
beneficial to the study of multiple-time-scale investment
decision-making.

In Sections II-A1, II-A2, and II-A3 this work gives an
exposition of EMD, SSA, and SSD, respectively. These
three methods are not exhaustive with many other potential
decomposition algorithms capable of providing implicit
market factors for later use in covariance forecasting in
Section II-B. As an example, variational mode decomposition
(VMD) was developed in [41] to address some of the possible
limitations of EMD, such as sensitivity to noise and sampling.
This technique is described as a generalisation of classic
Wiener filters from [42]. VMD extends classic Wiener filters
into multiple and adaptive frequency bands. VMD is shown
to perform better than EMD in certain specific synthetic
scenarios such as the summation or different frequency saw-
tooth waves, but in the one real-world example in [41] (an
electrocardiogram signal) the methods are not compared, but
rather the results for VMD are presented. Admittedly, these
results are promising.

EMD and VMD are compared by [43] in their abil-
ity to extract the salient features from grayscale images
before machine-learning classification algorithms are used to
identify and classify objects. Both support vector machines

(a kernel-based classifier) and random forest (an ensemble
classifier technique which is an extension of decision-tree
algorithms) are used in the classification of the features
extracted using VMD and EMD. References [44] and
[45] use VMD and EMD, respectively, to improve speech
recognition through adaptive denoising and filtering of
online speech signals. To improve upon VMD from [41]
for the specific task of speech signal decomposition, [44]
develops adaptive frequency-shifting VMD (VMD-FS) to
shift speech to lower-frequency bandwidths for improved
decomposition.

Wavelet decomposition, an extension of wavelet analysis,
was also considered as a potential decomposition algorithm,
but it, as well as its inspiration from Fourier analysis,
were not considered appropriate and disregarded based on
their constructive nature (using predefined bases). Both
wavelet decomposition and Fourier decomposition have been
extended from their original exclusively stationary time series
decomposition algorithms to their non-stationary variations
of empirical wavelet transforms (developed in [46]) and
empirical Fourier decomposition (developed in [47]). Despite
these extensions and developments (noted in [46] and [47]
as having been inspired by EMD), these techniques are still
constructive and [48] found that EMD is superior to wavelet
decomposition in both accuracy and computation complexity.

Lower-order tensor decomposition was also considered
and is discussed in [49] in the context of signal denoising
through factor analysis and decomposition. In [49] Tucker
decomposition is modified via truncation based on the
signal-to-noise ratio and subsequently paired with PCA and
tested against other techniques such as wavelet transforms
augmented with PCA in their decomposition ability. This
technique is concluded to be more effective than the other
techniques surveyed in [49], but it is noted that it is
computationally expensive and not appropriate for online
or time-sensitive forecasting and prediction. Many other
decomposition techniques exist with their advantages and
disadvantages, but their review is beyond the scope of this
work.

1) EMPIRICAL MODE DECOMPOSITION
This section begins with the EMD method which extracts
basis functions from a signal, in our case price or return time
series, known as Intrinsic Mode Functions (IMFs) through
an algorithmic procedure known as Sifting (see details and
a python package to perform variations of sifting in [1]) to
produce the following decomposition:

xIMF (t) =

K∑
j=1

γj(t) + rK (t), (1)

with γj(t) being the jth IMF decomposed from the time series
and rK (t) being the non-stationary residual afterK IMFs have
been decomposed, which has the special property that it has,
at the most, a single convexity change over the time-domain
on which the EMD basis extraction is performed.
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There are numerous algorithmic variations designed to
address specific shortcomings of the original algorithm. The
most ubiquitous problem in EMD (and possibly in time
series analysis) is the edge of the time series that, because
of the iterative nature of the sifting algorithm, results in
the proliferation of errors throughout the decomposed IMFs.
Reference [1] investigates the edge effect and the numerous
boundary conditions (amongst algorithmic variations of
other subroutines within the algorithm) used to address
this proliferation of errors. Reference [50] investigates a
few of these edge effects and some others along with
algorithmic extensions to EMD in their ability tominimise the
proliferation of these errors and further begins to formalise
the decay rate of the errors in the components as a function of
the locations of extrema within the decomposed time series.

If the edge effect is not properly managed with an
appropriate static or dynamic boundary effect, the errors
will proliferate throughout the IMFs and will result in a
related problem in non-stationary time series decomposition
of mode-mixing which is the mixing of frequencies between
components - see [51]. This mixing of components based
on their frequency content is difficult to assess when there
are no ground truth target components (for example, the
earthquake data in [2]) such as in synthetic experiments.
Reference [52] compares ensemble EMD (EEMD) and
masking EMD (M-EMD) against EMD in their ability to
minimise mode mixing whilst decomposing a series of
synthetically constructed time series. Reference [52] found
that M-EMD performed the best with EEMD performing
better than EMD, but not as well as M-EMD.

Another useful characteristic of EMD is its function as
a robust non-stationary filtering technique. This is particu-
larly useful when short-time-interval artefacts interfere with
signals and instead of truncating the signal or clipping the
corrupted intervals where valuable diagnostic or predictive
information would be discarded. To this end, [53] investigates
the ability of EMD Interval Thresholding (EMD-IT) and
Iterative EMD-IT (EMD-IIT) to specifically isolate artefacts
from time series whilst retaining as much of the original
information in the signal. It is concluded by [53] that EMD-
IIT is the most accurate in its isolation and extraction of
the corrupting artefacts, but it is computationally expensive
and difficult to use in real-time applications. EMD-IT is
less accurate but also less computationally expensive and,
therefore, more amenable to online applications.

In a similar application, [54] uses EMD and EEMD as
frequency-adaptive filters to denoise signals before using
them for interpretation and prediction. A shortcoming of this
technique noted in [54] is the automation of the stopping of
the EMD algorithm and individual IMF sifting subroutines as
well as the appropriate splines to use to best isolate and extract
the salient features. Reference [1] assesses a number of
stopping criteria for EMD whilst [8] assesses different spline
techniques used to approximate the IMFs. Reference [55]
addressed the same problem as [54], but instead of using
EEMD, an amalgamation of EMD and wavelet analysis

which was found in [53] to be effective in removing artefacts
with [55] also finding it effective at denoising time series. The
are numerous algorithmic variations, [1], and extensions, [8],
of EMD, but these will not be assessed herein.

A decomposition of type Equation (1) is applied to each
asset price series in a given asset universe that is used to
construct a portfolio. The resulting IMFs provide different
time-frequency scale basis functions that are adapted to
nonstationary price or return signal time series dynamics.
The sifting procedure results in a collection of IMF basis
function which each satisfy the following two conditions, see
discussions in [45]:

Condition 1 abs
(∣∣∣{ dγk (t)

dt = 0 : t ∈ (0,T )
}∣∣∣ −∣∣∣{γk (t) = 0 : t ∈ (0,T )

}∣∣∣) ≤ 1, and

Condition 2 γ̃
µ
k (t) =

(
γ̃Mk (t)+γ̃mk (t)

2

)
= 0 ∀ t ∈

[0,T ] with,
γk (t) = γ̃Mk (t) if dγk (t)

dt = 0 and d2γk (t)
dt2

< 0,
γk (t) ≤ γ̃Mk (t) ∀ t ∈ [0,T ],

γk (t) = γ̃mk (t) if dγk (t)
dt = 0 and d2γk (t)

dt2
> 0, and

γk (t) ≥ γ̃mk (t) ∀ t ∈ [0,T ],

with γ̃Mk (t) being the spline fitted through the maxima of
the time series and γ̃mk (t) being the spline fitted through
the minima that produce an envelope of the IMF basis.
In the application of EMD in this work, cubic B-splines are
used to fit and smooth the IMFs. The mean squared error
optimality of cubic splines has already been shown in [56],
[57], and [58]. Numerous packages have been developed to
implement the EMD basis extraction method, see detailed
discussion in [1] and the accompanying Python package at:

https://github.com/Cole-vJ/AdvEMDpy.

In Section V we present a case study using IMFs from dif-
ferent frequency bandwidths, isolated using EMD described
above, tomake different frequency covariance forecasts about
the possible investible assets in the portfolio reweighted
monthly. The observations of the different performances
of the portfolios based on different frequency bandwidth
forecasts follow the conclusions of [45] that the separation
of structures using in EMD in non-stationary time series
benefits later analysis and further predictive capabilities. The
sorting of these IMFs based on bandwidths that are not fixed,
owing to the robust nature of the EMD algorithm, presents
a unique problem that is addressed in Section IV-C1 that
references [8] where it was first proposed to be used in
conjunction with EMD in sorting structures with temporally
varying bandwidths.

2) SINGULAR SPECTRUM ANALYSIS
The second intrinsic factor extraction method proposed to
be utilised on each assets return time series is a method
proposed in [6] that consists of four core stages, namely
Embedding, Singular Value Decomposition, Grouping, and
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Trend Estimation through Diagonal Averaging. Only a single
factor is extracted using the original SSA technique, and
the frequency of this component is determined by the
predetermined windowwidth, which is discussed below. This
component can be extracted from each asset in a portfolio and
used to forecast the covariance of the portfolio or to forecast
the price of individual assets.

a: STAGE 1 OF SSA: EMBEDDING
Given a time series, x(t), with T samples, the embedding
stage consists of converting the univariate time series into a
multi-variate time series by embedding lagged increments of
the time series into a matrix X such that:

X = [X1(t), . . . ,XK (t)], (2)

with Xj(t) = [x(tj), x(tj+1), . . . , x(tj+L−1)]T , L being the
window length, and K = T−L + 1.

b: STAGE 2 OF SSA: SINGULAR VALUE DECOMPOSITION
Let λ denote the set of eigenvalues, [λ1, . . . ,λL]T , arranged
in descending order of magnitude such that λ1 ≥ · · · ≥

λL with the associated set of orthonormal eigenvectors
denoted by U such that U = [U1, . . . ,UL]T , with Uj
being the eigenvector associated with λj. Then by denoting
Vj = XTUj/

√
λj, the Singular Value Decomposition of the

trajectory matrix can be written as:

X =

K∑
k=1

Xk =

K∑
k=1

√
λkUkVT

k . (3)

c: STAGE 3 OF SSA: GROUPING
For some integer p < L, denote by I the subset of indices
such that I = {i1, . . . , ip} ⊂ {i1, . . . , iL} that allows for the
specification of partial components:

XI =

ip∑
j=i1

Xj. (4)

d: STAGE 4 OF SSA: TREND ESTIMATION & DIAGONAL
AVERAGING
The final step of Singular Spectrum Decomposition is
essentially the reversal of the embedding step performed on
the chosen approximation of X, now denoted by XI . Unlike
the other techniques listed in Section II-A, the final output
of SSA decomposition is a single trend estimate based on a
summation of some subset of the diagonally averaged set such
that:

xSSA(t) =

p−1∑
i=1

(p+ 1) − i
p

XI ,i +

L−p∑
i=p

1
p
XI ,i

+

L∑
i=L−p+1

(L − i)
p

XI ,i. (5)

3) SINGULAR SPECTRUM DECOMPOSITION
This extension of Singular SpectrumAnalysis was formalised
in [7] to automate some steps such as the bandwidth
of each chosen decomposition structure and to formalise
the technique as a decomposition algorithm with many
bandwidth-specific components rather than simply a trend
estimation technique such as outlined in the original SSA
method. This can be interpreted as a modification of
down-sampling to multiple, possibly disjoint, bandwidths
without the decimation step. In [1] down-sampling without
decimation is introduced as a preprocessing technique. SSD
automates the isolation ofmultiple significant (power spectral
density nodes) structures in a time series - these structures can
be used in covariance modelling and forecasting of financial
data. The stages of SSD that generalise those of SSA are
presented below.

a: STAGE 1 OF SSD: SIGNIFICANT TREND
The first step of the SSD algorithm is to test for a significant
trend. A time series is deemed transient or nonstationary if
the normalised dominant frequency peak (fmax/Fs) is below
a prespecified, user-defined threshold. In [7] a threshold
of fthreshold = 10−3 is recommended. If the dominant
peak is below this threshold, then the window width or
embedding dimension, L, is set to T/3 as recommended
in [59]. If this frequency threshold is not met, the embedding
dimensions are set to 1.2 ×

Fs
fmax

, which is dynamically
adjusted throughout the algorithm. This step automates and
formalises the identification of a significant trend, which is
often present in financial data. The threshold recommended
in [59] does not need to be strictly adhered to, but can be
adjusted to user’s desired resolution or time scale of focus in
the feature extraction.

b: STAGE 2 OF SSD: DOWN-SAMPLING
Three Gaussian functions are then fitted to the subsequent
power spectral densities to estimate the next iteration of the
extraction algorithm. The following function is fit to the
power-spectral density:

γ (f , θ) =

3∑
i=1

Aie
−

(f−µi)
2

2σ2i . (6)

where the µ parameters for each Gaussian density basis are
specified as follows:

µ1 = fmax, µ2 = f2, µ3 =
fmax + f2

2
, (7)

and where fmax is the dominant spectral peak and f2 is the
second spectral peak. The initial estimates for the other
parameters are:

A(0)1 =
1
2
PSD(fmax), σ

(0)
1 = f : PSD(f ) =

2
3
PSD(fmax),

A(0)2 =
1
2
PSD(f2), σ

(0)
2 = f : PSD(f ) =

2
3
PSD(f2),

A(0)3 =
1
4
PSD(f3), σ

(0)
3 = 4|fmax − f2|, (8)
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FIGURE 2. SSD power spectral density Gaussian function initialisation.

where f : PSD(f ) =
2
3PSD(f∗) denotes the frequency,

f , such that the power-spectral density at this frequency, f ,
is two thirds the power-spectral density at f∗. With these
initial conditions, Equation (6) is fitted to the complete power
spectral density as can be seen in Figure 2 in some sample
data from a subset of the S&P 500 after the significant trend
has been extracted.

The initialised parameters in Equation (8), and plotted in
Figure 2 for reference, are mean squared error optimised to
produce the parameters to fit the power-spectral density as
in Figure 3. Once σ

opt
1 has been estimated, the frequency

bound for the down-sampling, δf = 2.5σ opt
1 , such that

it captures approximately 99% of the area underneath the
primary power-spectral density mode. The frequency bounds
can be seen as the black dashed lines in Figure 3. By for-
mally acknowledging the presence of a second significant
frequency node in the power spectral density, this technique is
able to separate two structures that would otherwise confound
modelling and forecasting attempts in the time domain for
financial signals. The original SSA technique would not be
able to separate the two significant structures observable in
Figures 2 and 3.
The SSA technique with a modified embedding step is then

applied to this component estimated through down-sampling.
Down-sampling is not formally acknowledged as the process,
but it is clear from the application that this initial estimate is
as a result of down-sampling.

c: STAGE 3 OF SSD: MODIFIED EMBEDDING
This modified embedding step is similar to that presented in
Equation (2) with a slight adjustment. The new matrix, Xmod ,
is calculated as:

Xmod
= [Xmod

1 (t), . . . ,Xmod
K (t)], (9)

where

Xmod
j (t) = [x(tj), x(tj+1), . . . , x(tj+L−1), x(t1), . . . , x(tj−1)]T ,

(10)

FIGURE 3. SSD power spectral density Gaussian function optimisation.

and with L being the window width, and K = T−L + 1 as
before. This will result in a modified trend estimate that
is more cyclical as a result of what is referred to in [7]
as wrapping the matrix around. This ‘wrapping’ results in
the isolated structures being more cyclical, which prevents
large deviations, particularly at the edges of the isolated
components, and which in the applications in this manuscript
will prevent extreme estimations of the covariance and assets
prices.

d: STAGE 4 OF SSD: SCALING
Once the final component estimate has been made, a scaling
factor is introduced to best fit the component to the underlying
structure using mean squared error optimisation. This scaling
factor is calculated as in Equation (11):

âi = minai
∣∣∣∣vi(t) − aigi(t)

∣∣∣∣2
2, (11)

with vi(t) being the remainder of the time series after the first
i−1 components have been removed and gi(t) is the unscaled
ith component. The ith scaled component is then given by
g̃i(t) = âigi(t).
Figure 4 demonstrates the remaining time series (vi(t)), the

unscaled ith component (gi(t)) and the scaled ith component
(g̃i(t)). This allows one to adjust the financial factor to be
extracted to better fit (mean squared error) the residual time
series.

e: STOPPING CRITERION
The final result of the SSD is a decomposition of the
underlying time series, x(t), such that:

xSSD(t) =

M∑
i=1

g̃i(t) + vM+1(t), (12)

where g̃i(t) is the ith component extracted and vM+1(t) is
the residual. To stop the ‘sifting’ (word borrowed from
EMD, but accurately describes what is happening) procedure,
a stopping criterion must be introduced. A normalised mean
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FIGURE 4. Singular Spectrum Decomposition scaling factor mean squared
error optimisation.

squared error (NMSE) is introduced with some threshold
value so that the sifting stops when the NMSE:

NMSEi =

∑N
i=0 v

2
M+1(ti)∑N

i=0 x
2(ti)

, (13)

is below a user-specified threshold value and x(t) is the
original unsifted time series. In [7], it is suggested that a
threshold value of 1% be used - this stops the algorithm when
99% of the energy of the time series has been decomposed.
This prevents over-sifting and the proliferation of nonsensical
components for further modelling.

B. LAGGED REGULARISED COVARIANCE REGRESSION
Sample covariance matrix (SCM) estimation, which assumes
the covariance stationarity of the time series, is commonly
used when predicting portfolio risk-return trade-offs such as
the classic efficient frontier originally formulated in [13].
A natural and popular regularised extension of assuming
covariance stationarity (see [60]) is shrinkage SCM which
has the same eigenvectors as the original SCM, but the
eigenvalues are regularised (via a shrinkage parameter)
towards the average of all the eigenvalues of the unregularised
SCM. Refernce [60] proposes an extension of this shrinkage
SCM estimation by using the maximum likelihood estimator
or ‘‘M-estimator’’ of the scatter matrix with an automated and
adaptive technique for calculating the shrinkage parameter.
This approach also allows a more generalised weighting
function to be used which is shown in [60] to be better
suited to real-world problems where error distributions do
not follow the Gaussian distribution, but come from more
generalised heavy-tailed symmetric distributions.

The adjustment of SCM estimation to robustify the
estimation procedure for errors of heavy-tailed distribution
is the focus of [61]. Reference [61] uses Tyler’s cost
function when using the M-estimator in calculating the
regularised SCM estimation. Reference [61] uses the natural
structure inherent in covariance matrices to demonstrate

that the structure-constrained (constraints based on observed
structure) Tyler’s estimator of the SCM exhibits lower error
rates than the unconstrained optimisation in the simulated
case studies. Reference [62] approaches the robust estimation
of a structured covariance matrix by using the Kronecker
products of matrices of low rank. To this end, [62] derives
the constrained Tyler’s estimator which is the minimiser of
Tyler’s estimator cost function with the additional constraint
of being structurally a Kronecker product.

Heavy-tailed sampling experiments are conducted by
[63] who assess the regularised estimation of the mean
and covariance when samples are drawn from generalised
elliptical distributions. In this work by [63], the developed
regularised estimation is found to be accurate and robust
when synthetic samples are drawn from heavy-tailed distri-
butions or when there are numerous outliers. The proposed
method outperforms the Cauchy maximum likelihood esti-
mate and the student t-distribution estimate when measured
using the Kullback–Leibler divergences of the predicted
covariance versus the distribution from which the samples
are drawn. Reference [64] specifically develops a robust
mean and covariance forecasting framework for financial
applications where there is missing data. This mean and
covariance estimation assumes the missing data is monotone
which has applications in financial data as well as using
Student-t distributions to better capture the heavy-tailed
distribution of the errors in finance. It is shown that robust
estimation using the minorisation-maximisation framework
converges more quickly than expectation-maximisation and
parameter-expanded expectation-maximisation.

Drawbacks of the above-mentioned methods and tech-
niques of covariance estimation are the difficulties in
estimating the mean or expected returns of the distributions
when applied in financial applications - see [65], [66],
[67], and [68]. Further, the dual mean-covariance estimation
problem is very sensitive to small errors in the expected
returns - see [65], [66], [67], [68], and [69]. It is also
generally agreed (see [70] and [71]) that modelling the
covariance is easier than modelling the expected returns,
given the historical data. Also, the above frameworks do
not permit exogenous variables of factors to be used in the
covariance forecasting. [72] partly addresses this by using
factor analysis in forecasting the covariance, but with these
concerns, we propose using implicit market factors derived in
II-A within the [10] framework to make regularised financial
covariance forecasts.

With the multi-resolution basis extraction techniques,
notation, and framework established in Section II-A, one can
now use these different basis extraction methods on financial
price return time series, either for individual assets or on
indices for portfolios of assets, to produce a collection of
factors that are termed here Implicit Factors (IFs) at multiple
time-frequency resolutions. These IFs then form the factors
that will be subsequently used in Regularised Covariance
Regression (RCR) to forecast the covariance. The concept of
covariance regression methods for dynamic portfolio design
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has been used in financial applications previously; see [73].
This work extends these concepts to multi-time resolution
settings as well as the addition of various regularisation
constraints in the estimation procedures.

The reason that such time-frequency Intrinsic Factors (IFs)
(used interchangeably with implicit factors) are so useful
is that they will allow us to use these multiresolution IF
components within the RCR, to construct horizon-specific
portfolios that can then accommodate covariance forecasting
optimised in its accuracy when forecasting for specific time
horizons or on specific sampling rates. In this setting, the
IFs that form the time series covariates can be obtained as
the intrinsic mode functions (IMFs) extracted by the EMD,
the SSA or the SSD methodologies when applied to past
of the time series of asset returns considered in the regression
model construction. For instance, if one seeks to forecast the
covariance for a vector of asset returns, one could obtain the
IFs endogenously by extracting these implicit factors from
the historical price time series, and then from a given forecast
origin use the estimated covariance regression to forecast the
covariance at some future forecast horizon. In this manner,
the extracted IFs are introduced to the covariance regression
as a distributive lag time series covariance regression model.

The proposed regularised covariance regression (RCR)
model is developed under a formulation that can be expressed
as a type of time series distributed lag random-effects model.
In this section, one begins by outlining the results underlying
the random-effects formulation of covariance regression in
Section II-B1. This is followed by parameter estimation
and inference in Section II-B2 which concludes with results
concerning the pseudoinverse of random errors in the model.
In Section II-B3 the expectation maximisation algorithm
is shown which allows the translation to pseudocode. This
section is concluded with Section II-C which outlines
the various regularised covariance regression techniques
presented in this paper. The MGARCH alternative that
is commonly used can be found in the Supplement to:
Long/Short Equity Risk Premia Parity Portfolios via Implicit
Factors in Regularised Covariance Regression, Appendix D.

1) RANDOM EFFECTS REPRESENTATION
Let yt ∈ R

p denote the multivariate response, corresponding
to the daily log returns of a set of p assets at time t ,
denote by x̃t−i,1 ∈ R

q the column vector of q covariates
at lag i of factors used to approximate the trend dynamic
at time t , denote by x̃t−j,2 ∈ R

r the column vector of r
covariates at lag j used to explain the covariance of the log
returns about the trend at time t . Denote the model parameter
matrices at lag i by Ai ∈ R

p×q being the coefficients of
the mean and Bj ∈ R

p×r being the matrix of coefficients
for the random-effects terms that incidentally describe the
relationship of the regression structure covariance between
the lagged covariates xt−j,2 and the covariance of the returns
for yt at time t . We denote the latent variables for random
effects by process {γt } and the uncorrelated regression errors
in time, but potentially cross-correlated by process {ϵt }. The

random effects covariance regression model may therefore
be specified in the following model structure, for n1 lags
of covariates in the trend and n2 lags of covariates in the
covariance dynamic:

yt =

n1∑
i=0

Aĩxt−i,1 + γt

n2∑
j=0

Bj̃xt−j,2 + ϵt ,

= Axt,1 + γtBxt,2 + ϵt , (14)

where the following stacked matrices and covariate vectors
are denoted for a compact notation used in the remainder of
the manuscript:

xt,1 = vec
[̃
xTt,1, x̃

T
t−1,1, x̃

T
t−2,1, . . . , x̃

T
t−n1,1

]T
,

lagged covariate vectors of dimension (q(n1+1)×1)

xt,2 = vec
[̃
xTt,2, x̃

T
t−1,2, x̃

T
t−2,2, . . . , x̃

T
t−n2,2

]T
,

lagged covariate vectors of dimension (r(n2+1)×1)

A =
[
A0 : A1 : A2 : · · · : An1

]
,

a matrix of dimension (p× q(n1 + 1))

B =
[
B0 : B1 : B2 : · · · : Bn2

]
,

a matrix of dimension (p× r(n2 + 1)). (15)

Furthermore, if one makes the following statistical
assumptions regarding this model,

E[ϵt ] = 0, Cov[ϵt ] = 9,

E[γt ] = 0, Var[γt ] = 1, and E[γtϵt ] = 0, (16)

then the resulting covariance matrix of the asset returns yt
given lagged covariates xt,1, xt,2 (and with µxt,1 = Axt,1) is
expressed as follows:

E

[
(yt − µxt,1)(yt − µxt,1)

T
]

= E

[
γt

2Bxt,2xTt,2B
T

+ γt

(
Bxt,2ϵTt + ϵtxTt,2B

T
)

+ ϵtϵ
T
t

]
= Bxt,2xTt,2B

T
+ 9yt |xt,1,xt,2

= 6yt |xt,1,xt,2 . (17)

In this manuscript, the Implicit Factors (IFs), extracted using
the previously described EMD, SSA, or SSDmethods, will be
used for the covariates xt,1 and xt,2 and will be added to the
regression with a lag structure. However, just as easily, it is
clear that such a model also accommodates a hybrid model of
Farma-French factors in the trend and IFs in the covariance,
respectively.
With regard to estimation, such a random effects covari-

ance regression representation is advantageous as it admits
an Expectation Maximisation (EM) estimation framework
which has both E and M steps obtainable in closed form,
at least in some versions of the regularised covariance
regression (RCR) model specification. In non-differentiable
regularisation versions, one will be shown how to properly
treat the M-step via proximal gradient methods.
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2) LIKELIHOOD SPECIFICATION
The calibration of the aforementioned random effects covari-
ance regression model proceeds as follows. With the random
effects representation and errors defined as above with:

γ1, . . . , γn
iid
∼ N (0, 1), (18)

ϵ1, . . . , ϵn
iid
∼ MVN (0, 9), (19)

ẽt = yt − µxt,1 , and (20)

E = vec[eT1 , . . . , eTn ]
T (21)

where MVN (0, 9) is the multivariate normal distribution
with mean vector 0 and covariance matrix 9, and with the
residual matrix defined as E and dependent on the choice
of xt,1 and mean coefficient matrix, A, (through µxt,1 ) the
log-likelihood of parameters (B,9) given E and X is:

l(B, 9 : E,X) = c−
1
2

n∑
t=1

log
∣∣∣9 + Bxt,2xTt,2B

T
∣∣∣

−
1
2

∑
t

tr
[(

9 + Bxt,2xTt,2B
T
)−1

eteTt
]
.

(22)

It is shown in the Supplement to: Long/Short Equity Risk
Premia Parity Portfolios via Implicit Factors in Regularized
Covariance Regression, Appendix A, that:

6−1
xt,2 = 6−1

xt,2ete
T
t 6−1

xt,2 and

6−1
xt,2Bxt,2x

T
t,2 = 6−1

xt,2ete
T
t 6−1

xt,2Bxt,2x
T
t,2, (23)

from which it follows that the MLE of 6−1
xt,2 acts as a

pseudoinverse for eteTt .

3) ESTIMATION VIA EXPECTATION MAXIMIZATION
ALGORITHM
To perform the maximisation of the likelihood to perform
the parameter estimation, it will be convenient to utilise
an auxiliary variable method procedure known as the EM
algorithm. This is convenient since Equation (22) is difficult
to maximise directly, but the random effects representa-
tion allows it to be maximised using iterative methods.
The iterative Expectation Maximisation (EM) Algorithm
depends on the conditional distribution of {γ1, . . . , γn} given
{Y,X, 9,B}. One can refer to the Supplement to: Long/Short
Equity Risk Premia Parity Portfolios via Implicit Factors
in Regularized Covariance Regression, Appendix B, for a
detailed derivation of Equation (24):

P(γt |yt , xt,1, xt,2, 9,B)

=
(
2π

)−
1
2

(
1

1 + xTt,2B
T9−1Bxt,2

)−
1
2

× exp
(

−
1
2

(
γt −

(
yt−µxt,1

)T
9−1Bxt,2

(1+xTt,2B
T9−1Bxt,2)

)2

(1 + xTt,2B
T9−1Bxt,2)−1

)
. (24)

From Equation (24), it follows that,

{γt |Y,X, 9,B} ∼ N (mt , vt ), (25)

where,

vt = (1 + xTt,2B
T9−1Bxt,2)−1 and

mt = vt
(
yt − µxt,1

)T
9−1Bxt,2. (26)

The EM algorithm progresses by maximising the expec-
tation of the complete data log-likelihood iteratively.
The complete data log-likelihood can be seen in
Equation (27):

l(A,B, 9) = logp(Y|A,B, 9,X, γ ). (27)

This is obtained from the multivariate normal distribution of
yt such that yt ∼ MVN (Axt,1 + γtBxt,2, 9) from which
Equation (28) follows:

−2l(A,B, 9) = nplog(2π) + nlog|9|

+

n∑
t=1

(
yt −

[
Axt,1 + γtBxt,2

])T
9−1

×

(
yt −

[
Axt,1 + γtBxt,2

])
. (28)

Given the current estimates of (A,B, 9), (Â, B̂, 9̂), with
êt = yt − Âxt,1, and taking expectations one has:

−2E
[
l(A,B, 9)|Â, B̂, 9̂

]
= nplog(2π) + nlog

∣∣9̂∣∣
+

n∑
t=1

E

[(
êt − γt B̂xt,2

)T
9̂

−1

×
(
êt − γt B̂xt,2

)∣∣∣Â, B̂, 9̂
]
,

(29)

and noting that mt = E[γt |Â, B̂, 9̂, yt ] and vt =

Var[γt |Â, B̂, 9̂, yt ] with st = v
1
2
t one has:

E

[(
êt − γt B̂xt,2

)T
9̂

−1(
êt − γ B̂xt,2

)∣∣∣Â, B̂, 9̂
]

= (êt − mt B̂xt,2)T 9̂
−1

(êt − mt B̂xt,2)

+ stxTt,2B̂
T 9̂

−1
B̂xt,2st . (30)

With X̃ ∈ R
2n×(q+r), the t th row being [xTt,1,mtx

T
t,2], the

(n + t)th row being [0Tq , stxTt,2], Ỹ ∈ R
2n×p such that Ỹ =

[YT , 0Tn×p]
T , and Ĉ = (Â, B̂), Equation (30) can be written

as:

E

[(
êt − γt B̂xt,2

)T
9̂

−1(
êt − γ B̂xt,2

)∣∣∣Â, B̂, 9̂
]

−nplog(2π)

= nlog
∣∣9̂∣∣ + tr

([
Ỹ − X̃ĈT ][

Ỹ − X̃ĈT ]T
9̂

−1)
. (31)

It is shown in the Supplement to: Long/Short Equity
Risk Premia Parity Portfolios via Implicit Factors in
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Regularized Covariance Regression, Appendix C, how to
obtain:

(Ǎ, B̌) = Č = ỸT X̃(X̃T X̃)−1, (32)

and

9̌ = (Ỹ − X̃ČT )(Ỹ − X̃ČT )T /n. (33)

Under this formulation, one still needs to fit the model to
each of these implicit factors, depending on the bandwidth(s)
desired or the portfolio horizon(s) under investigation.
Further to this point, the lag (n2) used will have far-reaching
consequences throughout the remainder of the iterative
algorithm - in this work, a monthly window is used.
In the following sections, the regularisation framework is
introduced so as to ensure a smooth estimation of the
dynamic covariance structure over time. Although covariance
regression was introduced in [10] and used in the financial
setting in [31], here a regularisation framework is introduced
with an additional horizon-specific portfolio optimisation
framework using implicit factors in a regularised lagged
covariance regression and long/short equity risk parity
weighting strategies.

C. REGULARISED COVARIANCE REGRESSION
In this section the framework of the covariance regression
model, previously presented, is extended to develop a
regularised version of the random effects formulation in
which regularisation is applied iteratively within the EM
algorithm. Consider the design matrix X̃ ∈ R

2n×r , in which
the t th row is given by [mtxTt,2], the (n + t)th row being
[stxTt,2], Ỹ ∈ R

2n×p such that Ỹ = [[Y − Axt,1]T , 0Tn×p]
T

(note removal of ‘mean’ or detrending), Equation (31) can be
written as:

E

[(
êt − γt B̂xt,2

)T
9̂

−1(
êt − γt B̂xt,2

)∣∣∣B̂, 9̂
]

− nplog(2π)

= nlog
∣∣9̂∣∣ + tr

([
Ỹ − X̃B̂T

][
Ỹ − X̃B̂T

]T
9̂

−1)
. (34)

With this formulation, one can calculate, or rather, define,
the trend to suit one’s requirements. This formulation has
been first described herein and named Independent Mean
Regularised Covariance Regression (IM-RCR). One can
proceed as before by appropriately adjusting Equation (32)
such that:

B̌ = ỸT X̃(X̃T X̃)−1, (35)

and by adjusting Equation (33) such that:

9̌ = (Ỹ − X̃B̌T )(Ỹ − X̃B̌T )T /n, (36)

or B̂ can be estimated in a number of regularisedmeans. Some
of these regularised estimation techniques are described in the
following sections. The key difference between covariance
regression and RCR is the adjustment of the maximisation
step in the EM algorithm.

1) RIDGE REGRESSION WITHIN EM
One can optimise B using Equation (37) which represents the
regularised MSE (RegMSE):

RegMSE(B|Ỹ) = (Ỹ − X̃BT )T (Ỹ − X̃BT ) + λ2
2||B||

2
2

= ||Ỹ − X̃BT + λ2B||
2
2, (37)

with λ2 being the Ridge regularisation parameter, fromwhich
it follows:

B̌λ2 = ỸT X̃(X̃T X̃ + λ2I)−1, (38)

and

9̌λ2 = (Ỹ − X̃B̌Tλ2
)(Ỹ − X̃B̌Tλ2

)T /n. (39)

In this framework, the original covariance regression model
from Equation (35) reduces to B̌λ2=0. This technique
has been named Ridge Regularised Covariance Regression
(L2-RCR). The addition of the ridge penalty provides a
bias variance trade-off that can improve performance of
the covariance forecasting models forecasting and improve
generalisation. However, it introduces a bias at each stage of
the EM algorithm, as discussed in the following section.

2) HOMOGENEOUS AND HETEROGENEOUS RIDGE
REGRESSION
The above description of Ridge regression is a member of
the homogeneous local ridge regression class of regression
models - this class of models uses the same penalty λ2,
throughout the iterative algorithm. There are numerous
instances where a higher flexibility of this penalty termwould
show numerous structures previously unnoticed, as well
as provide invaluable insight into the gradual sequential
regularisation of components. A heterogeneous local Ridge
regression model is described in the following section,
with this family of models allowing appropriately decaying
functions to redirect the solution space allowing for further
flexibility and better resolution capabilities. In Section II-C3
an exponentially decaying penalty is introduced, but this is by
no means exhaustive of all potential decaying functions.

3) EXPONENTIALLY DECAYING BIAS IN RIDGE REGRESSION
In this section is considered an approach that applies
a progressive refinement of the regularisation in which
the estimation starts with a stronger regularisation and
greater bias in order to stabilise the initial solutions to
the M-Step of the EM algorithm. After the iterations of
the EM algorithm proceed, a progressive relaxation of the
regularisation strength in the M-Step of the EM algorithm is
performed. The decay rate of the regularisation can follow
any monotonically decreasing function, we have opted to
illustrate the method with the following functional decay in
the regularisation parameter:

λj = λe−j. (40)

This form of regularisation is found to produce additional
stability in the EM iterative solution achieving more accurate
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estimation in practise along with greater stability in the
solution of the global optimisation objective of the EM
method, and ultimately this in turn generally leads such a
method to require fewer iterative steps in the EM algorithm.
Furthermore, such regularisation can be particularly useful
in higher-dimensional settings, i.e. large covariance matrix
regressions with many covariates (IFs). To demonstrate this,
let:

f (β1, β2; t) = β1x1(t) + β2x2(t) = X̃t B̌, (41)

with,

||Ỹ − f (β1, β2; t)||22 = s2 (42)

it follows from Equation (37) that,√
β2
1 + β2

2 ≤
s
λj

. (43)

From this one can infer that the Ridge penalty or bias
parameter, λ2, functions as a limit on the parameters values
with unique solutions at each penalisation level. If one were
to use Equation (40), one can observe an example of these
various Ridge regression solutions in Figure 5.

FIGURE 5. Exponentially decaying bias in ridge regression example.

4) REGULARISATION VERSUS SELECTION
Ridge regression, as detailed in Section II-C1, is a regulari-
sation technique, whereas in Section II-C3 Ridge regression
takes on the properties of the variable selection model,
as can be seen in the example demonstrated in Figure 5.
More complex methods that function as both regularisers and
variable selectors in their vanilla forms are the least absolute
shrinkage and selection operator (LASSO) regression as
originally proposed in [74] and formalised in [75] and the
least angle regression (LARS) as proposed in [76]. All
of the further techniques discussed within this section are
homogeneous in nature in that the penalisation parameter
is held constant between iterations of the RCR algorithm.
These further RCR extensions can easily be extended
to heterogeneous regression by choosing an appropriately
decaying monotonous function to decease the penalisation
factor iteratively.

5) LASSO REGRESSION
By applying LASSO regression, first formalised in [75], at the
M-step of the EMalgorithm one now has LASSORegularised
Covariance Regression (LASSO-RCR) or L1-RCR. B can
now be optimised iteratively in the M-step using Equation
(44):

RegMSE
(
B

∣∣Ỹ)
=

(
Ỹ − X̃BT

)T (
Ỹ − X̃BT

)
+ λ1||B||1,

(44)

with λ1 being the LASSO or L1 regularisation parameter.
In [77] LASSO regression and Ridge regression penalties
are combined linearly to construct Elastic Net regression
as an early comprise between Ridge or L2 regularisation
and LASSO or L1 variable selection and is discussed in the
following section.

6) ELASTIC NET REGRESSION
By applying Elastic Net regression, proposed in [77], to the
M-step of the EM algorithm, one can optimise B using
Equation (45):

RegMSE(B|Ỹ) = (Ỹ − X̃BT )T (Ỹ − X̃BT )

+ λ2||B||
2
2 + λ1||B||1, (45)

with Elastic Net regression reverting to Ridge regression
when λ1 = 0 and LASSO regression when λ2 =

0. A common redefinition of Equation (45) allows a
heterogeneous regression approach by varying the tuning
parameter, α ∈ [1, 0], in:

RegMSE(B|Ỹ) = (Ỹ − X̃BT )T (Ỹ − X̃BT )

+ λ2(1 − α)||B||
2
2 + λ1α||B||1. (46)

7) SUBGRADIENT DESCENT FOR LASSO AND ELASTIC NET
In the cases, listed above, in which the RegMSE objective
function, in theM-Step of the EM algorithm in the covariance
regression estimation, contains an L1 penalty, then the
standard gradient based optimization methods cannot be
applied. Instead one may adopt a sub-gradient solution as
follows:

minimize ||B||1

subject to X̃BT = Ỹ, (47)

with B1 being initialised from solving Equation (37), the next
iteration is calculated using:

Bk+1 = Bk − αk

(
Ip − X̃T (

X̃X̃T )−1X̃ sign
(
Bk

))
, (48)

where αk is the k th step size, Ip ∈ R
p×p is the identity matrix,

and sign(·) is defined as:

sign(x) =


+1, for x > 0
0, for x = 0

−1, for x < 0

 . (49)

Numerous options are available for the step size, αk . In this
paper, a Polyak step size will be used will be used which is a
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member of the family of square summable, but not summable
step sizes that satisfy the following conditions:

αk > 0 ∀ k > 0,
∞∑
i=0

α2
k < ∞, and

∞∑
i=0

αk = ∞, (50)

for which convergence proofs exist - see [78]. An example
used here is αk =

10−8

k .

III. PORTFOLIO CONSTRUCTION
In this work there are numerous simplifying assumptions
about the temporal and practical problems that arise with
portfolios rebalancing. In Figure 25 an unrealisable S&P
500 proxy is included as a general measure of market perfor-
mance which partly addressed the simplifying assumptions
of zero transaction costs. This proxy is rebalanced daily
based on all 505 constituent stocks’ market capitalisations
with another proxy being included that assumes a daily
rebalancing charge of 0.01% of the total value of the
portfolio (the orange line in Figure 25) that demonstrates how
quickly the inclusion of previously discarded simplifying
constraints can radically alter the results of case studies
demonstrating proposed portfolio optimisation techniques.
In this work a further assumption of exclusively monthly
(cost-free) rebalancing is made.

Several of these rather restrictive simplifying assumptions
are loosened by [79] in the review of multi-period portfolio
reweighting with constraints and transaction costs. [79]
relaxes the restriction of regularly spaced (though monthly is
not uniformly spaced) reweighting instances and generalises
it to N reweighting intervals with a finite horizon. Further,
the ultimate goal of the portfolio optimisation in [79] is
to minimise the mean square deviation of the portfolio’s
return relative to some desired portfolio return. Additional
constraints on portfolio rebalancing also considered in [79]
are linearly increasing transaction costs and restrictions on
shorting. In defence of the relaxation of the transaction
costs inmodelling portfolio optimisation strategies, [79] finds
that despite the inclusion of transaction costs, the resulting
suboptimal trading strategy very closely tracks the optimal
portfolio with no transaction costs.

Among the first to extend portfolio optimisation tomultiple
periods was [80] - an apt analogy is made in [80] that relates
the problem of investing over n horizons to taking a 1

n
th

interest or risk in n independent shipping voyages. Refer-
ence [80] is also, possibly, the first to consider transaction
costs in their portfolio optimisation. Reference [80] notes
that if market imperfections cause loans to be costly, then
investing in volatile stocks to achieve the same desired level
of returns is rational.

The assumptions that all trading opportunities are available
at all times and that they can be enacted costlessly
are criticised by [81] as leading to unrealistic behaviour.
Reference [81] finds that when transaction cost are included
in models that investors will make trades at randomly
spaced intervals (motivated by their knowledge) as opposed

to continuously or uniformly which mimics real-world
behaviour of investors. Further, [82] notes that in the
absence of transactions costs that an investor’s decisions in a
single investment period with a multiple period horizon are
indistinguishable from an investor’s decisions in the same
period over a single horizon with a convex utility function.

Now, considering the maturity-horizon(s) of interest to
investors, onemust select the implicit factors within a specific
frequency band to forecast the covariance over the coming
statically weighted forecast period. One could, for example,
exclude all structures of higher frequency than monthly if
one were reweighting monthly - this is one such contribution
in this work. This dynamic framework affords the user
choices such as the frequency of the implicit factors, maturity
horizons, and leverage constraints of the investor.

Note that throughout this work, the dynamic time series
implicit factor EMD-RCR framework will be used to
produce the covariance dynamically over time that is used
in the portfolio construction. In this section, the risk-parity
portfolio framework will be described. To achieve this,
denote the forecast portfolio covariance by 6yt |xt,1,xt,2 ∈

R
p×p with the required restrictions such as symmetry and

positive-definiteness and the weighting vector being ω ∈

R
p×1, the portfolio standard deviation or risk (σP) is denoted:

σP =

√
ωT6yt |xt,1,xt,2ω. (51)

In practise, arbitrary long- and short-term positions are
not feasible as this assumes incorrectly that a facility
for unlimited borrowing is available. A commonly used
long/short equity weighting limit is 130/30 where:∑

ω>0

ω ≤ 1.30 and
∑
ω<0

ω ≥ −0.30, (52)

must be satisfied in addition to the standard unity summation
restriction. The risk contribution from each asset j, σj, to the
total correlative risk of the portfolio, can be calculated as:

σj = wj
∂σP

∂wj
= wj

(6yt |xt,1,xt,2ω)j
σP

. (53)

The relative risk contribution of each asset, expressed as a
fraction of the entire portfolio, is then calculated:

σj

σP
= wj

(6yt |xt,1,xt,2ω)j
σ 2
P

(54)

Finally, with a given rule for the risk allocation - that is, how
to construct the risk allocation vector (b = [b1, . . . , bp]T ) - a
common rule being equal risk allocation - that is, bj =

1
p ∀ j ∈

{1, . . . , p}, one can calculate the portfolio weighting:

ω∗
= argmin

p∑
j=1

(
wj

(6yt |xt,1,xt,2ω)j
σ 2
P

− bj

)
. (55)

The equal-risk premia parity weighting strategy is the most
commonly used, but others could also be beneficial, such
as weighting risk according to market capitalisations of the
comprising assets.
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IV. REAL-WORLD CASE STUDY: S&P500
In this section the practical aspects of constructing a case
study to illustrate the portfolio methodology developed will
be considered. First, Section IV-A provides an outline of
the construction of the market cap weighted indices that
will form the regression response variables of interest in
this case study and will furthermore be used to construct
the decomposed Implicit Factors used as lagged time series
regression factors. These signals will be based on sectors of
the S&P500 constituent companies. Then in Section IV-C
an explanation of how these IMFs (intrinsic mode functions
- implicit market factors) will be used in the covariance
regression setting.

The implicit regression factors extracted from these sector
indices for this case study will be based on IMFs extracted
using EMD. The IMFs extracted from each of the eleven
market indices are sorted using EMD-MDLP (first intro-
duced in [8]). The Minimum Description Length Principle
(discussed further in Section IV-C1) will be used to sort the
decomposed components into qualitative groups representing
a specific time scale (frequency bandwidth spectral groups)
for the financial information they implicitly characterise.
These will be used to assess which frequency components are
best for estimating the forthcoming covariance for monthly
portfolio rebalancing. This sets an important benchmark,
as monthly portfolio rebalancing is tested based on different
bandwidths of risk. Independent Mean RCR (IM-RCR) will
be used to regress the covariance of the returns against the
various extracted factors.

A. COVARIATE EXTRACTION: IMF INDEX FEATURES
The S&P 500 includes 505 large market cap stocks that
serve as a proxy for the general state of the United States
of America (and the global) economy. These 505 stocks
are separated into eleven sectors (based on the relative
market capitalisation of the assets within each of the sectors),
namely: Communication Services, Consumer Discretionary,
Consumer Staples, Energy, Financials, Health Care, Indus-
trials, Information Technology, Materials, Real Estate, and
Utilities. Each index consists of all stocks in the related
sector weighted by the market cap of the individual asset
within the sector. Five years of daily observations are used
from 31 December 2016 to 31 December 2021 in this case
study.

Two notable features can be discerned fromFigure 6. There
is a significant drop in most of the indices in the last quarter
of 2018. This is attributable to a number of factors such
as the President of the United States imposing tariffs on
industrial materials, interest rate increases leading to fears of
a recession, the largest information technology stocks being
under increased scrutiny, and inflated stock prices at the time
being driven by tax cuts imposed by the President of the
United States. The second notable feature is the significant
and immediate drop in all indices at the beginning of 2020 as
a result of the SARS-CoV-2 pandemic.

These two notable periods of marked market depreciation
of differing magnitudes and intensities are of particular
interest to this study, as two events occurred in the world
resulting in significant increased positive correlation and
depreciation amongst the assets. These two studies, however,
are not identical because of the longer less-certain downturn
period owing to a number of contributory economic factors
and the correlation structure being different compared to
the accelerated correlation coupling and increased rate
of downturn. RCR allows for the study of these two
different regions of significant market downturn and dynamic
covariance.

With this framework, one can respond to either
market-shock event by using selected implicit factors within
specific bandwidths based on the forecasted period of
downturn. In the following section, the realised covariances
for the periods from 2 October 2018 until 23 December 2018
(extended low-intensity period of depreciation - 82 days)
and 28 February 2020 until 1 April 2020 (short high-intensity
period of depreciation - 32 days) will be calculated and
compared against the forecasted covariance using selected
implicit factors using an appropriate metric.

FIGURE 6. Eleven sector indices weighted by market cap from the S&P
500 with two periods of marked market depreciation of varying durations
noted for comparison with Figure 19.

B. CORRELATION COUPLING
This section of the analysis will outline time periods of
relevance in the S&P500 markets that one can explore as
challenging times for studying the covariance regression
based EMD-RCR framework. Challenges include rapid and
slow market drawdowns, as well as rapid versus slow market
appreciations. Such time-period selections will allow one to
assess how well the EMD-RCR methodology captures the
estimated correlation structures during periods of varying
lengths of marked market depreciation.

Standard practise is to use the realised covariance over
a fixed window, and it is assumed that this covariance is
stationary over the forecast horizon - it is assumed to be
static over the forecast period. The covariance regression
model allows dynamic covariance regression using implicit
factors; daily covariance can be forecast. In Figures 7, 8, 9,
10, 11, and 12 the covariance realised between the eleven

VOLUME 12, 2024 119419



C. V. Jaarsveldt et al.: Long/Short Equity Risk Premia Parity Portfolios via Implicit Factors

indices changes dramatically and almost instantaneously
during periods of increased financial stress. In Figures 7, 8,
and 9 a window of 82 days is used for consistency with the
approximate duration of the first market downturn. In the
second set of figures, namely Figures 10, 11, and 12 a
window of 32 days is used to capture the compressed nature
of the second market downturn, namely the SARS-CoV-2
pandemic.

The first period of market downturn is taken as being (for
this study) from 2 October 2018 until 27 December 2018
(82 days), and the second period of market downturn is
taken as being (for this study) from 28 February 2020
to 1 April 2020 (32 days). These windows are used
as they capture the entire periods of near-continuous
market depreciation. The realised covariance calculated
in Figures 7, 8, and 9 uses the 82-day window, while in
Figures 10, 11, and 12 the realised covariance is calculated
using the 32-day window. For comparison, the best-fit model
(Kullback–Leibler divergence or ‘relative entropy’) for each
period is in this article, with numerous other factors and
further analysis is provided in the supplement.

FIGURE 7. Realised covariance of 11 indices over 82-day window before
first recession.

Direct comparisons should be made between
Figures 8 and 13, and Figures 11 and 16, respectively. The
Kullback-Leibler (KL) divergence between Figure 7 and 8
is: DrealKL (6||6x) = 132.69, while the KL divergence
between Figure 13 (covariance forecast using the high
frequency utilities component extracted using EMD) and
Figure 8 is: DU ,IMF

KL (6||6x) = 119.50. This is a significant
(approximately 10%) decrease in ‘distance’ between the
objects in this PSD hyper-cone space when compared against
stationary model assumption where the previous covariance
is taken as the best stationary estimate.

To a further point, this estimate is not only a significant
improvement over standard practise, but also splits the
covariance into a baseline unattributable covariance in
Figure 14 and the attributable covariance in Figure 15. The
attributable covariance in Figure 15 shows interesting and
possibly unexpected correlation structures. It is revealed

FIGURE 8. Realised covariance of 11 indices over 82-day window during
first recession.

FIGURE 9. Realised covariance of 11 indices over 82-day window after
first recession.

FIGURE 10. Realised covariance of 11 indices over 32-day window before
second recession.

that structures in the utilities factor leading up to the
marked market downturn have contributed to relatively large
correlations between materials and information technology
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FIGURE 11. Realised covariance of 11 indices over 32-day window during
second recession.

FIGURE 12. Realised covariance of 11 indices over 32-day window after
second recession.

and other sectors with almost no attributable correlation
between utilities and other sectors, which is expected during
periods of stress - utilities are normally uncoupled from the
others.

In Figure 18, similar inferences can be made. In Figure 18
it appears that the structures present in the low-frequency
and high-frequency Information Technology sector leading
up to the SARS-CoV-2 pandemic had predictive capabilities
for the severe and accelerated economic downturn caused by
the pandemic. Again, Information Technology and Materials
sectors appear to be most affected by these structures, with all
sectors being affected with a notable exception being utilities
that, again, perform quite independently of the other sectors.

One has flexibility in the choice of the window length
for measuring realised covariance amongst a group of
variables. There is no ideal one-size-fits-all window in
finance with weekly, monthly, quarterly, etc. being used for
convenience - the model presented in this work attempts
to formalise an instantaneous correlation structure which is

FIGURE 13. Best fitting model S&P500 portfolio covariance forecast
(6yt |xt,1,xt,2 ) using 82-day lagged window and high frequency Utilities
implicit factor.

FIGURE 14. Best fitting model S&P500 portfolio unattributable
covariance forecast (9yt |xt,1,xt,2 ) using 82-day lagged window and high
frequency Utilities implicit factor.

window-independent and does not exist in the traditional
covariance and correlation framework. The figures demon-
strating the covariance structures of the eleven market indices
before, during, and after the two stressed market events
demonstrate the dynamics of covariance during periods of
stress, covariance and correlation are usually presented as
fixed or, at the very most, varies slightly and slowly.

In Figure 19 two notable downward momentum market
draw down periods for the S&P 500 over the past four years.
It is directly observable that during these periods one can
see a sudden and strong positive coupling in correlation
relationships between sectors. In the last quarter of 2018 a
number of contributing factors led to a relatively prolonged
period of marked market depreciation, whereas the short but
extreme period of marked market depreciation in the first
quarter of 2020 is solely attributable to the SARS-CoV-2
pandemic. A third notable feature, not explicitly highlighted
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FIGURE 15. Best fitting model S&P500 portfolio attributable covariance
forecast (Bxt,2xT

t,2B
T ) using 82-day lagged window and high frequency

Utilities implicit factor.

FIGURE 16. Best fitting model S&P500 portfolio covariance forecast
(6yt |xt,1,xt,2 ) using 32-day lagged window and high and low frequency
Information Technology IMFs.

in Figure 19, can be seen at the end of 2020 and at the
beginning of 2021. This is as a result of a reflexively and
stimulus-cheque driven period ofmarkedmarket appreciation
as a result of the extreme government intervention in the
financial market.

Figures 14 and 15 are the decomposition of Figure 13 with
Figures 17 and 18 being the decomposition of Figure 16
according to Equation (17). These are the best-fitting
models during their respective periods of marked economic
downturn, with further analysis using other components
that showed significant forecasting abilities being in the
supplement along with all KL divergence scores compared
against stationarity assumption benchmark. From Figure 19 it
is observable that the low andmid-frequency structureswould
be unsuitable during periods of economic stress owing to the
rapid change in correlation structures - these would be more
suited to periods of relative stability.

FIGURE 17. Best fitting model S&P500 portfolio unattributable
covariance forecast (9yt |xt,1,xt,2 ) using 32-day lagged window and high
and low frequency Information Technology IMFs.

FIGURE 18. Best fitting model S&P500 portfolio attributable covariance
forecast (Bxt,2xT

t,2B
T ) using 32-day lagged window and high and low

frequency Information Technology IMFs.

The above forecasts, Figures 13 and 16, of the periods of
marked market downturns or recessions (depending on your
definition), Figures 8 and 11, respectively, both show the
time it takes for the lagged-effects covariance regression to
respond to the in-sample covariance. Sudden, rapid shocks,
external (in some sense) to the data (such as SARS-CoV-2)
cause the model to take time to adjust. Further, EMD-
RCR allows the separation of the frequency structures for
forecasting and decision-making, such as passive managers
focusing on themid- to low-frequency components withmore
active managers (higher frequency trading) focusing on the
highest frequency components.

C. COVARIANCE REGRESSION
With X ∈ R

TX×m being the m covariates (of variable
dimension owing to IMFs produced by sifting algorithm)
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FIGURE 19. Forecasted instantaneous correlation structures versus
20-day rolling window of realised correlation of ten sector indices versus
Energy weighted by market cap from the S&P 500.

over the previous 11 months (TX of variable day length) and
Y ∈ R

TY×11 being the log-returns of the 11 indices over the
most recent 11 months (TY of variable day length), one can
construct the optimisation problem as in Equation (34):

E[(et − γtBxt,2)T9−1(et − γtBxt,2)|B̂, 9̂] − nplog(2π)

= nlog|9| + tr([Ỹ − X̃BT ][Ỹ − X̃BT ]T9−1), (56)

with et being the error term vector at increment t , γt
being the random effects variable, B the parameter matrix
to be estimated, xt,2 ∈ R

1×m, and 9 being the base or
unattributable covariance structure. As TX and TY may be
different owing to the variable month lengths of throughout
the year, a standard T is calculated such that:

T = min(TX ,TY ). (57)

The intervals used for fitting and forecasting, respectively, are
demonstrated more clearly in Figure 20. In this framework,
there is a one month delay between the underlying structures
in the price process and the resulting change in the covariance
structure. There may also be a difference in length between
the IMFs period used to for forecasting and the covariance
of returns to be forecast. This is not as relevant as the fitting
period discrepancy as the median of the forecast covariance is
taken to calculate the portfolio weighting for the forthcoming
month. In Figure 20, without loss of generality, the interval
truncation demonstration is made assuming that TX > TY .

1) MINIMUM DESCRIPTION LENGTH BINNING AND EMD
First proposed in [8], this technique is now used with
modifications designed to cope with discrepancies often
found in real world data. Unlike in [8], when dealing with
real-world data, as opposed to well-behaved and easily
separable synthetic data used first for the creation of this
method, often the entire set of data is not easily classifiable
using MDLP. An example of t31 of the first monthly
iteration of the algorithm is shown in Figure 21 with two
cut points. In this setting with potential cut-points, Tk , and
the corresponding partitions of set S such that cut-point

FIGURE 20. Plot demonstrating the delay between the covariates (IMFs or
SSA trends extracted from price processes) and response variable
(returns) and how period discrepancies are handled.

Tk partitions S into dichotomous subsets STk1 and STk2 , the
optimisation function is as follows:

minTk (E(Tk ;S)), (58)

with E(Tk ;S) being the entropy or class information entropy
that is induced by the partitioning by Tk of S such that:

E(Tk ;S) =
|STk1 |

|S|
Ent(STk1 ) +

|STk2 |

|S|
Ent(STk2 ), (59)

with,

Ent(STkj ) = −

m∑
i=1

P(Ci,S
Tk
j )log(P(Ci,S

Tk
j )), (60)

with P(Ci,S
Tk
j ) =

|{Ci}|

{S
Tk
j }

, |{·}| being the cardinality measure,

and with Ci being the class of objects that displays feature i
within STkj .

FIGURE 21. Plot demonstrating how an MDLP algorithm is applied
iteratively.

D. LONG/SHORT EQUITY RISK PARITY PORTFOLIO
Once the covariance has been forecast for the month
ahead, the median (more robust measure than mean) of the
covariance is calculated. With the median of the forecast
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covariance being denoted by 6med , the long/short equity risk
parity portfolio is calculated as:

ω̃med = argmin
N∑
j=1

(
ωj

(6medω)j
ωT6medω

− bj

)
, (61)

subject to,
N∑
j=1

ωj = 1, and (62)

N∑
j=1

ωjI{ωj≥0} ≥ klong for klong

≥ 1, and
N∑
j=1

ωjI{ωj≤0} ≥ kshort for kshort ≤ 0,

(63)

with klong = 130% and kshort = −30% being used through-
out this paper as both a risk moderating technique as well
as a real-world limitation proxy. If kshort = 0, this restricts
the investor to only long positions. While the criticism of a
long-only market goes back to at least [83], the formalisation
of the long/short equity investment strategy with short
summation limits can be attributed to [84], [85], and [86].

V. RESULTS
This section begins with Section V-A which outlines
several benchmark portfolios and benchmark techniques for
portfolio construction, against which the performance of the
regularised covariance regression risk parity portfolios will
be measured. In this section, five benchmark portfolios are
introduced, namely: realised covariance risk parity portfolio,
DCC-MGARCH risk parity portfolio, market cap weighting
portfolio (as a proxy for the S&P 500), global minimum
variance portfolio, and a principal component portfolio using
three components.

The performance of these five benchmark portfolios will
be measured using several well-known portfolio perfor-
mance measures that are outlined in Section V-C. Classical
measures such as cumulative returns (Section V-C1), mean
returns (Section V-C2), and variance of returns or risk
(Section V-C3 are discussed first. As risk parity portfolios
are constructed to equally distribute risk, somemore complex
performance measures are required such as Value-at-Risk
(Section V-C4), Maximum Drawdown (Section V-C5),
Omega Ratio (Section V-C6), Sortino Ratio (Section V-C7)
and Sharpe Ratio (Section V-C8).

A. BENCHMARKS
These benchmarks serve as viable and practised alternatives
to the portfolio construction methods under investigation
in the paper. The performance of these portfolios will be
measured using the measures below.

1) REALISED COVARIANCE
This is the most common industry practise where the best
estimate for the forthcoming portfolio balancing period’s

covariance is the current realised covariance structure looking
backwards an agreed upon period. In the current paradigm,
with this given covariance assumption looking ahead, one
should use the same portfolio weighting technique, namely
risk-parity portfolio weighting.

2) MULTIVARIATE GARCH
Multivariate GARCH models or MGARCH models are
thoroughly reviewed in [30]. At their core, the various
models try to find a concise, viable, and natural extension
of univariate GARCH models. The most complex family
of these models, the nonlinear combinations of univariate
GARCH, includes the DCC-GARCH model where, as can
be seen in the supplementary materials, the forecasted
covariance simply becomes some bases forecasted covariance
multiplied by the square root of the number of days into
the future one is forecasting the variance. This very much
mimics the uncertainty present in the Brownian motion. As a
result, the median of the covariance structure forecasted over
the next month will not differ significantly from the realised
covariance above. Close monitoring of these two portfolios
shows this.

3) MARKET CAPITILISATION WEIGHTING
This is a natural benchmark that functions as a proxy for the
actual S&P 500. This is equivalent to weighting every one
of the 505 assets by their individual market caps - the same
result is obtained by weighting the eleven sector indices by
their respective cumulative market caps.

4) GLOBAL MINIMUM VARIANCE
This portfolio strategy is a well-established means of
minimising portfolio variance at the cost of returns. In the
absence of any weighting restrictions (besides of course that
the weights sum to 1), the weight vector that minimizes the
variance of the portfolio is:

ωMV =
6−11

1T6−11
. (64)

This solution is in the absence of any short-selling restric-
tions. To disregard short-selling entirely would view a solely
one-sided unrealistic market; any theory that disregards what
is seen in practise should be rejected outright. This is
discussed in [83].

5) PRINCIPLE COMPONENT PORTFOLIO
Given a covariance matrix, 6 ∈ R

11×11, and a specified
number of components, c, such that c ≤ 11, one can construct
a principal portfolio with a weighting vector:

ωPC = (diag(1)/1T diag(1))(0/(1T0)) (65)

with 1 being the diagonal matrix containing the singular
values of the PCA decomposition, 0 being the matrix
containing the corresponding principle components of the
PCA decomposition, and with 1 ∈ R

c×1 being the vector of
ones where c is the number of desired components.1 ∈ R

c×c
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and0 ∈ R
11×c are the solutions to the following optimisation

problem:

argmin0,1MSE
(
6 − 010T

)
. (66)

B. FORECASTING PERFORMANCE MEASURES
The covariance forecasting ability of the model presented
herein can be measured on a monthly basis by either com-
paring the forecasted monthly covariances directly with the
realisedmonthly covariance or by using the resulting efficient
frontiers which can also be used to contrast the resulting
efficient frontiers with the forecasted efficient frontiers using
low-frequency, mid-frequency, and high-frequency implicit
factors.

1) EFFICIENT FRONTIERS
With reference to Figure 6, Figures 22, 23 and 24, one can
observe the precision, as well as the shortcoming, of monthly
efficient frontier forecasting using internal factors during
periods of stability and periods of instability due to external
factors. In Figures 22 and 24 the implicit factors of highest
frequency forecast the efficient frontier with the best accuracy
during these two periods. In Figure 23 all efficient frontier
forecasts are inaccurate due to the market downturn due to
external factors not exhibited in the implicit factors.

From Figures 22 and 24 the mid- and low-frequency
structures overestimate the variance of the portfolios over
the majority of efficient frontiers. In Figure 23 all efficient
frontier estimates are relatively inaccurate as a result of
external market factors. This analysis is the first of its kind
and provides valuable information about different frequency
implicit factors that are used to forecast the forthcoming
covariance structure of assets.

FIGURE 22. Plot comparing efficient frontiers using forecast covariance
and realised covariance using realised returns for September 2018.

C. PORTFOLIO PERFORMANCE MEASURES
The following sections detail various performance measures
that will be used to compare and contrast the IMF and SSA
RCR portfolios against the five well-established techniques

FIGURE 23. Plot comparing efficient frontiers using forecast covariance
and realised covariance using realised returns for October 2018.

that function as benchmark portfolios mentioned above.
Cumulative returns, mean returns, and variance of returns
or risk are the most well-known and simple performance
measures and are discussed in Section V-C1, Section V-C2,
and Section V-C3, respectively. In Section V-C4, the value-
at-risk measured for the various portfolios and benchmarks
with a significance value of 5% such that α = 0.05. This
quantifies the 5% worst-case scenario of daily losses over the
previous window. In Section V-C5, the maximum drawdown
is the difference between the minimum daily returns and the
maximum daily returns, normalised by the minimum daily
returns.

FIGURE 24. Plot comparing efficient frontiers using forecast covariance
and realised covariance using realised returns for October 2018.

Section V-C6 details the omega ratio that calculates the
ratio of the maximum profit from a call option on the
asset during the previous window to the maximum profit
from a put option on the asset during the previous window.
Sections V-C7 and V-C8 outline the Sortino ratio and
Sharpe ratio, respectively. These two ratios are similar, but
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the Sortino ratio is a refinement of the Sharpe ratio. The
Sharpe ratio measures the returns above the risk-free rate
standardised by the risk over the previous period, but the
Sortino ratio refines this by measuring the returns above
the risk-free rate standardised by only the downside risk
over the previous period; this is seen as a better measure of
the risk.

1) CUMULATIVE RETURNS
At time t , the cumulative returns of a portfolio, CRt , can be
calculated as:

CRt =

t∏
s=1

eRs = e
∑t

s=1 Rs , (67)

with Rs being the daily return on day s. All implicit
factor portfolios have final cumulative returns between
those of the lowest benchmark portfolio (minimum variance
portfolio) and the highest benchmark portfolio (the S&P
500 proxy or the maximum Sharpe portfolio). As cumulative
returns (as well as all other performance measures in
addition to annualized returns in Section V-C9) are for
a single realisation of the implicit factor portfolios, the
final evaluation of their performance will be reserved until
Section 33. The S&P 500 proxy performs well being more
heavily weighted towards Information Technology stocks
that have performed well since the SARS-CoV-2 pandemic
as a result of government assistance and paradigm-shifting
lockdowns and work-from-home protocols.

A specific note can be taken of the PCA portfolio over
the first two years. The portfolio has favourable returns
above the other portfolios, but as a result of the weighting
strategy (without any variance considerations), the portfolio
is very responsive to drops in the economy. This happens
during the 2018 lull, and one can note that the low frequency
MDLP portfolio responds positively where the PCA responds
negatively to essentially reverse positions. The PCA portfolio
is no longer in contention from this point forward. Most
implicit factor portfolios recover well from the SARS-CoV-
2 pandemic-fuelled period of marked market depreciation,
but as a result of the shorting restriction, the portfolios
are susceptible to large fluctuations. The low-frequency
MDLP portfolio exceeds its higher-frequency counterparts in
cumulative returns.

2) MEAN RETURN
The mean return of a portfolio over a window width of length
T , at time t can be calculated as:

µt = E[Rt ] ≈ µ̂t :=
1
T

T−1∑
s=0

Rt−s. (68)

Figure 26 displays the mean returns of the various portfolios
over the previous 30 day window. Most portfolios follow
each other quite closely, with a few exceptions. The two
main outliers are the PCA and the maximum Sharpe ratio

FIGURE 25. Cumulative returns of risk parity portfolios versus
benchmarks.

portfolios - this increased variation in the returns has already
been observed in the cumulative returns in Figure 25.

FIGURE 26. Mean returns of risk parity portfolio versus benchmark mean
returns.

3) RISK
The unbiased variance estimate of a portfolio at time t with
moving window of length T can be calculated as:

σ 2
t = E[(Rt − µt )2] ≈ σ̂ 2

t :=
1

T − 1

T−1∑
s=0

(Rt−s − µt )2.

(69)

Figure 27 shows the variance over the moving window of
the various portfolios. The largest variances reflect what
has already been said about the cumulative returns and the
mean returns of the PCA portfolio and the maximum Sharpe
portfolio. The two major unanimous periods of increased
variance have already been noted in the plot of the underlying
indices and their respective correlations. During the SARS-
CoV-2 pandemic, the variance is lowest in the minimum
variance portfolio as is to be expected.

4) VALUE-AT-RISK (VaR)
Given a significance level, α = 0.05, and a window, T , the
Value-at-Risk of a portfolio gives the α percentile return over
this window - this performancemeasure shows the worst-case
scenario for the portfolio. The Value-at-Risk of a portfolio at
time t over moving window T can be calculated as:

VaRtα,T = F−1
Rt ,T (α) ≈ V̂aRtα,T := F̂−1

Rt ,T (α), (70)
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FIGURE 27. Variance of returns for risk parity portfolio versus
benchmarks.

with FRt ,T (α) being the cumulative distribution of the daily
returns, Rt , over the period T at significance α. As can be
noted in Figure 28, the PCA portfolio and the maximum
Sharpe ratio portfolio have the largest Values-at-Risk. One
may also note that all of the portfolios have similar Values-
at-Risk during the SARS-CoV-2 Pandemic - this coupling of
losses resulting in a significant correlation coupling that can
be seen in the instantaneous covariance structures modelled
by covariance regression and can be observed in Figure 19.

FIGURE 28. Value-at-risk of returns for risk parity portfolio versus
benchmarks.

5) MAXIMUM DRAW-DOWN
The maximum drawdown is similar to the Value-at-Risk in
that it uses the worst-case scenario as a measure of the
performance of the portfolio. Maximum drawdown differs
in that it measures the worst-case scenario when compared
against the best-case scenario and then standardised using the
best-case scenario. Given period T , the maximum drawdown
of a portfolio at time t can be calculated as:

MDDt =
min(Rt−T+1, . . . ,Rt ) − max(Rt−T+1, . . . ,Rt )

max(Rt−T+1, . . . ,Rt )
.

(71)

The maximum drawdown has an upper-limit of 0, where the
Value-at-Risk has no theoretical upper-limit. The maximum
drawdown is more erratic than the Value-at-Risk owing to the
lack of the distribution in calculating the value. Themaximum
draw-down values that most break from the observable trend
are the principle portfolio and the maximum Sharpe portfolio.

FIGURE 29. Maximum Draw-Down of returns for risk parity portfolio
versus benchmarks.

6) OMEGA RATIO
TheOmega ratio is the ratio of a hypothetical call option value
to the hypothetical put option value over the previous window
period. The Omega ratio, like the maximum drawdown, has
a theoretical limit. Unlike the maximum drawdown, this is
a theoretical lower limit where a Omega ratio can never be
below zero - there is no theoretical upper limit. A larger
Omega ratio is therefore desirable. Given a period, T , the
Omega ratio of a portfolio can be calculated as:

�t,T (0) =

∫
∞

0 (1 − FRt ,T (r))dr∫ 0
−∞

FRt ,T (r)dr

≈ �̂t (0) :=

∫
∞

0 (1 − F̂Rt ,T (r))dr∫ 0
−∞

F̂Rt ,T (r)dr
, (72)

with FRt ,T (r) being the cumulative distribution of the daily
returns over the period T . All portfolios (even the minimum
variance portfolio) appear to demonstrate significantly large
omega ratios at various periods over the previous four years.
This indicates that this is interesting period over which to
apply portfolio optimisation techniques. One of the largest
observable omega ratios are for the low frequency MDLP
portfolio - this is a noteworthy feature as already observed
in Section V-C1, the low frequency MDLP portfolio is able
to respond more appropriately than its higher frequency
counterparts.

FIGURE 30. Omega Ratio of returns for risk parity portfolio versus
benchmarks.

7) SORTINO RATIO
The Sortino ratio was introduced in [87] as a better alternative
to the traditional Sharpe ratio. The returns above the risk-free
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rate is standardised used only the downside risk. Given a
period, T , the Sortino ratio at time t , can be calculate as:

SRt =
µt − rf√

E[(Rt − µt )2I(Rt < 0)]

≈ ŜRt :=
µ̂t − rf√

1
T−1

∑T−1
s=0 (Rt−s − µ̂t )2I(Rt−s < 0)

.

(73)

The Sortino ratios observable in Figure 31 are similar to the
structures observable in Figure 30. This is attributable to both
measures that track positive returns to some measure of the
risk of negative returns. The maximum Sharpe ratio portfolio
is the clear outlier over the vast majority of the 4 year period
- this is as expected given this weighting strategy seeks to
maximise the relative returns.

FIGURE 31. Sortino Ratio of returns for risk parity portfolio versus
benchmarks.

8) SHARPE RATIO
The Sharpe ratio was introduced in [88] as a reliable measure
of relative portfolio performance. Without the context of the
level of variance of the returns about some underlying mean,
a high return is obviously preferred to a slightly lower return,
but should there be far less variance in the portfolio with
a slightly lower return than in the portfolio with the higher
return, many investors would prefer the near-guaranteed
lower return to the less-guaranteed higher returns. The Sharpe
ratio at time t with window length T can be calculated as:

Sharpet =
µt − rf

σt
≈ Ŝharpet :=

µ̂t − rf
σ̂

. (74)

The Sortino ratio can be seen as a refinement of the Sharpe
ratio, as the Sortino ratio measures the excess return above
the risk free rate relative to only the variance of the negative
returns compared to the Sharpe ratio measuring the excess
returns above the risk free rate relative to the variance of all
returns. This makes interpretation more difficult, as outliers
become harder to detect and the interpretation opaque. All
portfolios appear to have either the most negative or the most
positive Sharpe ratio over the previous four-year period - this
includes the minimum variance portfolio.

a: MAXIMUM SHARPE RATIO PORTFOLIO
With ωMSR ∈ R

N×1 being the portfolio weighting vector,
µ ∈ R

N×1 being the vector of individual asset returns,

rf being the risk free rate which one can set to 1%, with
6 ∈ R

N×N , being the covariance of the returns, and with
1 ∈ R

N×1 being the vector of ones, the maximum Sharpe
ration portfolio weights be calculated as:

ωMSR =
6−1(µ − rf 1)

1T6−1(µ − rf 1)
(75)

FIGURE 32. Sharpe Ratio of returns for risk parity portfolio versus
benchmarks.

9) ANNUALISED RETURNS
To make a fair assessment of the efficacy of the technique
presented here, the simulations were run a total of 250 times.
The annualized returns of the five benchmark portfolios,
as well as the distributions of the different frequency
long/short equity portfolios, are plotted in Figure 33. The
mean, variance, and skewness of each of the distributions are
tabulated in Table 1 for additional context.

As expected, the minimum-variance portfolio has the
lowest annualised returns of the five benchmark portfolios.
The realised covariance, the DDC-GARCH portfolio, and the
principal portfolio all have similar annualised returns. The
greatest annualised returns among the benchmarks is clearly
the S%P 500 proxy - this large annualised return is assisted
by the larger weightings of the Information Technology
sector, which had a stellar performance since the SARS-CoV-
2 pandemic as a result of intensive government assistance
and increased adoption of technology (AMZN, ZM, NFLX,
et cetera) owing to the various stay and work from home
protocols.

The means of the various long/short equity implicit factor
portfolios differ by several points, the maximum difference
being approximately 68 points between the high-frequency
long/short equity portfolio and the low-frequency long/short
restriction portfolio. The lowest frequency portfolio has the
highest average returns compared to the other portfolios. This
is as expected as a result of the relatively lower frequency
implicit factor portfolios being able to adjust at a frequency
most appropriate for monthly rebalancing. The mean returns
of the portfolio using mid frequency structures are midway
between the high frequency portfolio and the low frequency
portfolio, as one would expect.

This analysis remains relevant when assessing the vari-
ances of the various portfolios. An important feature is that
as the frequencies of the underlying implicit factors decrease,
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the variances increase - this is counter to the analysis of
the means in that the higher frequency structures allow the
portfolios to adapt more rapidly to underlying structural
changes, and as a result they have on average lower variances.

The skewness of the portfolios also have notable fea-
tures.The least skewness value is the high frequency portfolio

TABLE 1. First three centred moments of different frequency risk parity
portfolios with long/short equity weighting restrictions.

using the implicit factor covariance forecasting; this means
that it is the most positively skewed distribution meaning that
on average the returns of the portfolios would be higher than
the mean. In conjunction with reasonable returns, low relative
variance, and large negative skewness, the best-performing
portfolio is the long/short restricted implicit factor portfolio
using high frequencies.

One should note the ubiquitous trend among mean,
standard deviation, and skewness in that as the frequencies
of the underlying implicit factors decrease, these values all
increase. The returns for the low-frequency portfolio may be
higher on average, but there is far more uncertainty in the
consistency of these returns. Further study and analysis is
needed before a conclusive technique is agreed upon as best
for a monthly portfolio rebalancing.

FIGURE 33. Annualised returns of benchmarks versus distribution of
long/short equity risk parity portfolios.

VI. CONCLUSION
This paper describes several modern techniques rarely
applied to financial data. The implicit factor extraction
techniques discussed in Section II-A allow implicit factors
to be used in modelling the covariance structure of financial
instruments. The MGARCH techniques (given further expo-
sition in the supplementary materials) are the current state of
the art in covariance modelling in the financial setting (DCC
MGARCH is used as a benchmark in our case study).

The results in Section V suggest that the performance of
the long/short equity risk premia parity portfolio weighted
based upon the covariance forecast using the implicit
factors exceeds the analogous DCC MGARCH portfolios
in a significant proportion of the simulations.The implicit

factor portfolios appear to exceed more traditional methods
(based on the measures used within this work), and beyond
traditional models, allow one to directly model variance as
attributable to specific market influences.

An exception is the cumulative returns of the S&P
500 proxy that grew significantly over the past four years
(without considering the cost of daily trading expenses -
this is used as a proxy for the general state of the economy
and not tradeable). This is primarily due to the heavy
weighting of technology companies within the index and the
stellar adoption and performance of these companies after
the SARS-CoV-2 pandemic and their subsequent elevated
recovery (beyond the general market - see Figure 6) after the
pandemic-induced sell-off.

The improved performance, as measured by several risk
metrics, of the implicit factor models is due to the covariance
structure being able to adjust to time-frequency changes in
underlying implicit factors as proxies of trends in the indices
and market. This paper promotes the development of implicit
financial factor extraction to be used as factors or input
variables in RCR to forecast the covariance structure of the
underlying assets for inclusion and reweightings in portfolios.

RCR may be used without implicit factors, but rather
using explicit factors such as unemployment rate or the
federal funding interest rates, but are often then prone to
discontinuities and stagnation in values - techniques would
need to be developed within this framework to deal with
the different frequency observations such as those developed
in [89]. Without methods that monitor public opinion, such
as natural language processing models, the daily movements
in indices serve as a good proxy for the instantaneous opinion
of the market.

Long/short equity weighting strategies and portfolio
weighting techniques that promote risk parity deserve
further study. We demonstrate these methods pair well with
covariance regression methods in our case study with the
high-frequency IMFs being most able to capture the evolving
market conditions and construct a consistently low variance
portfolio. All the techniques should be used more frequently
and simultaneously in the pursuit of a portfolio optimisation
framework.

VII. DISCUSSION
As discussed in Section II-A, VMD was discussed as a
viable alternative to EMD and the other implicit factor
extraction techniques discussed therein. [41] (who proposed
VMD) found VMD to be more accurate in decomposing
certain types of structures. VMD and EMD should be
investigated further in the context of their accuracy in
decomposing financial time series. Independent Component
Analysis (ICA), which was proposed in [90], has been shown
in [8] to be effective when paired with EMD (to form
EMD-ICA or ICA-EMD) to isolate the underlying structures
in simulated synthetic financial data.

The effectiveness of ICA versus PCA is examined by
[91] in its ability to forecast the 28 largest Japanese stocks
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using 3 years’ of daily returns. ICA is shown to be more
effective than PCA in capturing the dynamics of the stocks
and to more accurately reconstruct the stocks. Reference [92]
examines ICA’s ability to better forecast the returns of stocks
using the higher order mutual information (provided by
ICA) with the intention of extending portfolio optimisation
beyond traditional mean-variance optimisation. ICA shows
promise in the analysis of financial time series with [93]
demonstrating how ICA can be used to augment partial
correlation coefficients (PCCs) - see [94] - to better isolate the
correlation between structures by removing the correlations
induced by other structures present.

The absence of the non-linear dependencies in the
normalised elements of the precision matrix are addressed by
[95] . The precision matrix is the inverse of the covariance
matrix with the normalised elements thereof being the partial
pairwise correlation coefficients. Reference [95] addresses
this problem by proposing a generalised PCC model which is
derived from the perspective of a multivariate mixture model.

Direct extensions of the framework described in Section
IV-C are presented in [10] with these being given exposition
in [31], [73], [96], and [97]. Reference [98] serves as an online
appendix to [31]. Confidence bounds for the covariance
values calculated using the framework described in Section
IV-C are estimatable using the marginal distributions of
each of the covariates used in calculating the covariance
forecasts. Reference [73] uses this framework to estimate
the confidence bounds for the individual skewnesses of the
low-interest rate country currencies of the Japanese Yen,
Swiss Franc, and Eurozone Euro.

The paper that proposed covariance regression through the
random effects framework presented herein, [10] , proposes
direct, higher-order, extensions of Equation (14) which is the
random effects representation of our covariance regression
such as:

yt = Axt,1 + γtBxt,2 + φtCxt,3 + · · · + ϵt , (76)

with,

E[γt ] = 0, Var[γt ] = 1,E[γtϵt ] = 0,

E[φt ] = 0, Var[φt ] = 1,E[φtϵt ] = 0,

and Cov[γtφt ] = 0.
... (77)

The interpretation ofCxt,3 is difficult in the presence ofBxt,2
and other additional orders of Equation (14). The extensions
of [10] and [73] as well as other factor models are interesting
fields related to the question of covariance forecasting
and should be seriously considered when continuing this
investigation.
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