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ABSTRACT This study focuses on detecting Power Quality Disturbance Events (PQDE) in microgrids
integrated with a Solar Energy Conversion System (SECS). The research proposes a novel signal reduction
technique called Clark Transformed Modal, which reduces three-phase voltage to a single unit signal, opti-
mizing memory utilization and reducing computational load during feature extraction. A total of 16 features
are extracted from the proposed modal signal by performing multi-resolution analysis through Maximum
Overlap Discrete Wavelet Transform (MODWT). Various disturbances, including sag, swell, transients,
notches, and flicker, are intentionally simulated in a PV-grid tied MATLAB/Simulink model to obtain a
dataset of 10800 samples. Further, the dataset is randomly divided into training-testing subsets to verify the
classification ability of a novel ensemble classifier called subspace weighted k-nearest Neighbor (SWKNN).
In addition to that the optimum mother wavelet (dmay) is identified to even further boost the classifier perfor-
mance. The results demonstrate the superior classification capabilities of the proposed MODWT-SWKNN
classifier in terms of various performance metrics like precision, recall and F1-score. It also outperformed
when compared with several competitive PQ classification models based on PV-integrated systems both
under ideal and noisy conditions. Additionally, the disturbance detection system is validated in an OPAL-RT
real-time environment to demonstrate its efficiency in terms of detection time. The accuracy of detection is
found to be 99.74% in ideal case and fall back to no more than 3% regulation i.e., 97.28% even in dense noise
of 20dB with as low as 8 WKNN subspaces. Further, average detection time with 500 trails is found to be
0.0285 seconds. The efficacy of the proposed PQ detection algorithm is also tested in a large PV integrated
IEEE 13-bus system.

INDEX TERMS Clark transform, kth nearest neighbour, maximum overlap discrete wavelet transform,
microgrid, power quality classification.
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I. INTRODUCTION

The escalating demand for electricity and a substantial
decline in fossil fuel availability in recent decades have
prompted the exploration of alternative energy sources to
fulfil energy needs. Integrating distributed energy sources,
such as Renewable Sources of Energy (RSEs) or traditional
synchronous generators, into distribution networks to ensure
high-quality power supply has given rise to the concept of
micro-grids. Among various RSEs, Solar Energy Conversion
System (SECS) has gained notable traction worldwide due to
its natural abundance, light weight, and cost-effectiveness [1].
However, SECS also brings a series of challenges such
as intermittency, inverter interaction, on/off grid control
aspects power quality issues etc [2]. Therefore, ensuring the
secure and dependable operation of microgrids has become
paramount. On top of that, the rapid expansion of global
industrialization has led to an increased utilization of non-
linear components, sensitive equipment, and relay protection
devices. This trend has resulted in unwanted fluctuations in
power signals. These deviations from standard values in volt-
age, current, or frequency are collectively known as Power
Quality Disturbance Events (PQDEs). Common PQDEs
include transients, harmonics, voltage sag/swell, unbalanced
voltage/current, and interruptions. These disturbances can
have serious consequences, including sympathetic tripping,
protection and control device malfunctions, damage to sen-
sitive electronic equipment, memory failures in monitoring
systems, loss of productivity, and more. These repercussions
affect industries, utilities, and consumers, with end users
ultimately bearing the brunt of the consequences. This neces-
sitates the development of a robust protection scheme capable
of identifying and categorizing various types of Power
Quality Disturbance Events. These events may occur due
any intentional or unintentional operations in the microgrid
which needed to be monitored as per IEEE PQ monitoring
standard 1159-2009 [3].

To counter the aforementioned issue, a number of PQ
detection techniques are reported in literatures that make
use of the thresholds of system parameters [4], [S], [6],
[7]. While these methods exhibit proficiency in detecting
significant Power Quality (PQ) events, establishing appro-
priate detection thresholds involves balancing the rates of
false alarms and accurate detections [8]. Furthermore, these
techniques could exhibit susceptibility to factors like harmon-
ics, sampling frequency, and various user-defined parameters.
To overcome this particular issue, signal processing along
with machine intelligence technologies are suggested by
many authors [9] for automatic detection of PQDESs using the
common principle displayed in Fig.1.

Various Signal Processing Techniques (SPTs) have been
proposed for feature extraction in pattern recognition. These
techniques utilize time-frequency transforms to differentiate
disturbances. While the (Fast Fourier Transform) FFT suffers
from spectral leakage and loss of time information [10],
the fixed window length of (Short Time Fourier Transform)
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STFT makes it unsuitable for non-stationary transient sig-
nals [11]. To address this, Wavelet Transform (WT) methods
have gained traction for analyzing such signals containing
noise, fluctuations and sinusoidal components [12]. Further,
out of discrete and continuous WTs, the Discrete Wavelet
Transform (DWT) is preferred due to its adaptive win-
dow size and predefined filter design, making it suitable
for preprocessing in classification tasks [13]. In Microgrid
(MG) network, researchers have employed various intel-
ligent classifiers for Power Quality Disturbances (PQDs)
classification. Chakravorti et al. [14] used Reduced Kernel
Ridge Regression (RKRR) combined with Variational Mode
Decomposition (VMD) to detect islanding, faults, and PQ
events in grid-connected MGs, achieving superior accuracy.
Ranjbar et al. [15] employed Short-Time Fourier Transform
(STFT) extraction with Decision Tree (DT) classification for
accurate fault detection in both grid-connected and islanded
MGs. Ray et al. [16] proposed Independent Component
Analysis (ICA) for feature extraction combined with SVM
for PQD classification, outperforming wavelet-based SVM.
Nolasco et al. [17] used wavelet packet signal processing
with fuzzy classifier, demonstrating effectiveness in detecting
PQ factors like harmonics, power factor, and voltage vari-
ation in AC MGs under diverse conditions. In [18] a deep
Convolutional Neural Network (CNN) approach is presented,
known for noise immunity, accuracy, and speed in detecting
single and multiple PQDs. Apart from that a number of
single classifier-based PQ detection schemes are reported in
literatures [19], [20], [21], and [22], those may suffer from
under/overfitting, limited generalization ability, difficulty in
handling higher dimension feature set etc. Ensemble classi-
fiers [23], [24], [25] can be a solution, where a number of
classifiers are trained to provide the result in voting approach.
Therefore, the work emphasis on an ensemble machine learn-
ing technique (MLT) and chosen a base classifier called
Kth Nearest Neighbour (KNN) due to its unmatched ability
of handling unbalanced data, non-parametric nature, data
adaptability, ease of feature and class scaling etc. More-
over, KNN can be ensembled by sub-spacing technique.
Yungi Wang et al. [26] introduced a new feature extraction
algorithm, normalized Renyi entropy, with KNN and SVM
classifiers to predict PQ events in islanded MGs. In [9], vari-
ous signal processing methods and classifiers were applied
for detecting and classifying single and multiple PQDs in
MGs where VMD with KNN showed higher classification
accuracy.

The integration of PV systems into power grids can intro-
duce several PQDs. However, the study focuses on the
following key PQ concerns:

Voltage variations like sag and sell can be occurred due
to unpredictable intermittent behaviour of solar output [27].
Certainly, a sudden shading of panels of the PV system
can impose a drop in generation resulting in voltage sag.
On the other hand, a swift elimination of shading can lead
to swelling. A prominent imbalance of voltage can happen
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FIGURE 1. Power Quality Event Detection with signal processing and machine learner.

in case of unsymmetrical fault situations where one or two
phases are found faulty. Apart from that, imbalance can also
result due to highly penetrated single phase PV systems.
The integration of PV in to grid is done through high fre-
quency switching based power electronics inverters leading
to harmonic distortions [28]. Along with that, the excess use
of non-linear loads consumer end also injects notches like
disturbances that can too introduce harmonics in the system.

Apart from that, transient behaviors can also be seen in PV
integrated power systems. Connection and disconnection of
PV from the grid and lightening hits can introduce momen-
tary voltage spikes. Furthermore, capacitor switching is a
frequent event in power system to facilitate voltage support,
power factor correction etc., can introduces oscillatory tran-
sients. A noticeable variation in solar irradiance due to abrupt
change in environmental condition such as large passing
cloud can cause flicker disturbances which is troublesome to
the end users [29].

Therefore, the research work deals with insightful feature
extraction for performing effective PQDE classification and
detection. This is possible if and only if the hidden component
of the disturbance signal is uncovered through a powerful sig-
nal pre-processor. In addition to that, the performance of the
classifier can be bolstered by effective ensemble applications
to the existing classifiers. However, the three-phase quantity
may or may not have any disturbance in all phases and might
have in one or two phases. The study has taken all these
problem statements in to account and following contributions
are suggested:

> A novel Clarke’s Transformation based signal reduction
approach is adapted to create a unit signal which will
facilitate the consideration of all three phases in to one
signal.

> The signal preprocessor namely, Maximum Overlap
Discrete Wavelet Transform (MODWT) is implemented
to compute the multi-level components and the most
efficient mother wavelet for PQDE detection is identi-
fied.

> A total of 16 features are obtained from 5-level detailed
and an approximate component and fed to a proposed
novel classifier called Subspace Weighted KNN, that
shows significant outcomes while detecting the PQDEs.
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> The detection time of the proposed MODWT-SWKNN
classifier is obtained through OPAL-RT real time
simulation by taking the mean of 500 disturbance
observations.

The paper is structured as follows: Section II pro-
vides an overview of the PV integrated microgrid sys-
tem, detailing specifications and power quality disturbance
classes. Section III delves into signal pre-processing tech-
niques. Section IV discusses the formation of the feature
matrix. Section V explores the weighted subspace KNN
classifier and its proposed optimization methods. Section VI
presents the results and analysis of the study. Finally, the
findings are summarized and concluded in Section VII.

Il. MICROGRID SYSTEM DESCRIPTION

The considered microgrid is connected to 25 kV utility sys-
tem through breaker-1(BR-1) as presented in Fig. 2. It is
capable of operating both in on-grid mode and off-grid mode.
The power requirement during on-grid mode of operation is
fulfilled by the utility. Alternatively, off-grid mode is acti-
vated by opening the contacts of BR-2. During this off-grid
period, the 400-kW solar plant will take the charge of power
delivery. The solar plant consists of 4 number of 100 kW
units cumulatively providing an output voltage of S00V DC
through MPPT controlled DC/DC converter. This DC output
voltage in converted to three phase AC through a PWM
controlled voltage source converter and connected to grid
followed by a LC-filter.

The specification and ratings of the microgrid elements and
components are listed in Table-1. Moreover, the PQDs are
simulated individually at the 25 kV BUS by actuating their
respective breakers. The list of PQDs and the event specific
categories, sources and indices are presented in Table-2.

Ill. SIGNAL PRE-PROCESSING

The initialization of the three-stage process of disturbance
detection as shown in Figure 1. starts with signal pre-
processing. The proposed work simplifies this stage as three
substages as follows,

A. DATA COLLECTION
This is the first step of signal pre-processing where the volt-
age signal is kept on collected for a period 6 cycles with a
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FIGURE 2. Circuit diagram of the solar enabled microgrid system.

TABLE 1. Microgrid component specification.

TABLE 2. PQD events and categories.

Microgrid components Rating/specification POWER EVENT
Utility 120KV, 50Hz, 2500MVA QgﬁkggY EVENT SOURCE CATEGORY
TFM-1 120/25 KV, 50 MVA PQCO NORMAL UNDISTURBED
pi_T/L-1 14 Km, 60 Hz PQCI LG SmGSIfGLmE
pi_T/L-2 8 Km, 60 Hz PQC2 LL DOUBLE LINE
LOADI 30 MW, 2Mvar B LS, SAG
SYMMETRICAL
LOAD2 2 MW, 2Mvar FAULT (LLLL & LLLG)
Solar Plant 100KW*4 Units, 500V DC PQC3 TRANSFORMER TRIPPLE LINE
ENERGIZATION SAG
Voltage source converter 500KVA, 260 V INDUCTION MOTOR
(VSO) STATING
L-C Filter 45 puH, 40 KVAR LARGE LOAD VOLTAGE
LOAD3 100 kW PQC4 SWITCHING OFF SWELL
CAPACITOR OSCILLATORY
TFM-2 0.26/25 KV, 450 KVA PQCs SWITCHING TRANSIENT
PQCo6 LIGHTENING IMPULSE TQ:II)\IUSII“SET
) ) ) PQCT NON-LINEAR LOAD V§é¥ég’E
gap of one cycle from the 25kV bus (Fig. 2). This continues SWITCHING (HARMONICS)
process is carried out with SkHz sampling frequency. The POCS ELECTRIC ARC FLICKER
data vectors are stored in a database as rows in sequential Q FURNACE

manner. It is to be noted that the voltage data is converted
to per unit before storage.

B. DATA REDUCTION
Various kinds of disturbances can initiate in a power network,
affecting a single phase, either of the two phases, or all three
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phases. Consequently, it’s crucial to account for all three
phases during analysis. But such comprehensive analysis
demands thrice memory space. A solution to this can be
the conversion of three-phase component into a single-phase
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component, leading to substantial reduction of processing
time and minimal memory needs. One of such implementa-
tions is modal signal conversion [33]. But it is highly sensitive
to unbalanced disturbances. Therefore, a novel approach is
adapted in this work with the help of Clarke’s Transformation.
The basic form of Clarke’s Transformation is as follows,

2 _1 _1
Sa 3 3 % Sa
sg |=10 L — x | sp €))
’ L P
S 1 1 1 S
0 3 3 3 ¢

The single signal is constructed by combining all three sta-
tionary reference frame components. Since sinusoids have an
exceptional ability to generate other sinusoids with arithmetic
operations, the new signal is obtained as,

sctm = (Sq X Sg) + 8o 2)

The signal can be named as Clarke’s Transformed Modal
(CTM) Signal. It is to be noted that the signals must be con-
verted to per-unit before making this conversion. A generic
CTM of 6 cycle normal signal can be seen in Fig. 3.

TOSEBEENEY
MAVVANVANVANANY)

CTM Signal

0
'0.5 L 1 1 1 L 1 1

0 0.02 0.04 0.06 0.08 0.1 0.12
Time (sec)

—_

)

FIGURE 3. Clarke’s transformed modal of a standard 3-phase sine wave.

C. DATA TRANSFORMATION (MAXIMUM OVERLAP
DISCRETE WAVELET TRANSFORM)

Before getting in to MODWT, it is necessary to understand
the basics of Wavelet Transform (WT). It proves to be a
potent and efficient technique for analyzing swift transient
signals that arise within power networks during faults and
unusual incidents. By decomposing signals into various
sub-components while localizing both the time and frequency
domains, WT offers substantial utility. Typically, WT comes
in two primary forms: Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT). However, CWT
is unsuitable for real-time applications due to its limited
redundancy during signal reconstruction. In contrast, DWT
addresses the CWT limitations by preserving the infor-
mation of the input signal with least number of wavelet
coefficients [32]. For any signal u(t) DWT can be
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expressed as,

1 k — na
WIp(i.k)=—>" umn)xm 0) 3)
Vg 2. (

7
a

Here, agz scaling factor, naé: Translational Factor, m(-):
mother wavelet, i, j: non-negative integer values, k: sample
number in input signal.

DWT performs a successive decomposition-reconstruction
of the disturbance signal using multi-resolution analysis.
In this process two types of components are obtained namely
approximate component (APC) and detailed component
(DTC) in each level. In the first level, the APC-1 is obtained
from a low pass filter (Fp) whereas the DTC-1 are obtained
from a high pass filter (Fgyp). Further, APC-1 is decomposed
on a similar fashion to obtain APC-2 and DTC-2 respectively
and it continues till reaching number of levels demanded.
It is to be noted that, after every decomposition stage the
sampling frequency of the signal is made half. A glimpse of
the process can be seen on Fig. 4 which can be mathematically
represented as,

Input Signal, I (k) = Z?_l DIC; +APC, (4

Fyp | 2|)=DTC,

Fup [ 20)—DTC,
g & Fap = 20)=DTC,
Fip | 2l)=apc,---apc,

Fip [ 2|)=arc,

Input Signal

FIGURE 4. n-level DWT.

In this study a more effective version of DWT is imple-
mented called Maximum Overlap Discrete Wavelet Trans-
form (MODWT) that employs filters similar to DWT, but with
the overlap between adjacent sub-bands. It helps to reduce
the boundary effects caused by filtering and down-sampling.
It further reduces the edge effects and allows for a more
accurate representation of the signal at different scales. More-
over, MODWT can act on both stationary and non-stationary
components. The overlapping sub-bands can better capture
the transient behaviour of signals [31]. Due to such charac-
teristics, it can be extremely useful for analyzing nonlinearity,
transient and noise component present in power signals.

IV. FEATURE EXTRACTION
The second stage of the three-stage process of disturbance
detection as shown in Fig. 1 is feature extraction. When
designing features for a machine learning classifier, it’s
important to choose features that are relevant, informative,
and representative of the underlying patterns in the data. The
specific features one MLC require will depend on the nature
of the problem and the type of data. Therefore, the choice of
features (also known as feature engineering) is a critical step
in building effective machine learning classifiers.

Since, the chosen signal processor MODWT has inherent
property of preserving energy [31], the first feature is chosen
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to be a unique component called detail to approximate com-
ponent energy ratio (DTAER). This can be defined as,

K
epTCj Zk:lDTCjz(k)
earc 3K APCx(k)

DTAERprc; = o)

Secondly, the high frequency detailed component gener-
ally has a greater number of zero crossings to that of the
approximate component. A ratio of these two can provide
hidden insights of the presence of high frequency components
in the signal. Therefore, the next feature called detail to
approximate component zero crossing ratio (DTAZCR) can
be,

ZCprcj
ZCapc

In general, a pure sinusoid is ideally having zero mean.
But the data reduction technique adapted in this study are
generating CTM signals not uniform around the axis in most
cases if any disturbance exists. The same phenomenon will
also propagate to MODWT multilevel decomposition of any
signal. Therefore, the simplest feature named mean of a signal
can be taken for all detailed and one approximate component.

211;1 s(k)
K

DTAZCRprc, = (6)

MEAN vopwr; = (7N
V. PROPOSED CLASSIFIER

KNN (K-Nearest Neighbour) is a non-parametric instance-
based learning method that provides solutions for problems
with unknown distributions, particularly in non-nominal
cases [37]. In instance-based learning, a distance metric func-
tion is employed to compare the characteristics of each new
instance with existing ones. The nearest instance is then used
to assign a class to the new instance. If a greater number
of nearest Neighbour are considered, the class assigned to
the new instance is determined by the majority class among
the nearest k Neighbour [37]. One of the numerous factors
impacting the performance of the KNN algorithm is the selec-
tion of the hyperparameter k. If k is set to a small value, the
algorithm becomes more sensitive to outliers. Conversely, if k
is chosen to be too large, the neighbourhood might encompass
an excessive number of points from different classes. Another
concern is the strategy for aggregating class labels. The most
straightforward approach is to rely on the majority vote, but
this can be problematic when the nearest Neighbour exhibit
significant variations in distance, and the closest Neighbour
more consistently represent the object’s class. To understand
this an example is taken in Fig. 5.

Here 4 different classes (C1, C2, C3, C4) with a single
feature are presented. If the unknown data is required to
be determined through KNN classifier, it will predict dif-
ferent classes randomly in every trial. But to naked eyes
it is clearly seems to be nearer to C3. To overcome this
drawback, weighted KNN (WKNN) can be utilized which
is an extension of the traditional KNN algorithm. In the
standard KNN algorithm, each of the k nearest Neighbour
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FIGURE 5. A single feature representation for 4 classes.

contributes equally to the classification decision. However,
in the WKNN classifier, the influence of each Neighbour on
the classification is weighted based on certain criteria often
called a kennel function. Typically, the weight is inversely
proportional to the distance, meaning that closer Neighbour
have a greater influence on the classification decision, while
more distant Neighbour have a reduced influence.

Moreover, to tackle the challenges occurred due to high
dimensionality of the feature space, the random subs-pacing
technique is also utilized along with WKNN. Sub-spacing
introduces a randomization factor by considering only a sub-
set of the available features to create a sub-classifier. Further
an ensemble of sub classifiers together makes the prediction
with a voting approach. This improves the generalization
ability, provides robustness against irrelevant features and the
ensemble classifier as a whole becomes noise tolerant.

If there are s subspaces such that,

SSz[S11S29___7SS] (8)
And there are f features such that,

F=1[fi,fa, — = —.fr] ©)

Further, F is any random subset of F such that
{Fl, 1:"2, - — —,1:"5} and if the dataset is denoted by D and D
is a random subset of D such that {151, 152, - — —,és} then
each subspace S; will going to be trained with only F] features
and Dj sub-dataset.

Furthermore, in each subspace S; WKNN is performed as
follows,

P(T = F—X—1 i X I(t; = 10
T=tlF=X)=p2>  pwixIti=0 (10

Here, P denotes the conditional probability of each class.
X, 1s the observation feature column matrix. w; is the weight.
1(-) is a Boolean operator that turns 1 when the given obser-
vation (Xj, #;) belongs to the class ¢ else 0.
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VI. RESULT AND DISCUSSION

The performance evaluation of the proposed MODWT-
SWKNN based PQ Detection system for gid connected PV is
discussed in this section. Initially, the model shown in Fig. 2 is
designed and simulated in MATLAB Simulink environment.
The PQ event classes (PQC-0 to PQC-8) are intentionally
simulated at 0.1 sec. A 6-cycle data is getting captured with
a sampling frequency of 5kHz (100 data samples/cycle) i.e.,
600 data samples at 100 sample gaps between each sample
collection instant. At every sample collection instant, all
the three-phase data are arithmetically combined to form
the CMT signal. This resulting signal is further processed
through MODWT multistep decomposition process to obtain
5 detailed and one approximate component. Further 16 fea-
tures are obtained from the decomposed signals and fed to the
SWKNN classifier to obtain the class of disturbance. A flow
diagram describing the work flow mentioned above is shown
Fig. 6. The choice of mother wavelet, value of K in WKNN
and the number of subspace variables are discussed in the
later sections.
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FIGURE 6. Flow diagram of the proposed work.

A. WAVE FORM ASSESSMENT

Fig. 7 displays a single line sag event, which is intentionally
created in the test system by simulating a LG-Fault. The
initial disturbances at simulation starting are presented with
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FIGURE 7. One line sag.

dotted elliptical circles which are occurred just before the
synchronization and control algorithms takes their control.

The fault has been initiated at 0.1 sec to ensure the
intentional disturbance should not interfere with the initial
disturbances. The subsequent disturbance event plots (Fig. 8)
are therefore only shown for 6 cycles i.e., 3 before and
other 3 after the initiation of disturbance events. It can be
clearly observed from Fig. 8 the CTM signals of different
PQ events are distinctive with respect to each other. It can be
seen that; the unbalanced disturbances display good presence
in zero sequence component where the balance disturbances
have null or negligible presence. This particular fact is used
as an advantage in this study and a good arithmetic mix of
Clark’s Transformed signals is obtained to analyses the class
of disturbance.

B. DATASET FORMATION
Dataset formation simply means to create a tabular data
containing the features in columns along with the respective
class of event. The rows of the dataset represent different
occurrences of the events. Similarly, 5400*16 feature set and
a 5400*1 target set collectively forms the PQC dataset of this
study. Here 600 observations from each of the PQ disturbance
class have been created by processing the three-phase voltage
data collected at PCC of the studied system. This is termed
as Ideal Dataset (IDS). Moreover, on a technical aspect, the
fault data are collected with different fault resistances. Swell
signals are generated by suddenly removing different magni-
tude of larger loads. Oscillatory Transients are generated with
varying capacitor bank switching. Further impulse transients
are created by lightening block with varying impulse ampli-
tude. Similarly harmonic signals are generated by non-linear
load switching with varying the passive components. Lastly
flicker is initiated by Electric Arc Furnace switching.
However, in pure simulation environment there is no
external impact on the power system however in practi-
cal system the lines undergo electromagnetic interference.
In this regards, Signal-to-noise ratio (SNR) comes in to
picture which is a measure of how much signal power is
present in an electrical signal compared to how much noise
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FIGURE 8. Other PQ disturbances.

power is present. It is often expressed as a decibel value.
Mathematically,
: Sp
SNR (in dB) = 10log— (11
Np
where, S, is the power of the signal and N, is the power of
the noise.

Therefore, to realize the real-world scenario another
dataset is formed by adding white gaussian noise to the
existing dataset such that 20dB, 30dB and 40dB noise is
added to 200 feature set of each event. This will create another
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feature matrix termed as Noisy Dataset (NDS). It has exactly
the same dimension that of IDS. Both of these datasets have
the same representation as shown in Table-3.

C. OPTIMUM SWKNN PARAMETER SELECTION

Once the dataset is prepared, the next step is to perform the
classification task. The study leverages the unique advantages
of the KNN classifier, such as its seamless adaptation to new
data, does not require explicit model building, lazy learning
characteristics, and real-time predictability. However, KNN
also has certain limitations, including sensitivity to outliers,
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TABLE 3. Dataset Format with 16 features and 0 to 8 PQCs.

SL F1 F2 F16 CLASS
1 T - PQCO
2 | T = PQCO
3 | 1T T PQCO
600 | [ ] PQCO
--------------- PQCl to
..... PQC 7
4801 | [ [ PQC8
4802 | || PQCS8
4803 | | ] PQCS8
5400 | [ [ | PQCS

reduced performance with large datasets, and a high depen-
dency on the choice of ‘k’ value. To address the limitations
of the traditional KNN classifier, this study introduces two
enhancements: ‘weighting’ and ‘sub-spacing’.

1) WEIGHTED KNN

This method is less sensitive to outliers because it assigns
more weight to nearby points and less to distant ones,
which helps decode underlying data patterns and improves
classification accuracy. Additionally, it handles imbalanced,
complex, and non-linear data distributions more effectively.

2) SUB-SPACING

This involves using a group of classifiers, each trained on a
subset of the data with fewer feature variables. This approach
enhances generalization, reduces bias, and provides robust-
ness against irrelevant and noisy data. By combining the
predictions of multiple models, ensemble methods improve
decision-making in KNN, resulting in more accurate and
robust classification, particularly in the presence of outliers
or complex data patterns.

As a result, the proposed subspace-weighted KNN estab-
lishes a refined and smoother decision boundary, leading to
more accurate decision-making when the classifier encoun-
ters unknown data. Further it requires to obtain three major
hyper-parameters such as,

o Number of Subspaces
o Number of Features in Each Subspace
o Number of Neighbours

First of all, the number of classes taken in the study are 9,
therefore one cannot go below 9 neighbours which may lead
to undesired outcomes. But the nominal rule for the selection
of ‘’k’ in traditional KNN is square root of the available dataset
i.e., /5400 = 73.48. Therefore, the number of subspaces
can be set at 73.48/9 = 8.16 & 8 such that there will be
9 neighbours in each subspace. Now the decision variables
(features) in each subspace should be within 2 to 15 as the
total number of available variables are 16. If it is set to be
very low then that will affect the detection ability where if
set to high will increase computational burden. Therefore,
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a mathematical study is done between the detection accuracy
and computational time to evaluate the number of decision
variable. It is to be noted that, the mother wavelet is set to
‘sym4’ which is default for MODWT. Moreover, each obser-
vation is 10-fold cross validated and the average accuracy and
computation time are presented in Table-4.

TABLE 4. Accuracy and computation time for different decision variable
count in subspaces.

DECISION

VARIABLE ACCURACY C?II‘:EEQJAES)N
2 27.52% 154
3 36.04% 267
4 43.56% 349
5 51.75% 445
6 59.27% 527
7 72.5% 683
8 87.1% 81.9
9 87.33% 99.7
10 87.47% 1235
11 87.53% 1572
12 87.64% 168.2
13 87.83% 1837
14 87.91% 201.6
15 87.97% 2194

It can be observed that, the detection accuracy remains
steady near 87% when 8 or more variables are taken in a sub-
space. But the overall computation time drastically increasing
with each surplus variable without significant improvement
in detection accuracy. Therefore, the random variable per
subspace is set to 8 so as to maintain an optimum computa-
tion time without compromising the accuracy. The obtained
parameters for SWKNN are displayed in Table-5.

TABLE 5. SWKNN parameter values.

NO. OF NEIGHBOUR PER FEATURE PER
SUBSPACES SUBSPACE SUBSPACE
8 9 8

D. MODWT MOTHER WAVELET SELECTION

Further, the selection of best mother wavelet for the data pre-
processing stage could be a crucial factor which will hugely
affect the detection accuracy. To identify the same, all kinds
of orthogonal wavelet are rigorously tested with SWKNN
classifier with all possible wavelet combinations as shown
in Table-6. It can be clearly observed from Table-6 that the
Discrete Meyer Wavelet (‘dmay’) shows the highest accuracy
of detection amongst all other orthogonal wavelet variants.
Hence ‘dmay’ is chosen as the mother wavelet in this study.
It is to be noted that the parameter obtained for SWKNN as
of Table-5 are used in this testing.

E. PERFORMANCE EVALUATION
The optimum MLC parameters along with the best mother
wavelet for MODWT are determined in the previous
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TABLE 6. Optimum mother wavelet selection.

MOTHER VARIANTS OPTIMUM OPTIMUM
WAVELETS OF WAVELET ACCURACY
FAMILY WAVELET
HAAR ‘DBI’ ‘DBI’ 90.4%
DAUBECHIES ‘DB2’ TO ‘DB15’ 93.06%
‘DB45’
SYMLETS ‘SYM2’ TO ‘SYM7’ 88.1%
‘SYM45®
COIFLETS ‘COIF2’ TO ‘COIF3’ 95.31%
‘COIF5’
DMEYER ‘DMEY’ ‘DMEY” 99.74%
FEJER- ‘FK4°, ‘FK6’, ‘FK6’ 94.31%
KOROVKIN ‘FK8’, ‘FK14°,
‘FK18’, ‘FK22’
Predicted Class Class
PQCo | Poc1 [ P2 [ PQca [ PQea [ PQCs [ Poes [ PQC7 [ PQCs | Accuracy
PQCO | 600 o 1] o 1] o 1] o 1] 100%
PQC1 | 0 600 0 1] 0 1] 0 1] 0 100%
PQC2 | O 1] 600 0 1] 1] 1] 1] 1] 100%
@ PQC3 |0 o 0 594 6 o 0 o 0 99%
T | PQCc4 |0 1] 0 5 595 (1] 0 1] 0 99.16%
E PQC5 | 0 1] 1] 1] 1] 598 0 2 1] 99.66%
=1 PQC6 | 0 ("] 0 ("] 0 ("] 600 0 0 100%
PQC7 | 0 1] 0 1] 0 1 0 5 0 99.83%
PQCS8 | 0 0 0 0 0 0 0 0 600 100%
Overall Accuracy | 99.74%

FIGURE 9. Confusion Matrix of Ideal Dataset (IDS).

Predicted Class Class
PQCO | PQC1 | PQC2 | PQC3 | PQC4 | PQCS | PQC6 | PQCT | PQCS | Accuracy

PQCO | 594 0 0 0 1] 0 0 6 0 99%
PQC1 | 0 593 7 1] 1] 0 1] 0 0 98 8%
PQC2 | 0 6 594 0 1] 0 1] 0 0 99%

g2 | PQc3)o 0 0 593 7 0 0 0 0 98.8%
O | PQC4 |0 0 0 12 588 0 0 0 0 98%
E PQC5 | 0 0 0 0 1] 575 0 25 0 95.8%
= | PQC6 | O 0 0 1] 1] 0 600 0 0 100%
PQC7 | 0 0 0 1] 1] 22 [1] 572 6 95.33%
PQCS8 | 0 0 0 "] o 0 0 9 591 98.5%
Overall Accuracy 98.14%

FIGURE 10. Confusion Matrix of Noisy Dataset (NDS).

subsection. On account of those the performance of
MODWT-SWKNN power quality detection scheme is evalu-
ated in this subsection. Here, three other performance indices
(PIs) are evaluated along with detection accuracy as of (12),
(13), (14). But the perquisites for calculating the PIs is
the confusing matrix. Therefore, the confusion matrices of
both IDS and NDS datasets are presented in Figure 9 and
Figure 10. It can be seen that the overall accuracy of ideal
dataset is found to be 99.74% whereas for noisy dataset it
is 98.14%. It can also be observed that the PQC6 i.e., the
impulse transient data are detected with 100% accuracy both
in ideal and noisy scenarios. Additionally, a 20dB confusion
matrix is also presented in Figure 11, so as to take a glimpse
of the classifier performance under dense noise. It seems that,
the performance is still maintained over 97% even under the
highly noisy conditions.
The performance indices are as follows,

C
Precison, Px = —XA (12)
CX + Cx
Cx
Recall, Ry = ———— (13)
Cx +Cx
2% (Pxy *R
Flscore, Fly = = (Px* R0 (14)
Px + Rx
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Predicted Class Class

PQCO | PQC1 | PQC2 | PQC3 | PQCA | PQC5 | PQC6 | PQCT7 | PQC8 | Accuracy

PQCO | 197 0 0 0 0 0 0 3 0 98.5%
PQC1 | O 195 5 0 0 0 0 0 0 97.5%
PQC2 | O 3 197 0 0 0 0 0 0 98.5%

@ [PQC3 | O 0 0 196 4 0 0 0 0 98%
5 PQC4 | O 0 0 7 193 0 0 0 0 96.5%
g PQC5 | O 0 0 0 0 189 0 11 0 94.5%
= lracs |0 0 0 0 0 0 200 0 0 100%
PQC7 | O 0 0 0 0 9 0 188 3 94%
PQC8 | O 0 0 0 0 0 0 4 196 98%
Overall Accuracy | 97.28%

FIGURE 11. Confusion Matrix under 20dB noise.

where, Cy is number of events truly detected as class -X

Cy is number of events truly belongs to class -X but
detected as any other class

C, is number of events do not belongs to class -X but
detected as class -X

The bar chart representations have been made to showcase
different PIs valuation for every PQC in Fig. 12 considering
both ideal and noisy datasets. Here Fig. 12(a) displays the
outcome for IDS whereas Fig. 12(b) for NDS. While all the
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FIGURE 12. Bar chart of performance indices.
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PIs of IDS are well above 98%, the PIs of NDS for PQC7
are as low as 93.46%, 95.33% and 94.38% (precision, recall,
Fl-score) respectively. But the overall detection accuracy
under noisy data condition is still sitting at 98.14%. Hence,
the MODWT-SWKNN classifier can be a good choice to be
implemented in real world PV based microgrid scenarios.

F. PERFORMANCE IN LARGE POWER SYSTEM

The performance of the proposed detection strategy is now
getting verified in a PV integrated large power system. Such
a system can be seen in Fig.13 where an IEEE 13 bus system
is modified to study the impact of PV penetration [40]. The
PV system is of rating 1 MW and integrated at bus 680 via 73
transformer and two stage power electronics converters.

— 675

3

633 m—f—  ——t—692

T

=

PV SYSTEM

SRIIEE

uTiLTY

T

645 m—t—

Different
Disturbance
Events

684 611

646 mmmtem 652

FIGURE 13. PV integrated IEEE 13-Bus modified system.

Exactly same number of i.e., 9, PQ events are also tested
here as if in the PV-tied power system shown in Fig. 2. The
same 16 features are also extracted by simulating different
disturbance events intentionally in MATLAB environment to
generate a new dataset that consist of both ideal and noisy
data with 1200 events per class. The detection accuracy of
the proposed classifier with the new large power system
dataset (10800*16). Then the proposed SWKNN classifier
is undergone training and testing procedure. To evaluate its
accuracy the full confusion matrix is presented in Fig.14. It is
observed that each of the disturbance events are displaying
more than 99% accuracy individually except PQC7. The
overall accuracy of detection is also found to be 99.28% dis-
playing the splendid classification capability of the classifier.
After verifying the result obtained from both test system, the
performance remains consistent in both small and large power
systems.

Predicted Class Class

PQCO | PQCL | PQC2 | PQC3 | PQCA | PQCS5 | PQC6 | PQC7 | PQC8 | Accuracy

PQCO | 1190 | 0 0 0 0 0 0 10 0 99.16%
PQC1 [0 1194 | 6 0 0 0 0 0 0 99.5%
PQC2 | 0 8 1192 | 0 0 0 0 0 0 99.33%

@« | PQC3 | 0 0 0 1191 | 9 0 0 0 0 99.25%
5 PQC4 | 0 0 0 5 1195 | 0 0 0 0 99.58%
% |pacs |0 0 0 0 0 1193 | 0 7 0 99.42%
= PQC6 | O 0 0 0 1 0 1199 | 0 0 99.91%
PQC7 [0 0 0 0 0 1 0 1181 | 9 98.41%
PQC8 | 0 0 0 0 0 0 0 12 1188 99%
Overall Accuracy | 99.28%

FIGURE 14. Overall confusion matrix of large power system dataset.
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G. REAL-TIME VALIDATION

The results presented in the previous subsections are found
through the model designed in MATLAB Simulink as well
as MATLAB script executions. But the outcomes are not
enough to assure whether the proposed MODWT-SWKNN
PQ Detection scheme will perform in practical grid scenarios
or not. To resolve this concern, the PQ detection scheme is
tested in OPAL-RT real time simulation setup as shown in
Fig. 15(a). First, the Simulink model is designed in the Host
PC and the respective C-codes are built in RT-LAB software
platform. Further it is loaded to OPAL-RT 4510 setup and
the real-time simulation is executed and results are opted
in YOKOGAWA multi signal oscilloscope (MSO) as shown
in Fig. 15(b). The detection is identified by an Event Index
(EI) varies from 0.5 to 4 as per Table-2. It can be observed
that, there is a detection delay from the point of occurrence

REAL-TIME SETUP

(a)Real-Time Setup with MSO and HOST PC
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(b)Disturbance CTM Signal and detected event indices

FIGURE 15. Real time validation.
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to point of detraction. It is obvious because, the proposed
detection scheme itself taking a 6-cycle snapshot with a gap
of one cycle, thereby introducing a fixed delay of one cycle
or 0.02 secs. This phenomenon reduces the computational
complexity significantly and also provide a CPU cool off
period in between successive snapshots.

However, there are some variable delays observed along
with fixed delay which differs from event to event. To counter
this discrepancy, a set of 500 observation are saved during
real time simulation and the average of sample difference
between point of occurrence are detection are evaluated to
calculate the detection time. Such an obtaining can be seen in
Fig. 16. Finally, the mean detection time is calculated from
the average detection difference of 142.3881samples with
5Hz frequency as 0.0285sec (142.3881/5000).

150 . . . .
Mean
g (142.38)
S 145} 3
5
E=
a
=3
=
E 140} ;
7]
135 " . . ]
0 100 200 300 400 500

Observation Count

FIGURE 16. Average detection time calculation with 500 observations.

H. COMPARATIVE STUDY

A comparative study involving the performance of various
recently published PQ detection scheme in PV integrated
system are presented in Table-7. The performance of these
methods in terms of detection accuracy are observed both
under ideal and noisy conditions with 3 SNR levels of 20dB,
30dB and 40dB respectively. Although [16], [34], [35], [36],
[39] have claimed to possess 100% ability of detection in
ideal condition but do not provide any information regarding
the performance under noise. Similarly, [37] and [38] have
tested under moderate noise but haven’t goes through the
dense noise of 20dB. While [33] have been tested with all
3 noise levels but its performance suffers under heavy noise
and accuracy goes down to 94.7%. Since in practical grid
scenarios, the current carrying conductors often experience
electromagnetic interference which is highly important to
be considered while designing a detection system. There-
fore, the study tested the performance both under ideal and
noisy conditions. Moreover, limited studies have focused
upon the detection time [16], [40]. Although studies in [41]
and [42] have tested 15, 28 events respectively and obtained
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good performance on accuracy but haven’t gone through
the detection time evaluation. However, the study performed
real-time detection of the proposed scheme through OPAL-
RT 4510 setup and the detection time is calculated as
explained in previous sub-subsection. Although studies made
in [16] and [40] obtained the detection time, but lacking
precise observations to made during the calculation of it.
However, one should take in to account the factors like cycles
to capture, signal propagation delay, detection algorithm pro-
cess delays etc. These factors are already included in the
applied real-time setup, hence an accurate detection time of
0.0285 secs is obtained in this study.

I. CRITICAL DISCUSSION

In this study, the grid-connected PV model is designed and
simulated in the MATLAB 2018a Simulink environment.
Once the model is ready, PQ disturbances are intentionally
introduced at the 25kV bus at a specific time, say 0.1 sec-
onds, as per Table-2. Then, a 6-cycle voltage data is stored,
with 3 cycles before and after the disturbance occurrence to
prepare the dataset. The main challenge in the data extrac-
tion stage is to get replication of real scenario data to make
the classifier learn the inherent characteristics of the events.
Therefore, each disturbance event data is collected with
utmost care by following sustainable variations in system
parameters or scenarios to maintain proper data diversity with
minimal redundancy.

As the study deals with a three-phase system, the authors
propose a novel three-to-one signal conversion technique
using Clarke’s Transformation, named Clarke Transformed
Modal (CTM). This approach handles the three-phase sig-
nal as a whole, avoiding the need to analyze each phase
individually. In the process of signal decomposition, it is
important the capture the intrinsic components of the power
signal along with intermediate transients. Therefore, the
MODWT signal preprocessor is used to retrieve the inher-
ent constituents of the CTM signal. MODWT eliminates
boundary effect concerns, can act on both stationary and
non-stationary signals, and the overlap between adjacent
bands helps in capturing transients. The three-to-one signal
conversion approach reduces the preprocessing overhead to
one-third of the resource utilization.

Moreover, the study leverages the unmatched advantages
of KNN classifiers. Since KNN is distance-based, retraining
is not required when new data is added to the training set.
However, due to challenges like the curse of dimensionality,
outlier sensitivity, and memory intensiveness, the authors pro-
pose SWKNN as a possible solution. The MODWT-SWKNN
classifier is tested under different levels of noise and found
to be noise-robust. The next challenge is its real-time
implementation in actual grid scenarios, which will involve
measurement sensors at critical points, analog-to-digital con-
verters, data acquisition systems, and microcontroller-based
parallel processing units. However, prior to implementation,
real-time validation is required. This is performed in the
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TABLE 7. Comparative analysis with previously reported PQD detection schemes in PV equipped microgrids.

MODEL PERFORMANCE (IN ACCURACY %)

TIME OF DETECTION

SL. NO. METHODS  PQC IDEAL NOISY ACCURACY (SNR IN DB) N SECS)
ACCURACY 20 30 40

1 [16] 6 99.5 - - - 0.07
2 [33] 5 - 94.7 972 99.75 -

3 [34] 16 98 - - - -

4 [35] 10 100 - - - -

5 [36] 10 97 - - - -

6 371 9 99.59 - 99.5 99.29 -

7 [38] 14 99.82 - 99.29 - -

8 [39] 7 100 - - - -

9 [40] 16 100 97.54 99.81 99.96 0.184
10 [41] 15 - - 99.06 99.18 -
11 [42] 28 - 97.65 99.35 99.40 -
12 PROPOSED 9 99.74 97.28 97.94 99.22 0.0285

OPAL-RT setup, where the designed MATLAB test system
is implemented in an FPGA unit.

VIi. CONCLUSION

PV penetration to the existing power grid is exponentially
increasing both in domestic and industrial sectors, impacting
operations and quality of power. Thus, PQ event identification
is essential in PV integrated power systems from protec-
tion, stability, reliability, and PQ management standpoints.
Effective detection and mitigation strategies are crucial for
maintaining high power quality standards. With the afore-
mentioned context, the study primarily targets the detection
of 9 distinct power quality events in a grid-tied photovoltaic
system. It introduces a novel signal reduction technique
named Clark Transformed Modal to convert the three-phase
point of common coupling (PCC) voltage into a single
modal signal. This transformation reduces memory usage and
computational complexity during signal processing. Subse-
quently, 16 intrinsic features (such as DTAER, DTAZCR,
and MEAN) are extracted from 6-cycle windowed CTM sig-
nals using a five-level Maximum Overlap Discrete Wavelet
Transform (MODWT) decomposition. The resulting dataset,
comprising 10800 entries with 16 features each, includes
both ideal and noisy data for all 9 power quality events,
with 1200 disturbances per event. An enhanced version of
the K-nearest neighbor (KNN) classifier, termed Subspace
Weighted KNN (SWKNN), is proposed to efficiently manage
high-dimensional data. The study finds that dividing the data
into 8 subspaces, each containing 9 neighbors and 8 features,
achieves the highest detection accuracy of 99.74% using the
Discrete Meyer mother wavelet on the ideal dataset. The
classifier also proves robust to noise, achieving accuracies
0f 99.22%, 97.94%, and 97.28% under signal-to-noise ratios
(SNR) of 40dB, 30dB, and 20dB, respectively. Additionally,
the mean detection time for the proposed MODWT-SWKNN
classifier is determined to be 0.0285 seconds, based on the
average detection time of 500 random events in the OPAL-
RT 4510 real-time simulation environment. This work is also
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extended to a large PV integrated IEEE 13-Bus modified
power system and evidenced promising detection accuracy
of 99.28%. The study compares its findings with several pre-
vious works focused on power quality detection in grid-tied
PV systems and concludes that the proposed method offers
superior detection accuracy and speed, making it suitable for
real-world grid applications.

In the future research, a broader range disturbance includ-
ing simple, complex and mixed power quality events can
be investigated to improve the versatility of the MODWT-
SWKNN classifier. Actual grid integration along with and
self-tuning mechanisms can be developed to enable the detec-
tion system for adaptive learning that can learn from unseen
real-time data. Furthermore, protection and security concerns
can be addressed to ensure robustness against external chal-
lenges.

REFERENCES

[1] E. Mulenga, M. H. J. Bollen, and N. Etherden, “A review of hosting
capacity quantification methods for photovoltaics in low-voltage distri-
bution grids,” Int. J. Electr. Power Energy Syst., vol. 115, Feb. 2020,
Art. no. 105445.

[2] A. Sharma, M. Kolhe, A. Kontou, D. Lagos, and P. Kotsampopoulos,
“Solar photovoltaic-based microgrid hosting capacity evaluation in elec-
trical energy distribution network with voltage quality analysis,” Social
Netw. Appl. Sci., vol. 3, no. 5, pp. 1-22, May 2021.

[3] IEEE Recommended Practice for Monitoring Electric Power Quality,
Standard IEEE Std 1159-2019, 1159, pp. 1-98.

[4] A. Furlani Bastos, W. Freitas, G. Todeschini, and S. Santoso, “Detec-
tion of inconspicuous power quality disturbances through step changes
in rms voltage profile,” IET Gener., Transmiss. Distrib., vol. 13, no. 11,
pp. 2226-2235, Jun. 2019.

[5] A. F. Bastos and S. Santoso, “Universal waveshape-based distur-
bance detection in power quality data using similarity metrics,” IEEE
Trans. Power Del., vol. 35, no. 4, pp. 1779-1787, Aug. 2020, doi:
10.1109/TPWRD.2019.2954320.

[6] G.S.Chawda, A. G. Shaik, M. Shaik, S. Padmanaban, J. B. Holm-Nielsen,
O. P. Mahela, and P. Kaliannan, “‘Comprehensive review on detection and
classification of power quality disturbances in utility grid with renewable
energy penetration,” IEEE Access, vol. 8, pp. 146807-146830, 2020, doi:
10.1109/ACCESS.2020.3014732.

[71 Y.Liu, D. Yuan, Z. Gong, T. Jin, and M. A. Mohamed, “Adaptive spectral
trend based optimized EWT for monitoring the parameters of multiple
power quality disturbances,” Int. J. Electr. Power Energy Syst., vol. 146,
Mar. 2023, Art. no. 108797.

VOLUME 12, 2024


http://dx.doi.org/10.1109/TPWRD.2019.2954320
http://dx.doi.org/10.1109/ACCESS.2020.3014732

S. Mishra et al.: Dynamic PQD Classification in Grid-Integrated PV Systems

IEEE Access

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. K. Buduru and S. B. Karanki, “Real-time power quality event monitor-
ing system using digital signal processor for smart metering applications,”
J. Electr. Eng. Technol., vol. 18, no. 4, pp. 3179-3190, Jul. 2023.

M. Mishra, “Power quality disturbance detection and classification using
signal processing and soft computing techniques: A comprehensive
review,” Int. Trans. Electr. Energy Syst., vol. 29, no. 8, Aug. 2019,
Art. no. e12008.

S. Roy and S. Debnath, “PSD based high impedance fault detection and
classification in distribution system,” Measurement, vol. 169, Feb. 2021,
Art. no. 108366.

O. M. Olajide, “Power quality events classification on real-time voltage
waveform using short time Fourier transform and Bayes classifier,” Int.
J. Appl. Sci. Technol., vol. 8, no. 2, pp. 1-22, 2018.

Y. Yu, W. Zhao, S. Li, and S. Huang, “A two-stage wavelet decomposition
method for instantaneous power quality indices estimation considering
interharmonics and transient disturbances,” IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1-13, 2021.

N. Ghaffarzadeh, “A new method for power quality events detection
and classification using discrete wavelet transform and correlation coeftfi-
cients,” Int. J. Ind. Electron. Control Optim., vol. 4, pp. 47-57, Oct. 2021.
T. Chakravorti, N. R. Nayak, R. Bisoi, P. K. Dash, and L. Tripathy, “A new
robust kernel ridge regression classifier for islanding and power quality
disturbances in a multi distributed generation based microgrid,” Renew.
Energy Focus, vol. 28, pp. 78-99, Mar. 2019.

S. Ranjbar, A. R. Farsa, and S. Jamali, ‘“Voltage-based protection of
microgrids using decision tree algorithms,” Int. Trans. Electr. Energy Syst.,
vol. 30, no. 4, Apr. 2020, Art. no. e12274.

P. K. Ray, A. Mohanty, and T. Panigrahi, “Power quality analysis in
solar PV integrated microgrid using independent component analysis and
support vector machine,” Optik, vol. 180, pp. 691-698, Feb. 2019.

D. H. S. Nolasco, F. B. Costa, E. S. Palmeira, D. K. Alves,
B. R. C. Bedregal, T. O. A. Rocha, R. L. A. Ribeiro, and J. C. L. Silva,
“Wavelet-fuzzy power quality diagnosis system with inference method
based on overlap functions: Case study in an AC microgrid,” Eng. Appl.
Artif. Intell., vol. 85, pp. 284-294, Oct. 2019.

S. Wang and H. Chen, “A novel deep learning method for the classification
of power quality disturbances using deep convolutional neural network,”
Appl. Energy, vol. 235, pp. 1126-1140, Feb. 2019.

S. Alshahrani, M. Abbod, and B. Alamri, “Detection and classifica-
tion of power quality events based on wavelet transform and arti-
ficial neural networks for smart grids,” Saudi Arabia Smart Grid,
pp. 1-7, Dec. 2015. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/7449296

S. Khokhar, A. A. Mohd Zin, A. P. Memon, and A. S. Mokhtar, “A
new optimal feature selection algorithm for classification of power quality
disturbances using discrete wavelet transform and probabilistic neural
network,” Measurement, vol. 95, pp. 246-259, Jan. 2017.

F. Zhao, D. Liao, X. Chen, and Y. Wang, “Recognition of hybrid PQ
disturbances based on multi-resolution S-transform and decision tree,”
Energy Eng., vol. 120, no. 5, pp. 1133-1148, 2023.

1. S. Samanta, P. K. Rout, K. Swain, M. Cherukuri, and S. Mishra, “Dual-
tree complex wavelet packet transform and regularized extreme learning
machine-based feature extraction and classification of power quality dis-
turbances,” Energy Syst., vol. 1, pp. 1-26, May 2023.

D. A. Bashawyah and A. Subasi, “Power quality event detection using
FAWT and bagging ensemble classifier,” in Proc. IEEE Int. Conf. Environ.
Electr. Eng. IEEE Ind. Commercial Power Syst. Eur., Jun. 2019, pp. 1-5.
P. Radhakrishnan, K. Ramaiyan, A. Vinayagam, and V. Veerasamy, “A
stacking ensemble classification model for detection and classification of
power quality disturbances in PV integrated power network,” Measure-
ment, vol. 175, Apr. 2021, Art. no. 109025.

S. Mishra, R. K. Mallick, D. A. Gadanayak, and P. Nayak, ‘A novel hybrid
downsampling and optimized random forest approach for islanding detec-
tion and non-islanding power quality events classification in distributed
generation integrated system,” IET Renew. Power Gener., vol. 15, no. 8,
pp. 1662-1677, Jun. 2021.

Y. Wang, A. Raza, F. P. Mohammed, J. Ravishankar, and T. Phung, “Detec-
tion and classification of disturbances in the islanded micro-grid by using
wavelet transformation and feature extraction algorithm,” J. Eng., vol. 18,
pp. 5284-5286, 2019.

A. Khandelwal and P. Neema, ““State of art for power quality issues in
PV grid connected system,” in Proc. Int. Conf. Nascent Technol. Eng.
(ICNTE), Jan. 2019, pp. 1-4.

VOLUME 12, 2024

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

(41]

[42]

O. Gandhi, D. S. Kumar, C. D. Rodriguez-Gallegos, and D. Srinivasan,
“Review of power system impacts at high PV penetration Part I: Factors
limiting PV penetration,” Sol. Energy, vol. 210, pp. 181-201, Nov. 2020.
S. Adak and H. Cangi, “The quality problems at low irradiance in the grid-
connected photovoltaic systems,”” Electr. Eng., vol. 1, pp. 1-13, Apr. 2024.
P. Gupta and R. N. Mahanty, “An approach for detection and classification
of transmission line faults by wavelet analysis,” Energy Educ. Sci. Tech-
nol., vol. 34, pp. 109-122, Aug. 2016.

F. Xiao, T. Lu, M. Wu, and Q. Ai, ‘“‘Maximal overlap discrete wavelet trans-
form and deep learning for robust denoising and detection of power quality
disturbance,” IET Gener., Transmiss. Distrib., vol. 14, no. 1, pp. 140-147,
Jan. 2020.

T. Guo, T. Zhang, E. Lim, M. Lépez-Benitez, F. Ma, and L. Yu, “A review
of wavelet analysis and its applications: Challenges and opportunities,”
IEEE Access, vol. 10, pp. 58869-58903, 2022.

S. Prakash, S. Purwar, and S. R. Mohanty, “Adaptive detection of islanding
and power quality disturbances in a grid-integrated photovoltaic system,”
Arabian J. Sci. Eng., vol. 45, no. 8, pp. 6297-6310, Aug. 2020.

T. P. Tun and G. Pillai, “Power quality event classification in
distribution grids using machine learning,” in Proc. 56th Int.
Universities Power Eng. Conf. (UPEC), Aug. 2021, pp.1-6, doi:
10.1109/UPEC50034.2021.9548222.

A. Vinayagam, V. Veerasamy, P. Radhakrishnan, M. Sepperumal, and
K. Ramaiyan, ““An ensemble approach of classification model for detection
and classification of power quality disturbances in PV integrated microgrid
network,” Appl. Soft Comput., vol. 106, Jul. 2021, Art. no. 107294.

A. Vinayagam, M. L. Othman, V. Veerasamy, S. S. Balaji, K. Ramaiyan,
P. Radhakrishnan, M. D. Raman, and N. I. Abdul Wahab, A random sub-
space ensemble classification model for discrimination of power quality
events in solar PV microgrid power network,” PLoS ONE, vol. 17, no. 1,
Jan. 2022, Art. no. €0262570.

A. Yilmaz, A. Kiigiiker, and G. Bayrak, “Automated classification of
power quality disturbances in a SOFC&PV-based distributed generator
using a hybrid machine learning method with high noise immunity,” Int.
J. Hydrogen Energy, vol. 47, no. 45, pp. 19797-19809, May 2022.

P. K. Dash, E. N. V. D. V. Prasad, R. K. Jalli, and S. P. Mishra, “Multi-
ple power quality disturbances analysis in photovoltaic integrated direct
current microgrid using adaptive morphological filter with deep learning
algorithm,” Appl. Energy, vol. 309, Mar. 2022, Art. no. 118454.

D. Pattanaik, S. C. Swain, I. S. Samanta, R. Dash, and K. Swain, ‘“Power
quality disturbance detection and monitoring of solar integrated micro-
grid,” WSEAS Trans. POWER Syst., vol. 17, pp. 306-315, Oct. 2022.

B. Eristi and H. Eristi, “Classification of power quality disturbances
in solar PV integrated power system based on a hybrid deep learning
approach,” Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1-13, Jun. 2022.
Y. S. U. Vishwanath, S. Esakkirajan, B. Keerthiveena, and R. B. Pachori,
“A generalized classification framework for power quality disturbances
based on synchrosqueezed wavelet transform and convolutional neural
networks,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1-13, 2023.

J. Jiang, H. Wu, C. Zhong, Y. Cai, and H. Song, “A novel method-
ology for microgrid power quality disturbance classification using
URPM-CWT and multi-channel feature fusion,” IEEE Access, vol. 12,
pp. 35597-35611, 2024, doi: 10.1109/ACCESS.2024.3350170.

SAIRAM MISHRA (Graduate Student Member,
IEEE) received the B.Tech. degree in electrical
engineering stream from Siksha O’ Anusandhan
University, Bhubaneswar, Odisha, India, in 2014,
and the M.Tech. degree in power electronics and
drives from the Indira Gandhi Institute of Tech-
nology, Sarang, Dhenkanal, Odisha, in 2018. He is
currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, Siksha 'O’
Anusandhan University. He is a Senior Research

Fellow of the Council of Scientific and Industrial Research (CSIR), Govern-
ment of India.

116585


http://dx.doi.org/10.1109/UPEC50034.2021.9548222
http://dx.doi.org/10.1109/ACCESS.2024.3350170

IEEE Access

S. Mishra et al.: Dynamic PQD Classification in Grid-Integrated PV Systems

RANJAN KUMAR MALLICK (Member, IEEE)
was born in India, in 1972. He received the bach-
elor’s degree in electrical engineering from the
Institution of Engineers, India, in 1996, the M.E.
degree in power system engineering from VSSUT,
Burla, Odisha, India, in 2001, and the Ph.D. degree
from BPUT, Odisha, in 2013. He is currently a
Professor with the Department of Electrical and
Electronics Engineering, ITER, Siksha O’ Anu-
sandhan Deemed to be University, Odisha. He has
23 years of experience in teaching and research. His research interests
include the application of power electronics, optimization techniques in
power systems, economic load dispatch, the design and control of HVDC
converters, load frequency controllers, optimal harmonic estimation in power
systems, stability and protection of power systems, power quality, microgrid
control, and protection along with machine learning and deep learning
applications in power engineering.

PRAVATI NAYAK was born in India, in 1983.
She received the bachelor’s degree in electri-
cal engineering, in 2004, the M.Tech. degree in
power electronics and drives, in 2010, and the
Ph.D. degree from Siksha O’ Anusandhan (SOA)
Deemed to be University, Odisha, India, in 2022.
She is currently an Associate Professor with the
Electrical Engineering Department, ITER, SOA

v Deemed to be University. She has a teaching expe-
k\ - ' rience of more than 17 years. Her research interests
include microgrids, power systems protection, artificial intelligence, power
quality, power electronics, machine learning, and deep learning applications
in power systems.

116586

THAIYAL NAAYAGI RAMASAMY (Senior Mem-
ber, IEEE) received the bachelor’s degree (Hons.)
in electrical and electronics engineering from
Bharathidasan University, Tiruchirappalli, India,
in 2000, the master’s degree in information tech-
nology from Alagappa University, Karaikudi,
India, in 2003, the master’s degree (Hons.) in
power electronics and drives from Anna Univer-
sity, Chennai, India, in 2005, and the Ph.D. degree
in electrical and electronic engineering from The
University of Manchester, Manchester, U.K., in 2010. She is currently with
Newcastle University in Singapore (NUiS), Singapore, where she is also
the Director of Education, an Associate Professor, and a Senior Tutor of
electrical power engineering. Her current research interests include renew-
able energy integration and applications in smart grids, power electronics
for aerospace, electric vehicle applications, low-carbon electrical energy
systems, and power electronic solutions to sustainability. She is a Life
Member of ISTE and an Associate Editor of IEEE/CSEE JourNAL oF PowER
AND ENERGY SYSTEMS.

GAYADHAR PANDA (Senior Member, IEEE)
received the Ph.D. degree from Utkal Univer-
sity, in 2007. He is currently a Professor with
the Electrical Engineering Department, National
Institute of Technology, Meghalaya, India. He has
over 24 years of teaching and research experi-
ence. He has published more than 120 technical
papers in national and international conference
proceedings/journals and filed two patents. He has
supervised eight Ph.D. students and currently
supervising four Ph.D. scholars. He has led several research projects on
the integration of renewable energy generation and power quality improve-
ment. His work involves the design, implementation, and operation of ac/dc
microgrids with interfacing converters that use digital signal processing, arti-
ficial intelligence techniques, and other novel control methods. His current
research interests include automatic generation control, stability improve-
ments using flexible alternating current transmission system devices, power
quality, power electronic converters, and distributed power generation. He is
a fellow of IE and a Life Member of ISTE. He was a recipient of the Power
Medal, IE, India, for one of his research articles.

VOLUME 12, 2024



