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ABSTRACT Depth images captured with commodity sensors commonly suffer from low quality and
resolution and require enhancing to be used in many applications. State-of-the-art data-driven methods
for depth super-resolution rely on registered pairs of low- and high-resolution depth images of the same
scenes. Acquisition of such real-world paired data requires specialized setups. On the other hand, generating
low-resolution depth images from respective high-resolution versions by subsampling, adding noise and
other artificial degradation methods, does not fully capture the characteristics of real-world depth data.
As a consequence, supervised learning methods trained on such artificial paired data may not perform well
on real-world low-resolution inputs. We propose an approach to depth super-resolution based on learning
from unpaired data. We show that image-based unpaired techniques that have been proposed for depth
super-resolution fail to perform effective hole-filling or reconstruct accurate surface normals in the output
depth images. Aiming to improve upon these approaches, we propose an unpaired learning method for depth
super-resolution based on a learnable degradation model and including a dedicated enhancement component
which integrates surface quality measures to produce more accurate depth images. We propose a benchmark
for unpaired depth super-resolution and demonstrate that our method outperforms existing unpaired methods
and performs on par with paired ones. In particular, our method shows 28% improvement in terms of a
perceptual MSE, quality measure, compared to state-of-the-art unpaired depth enhancement techniques
adapted to perform super-resolution [e.g., Gu et al. (2020)]. The implementation of our method is publicly
available at https://github.com/keqpan/udsr.

INDEX TERMS Depth data, enhancement, generative networks, super-resolution, unsupervised learning.

I. INTRODUCTION and many gaps. Reliably addressing these flaws has been

Depth images are commonly used in a variety of applications,
from 3D scene reconstruction to robotic navigation, user
interfaces and photo effects. Depth sensors are becoming
standard for everyday devices such as phones and tablets,
immensely expanding availability of this type of data and the
range of its applications.

However, when acquired with commodity depth cameras,
raw depth images come with multiple limitations, most
importantly, limited spatial resolution, severe noise levels,
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attracting increasing research interest aimed at enhancing the
resolution and quality of depth images.

Following image processing, where the most success has
been achieved through deep learning [2], [3], [4], [5], [6],
convolutional neural networks (CNNs) were applied to depth
super-resolution and enhancement [7], [8], [9], [10], [11],
[12], [13]; commonly, they are trained from paired datasets of
low- and high-quality target depth maps. However, acquiring
a large real dataset of this type is challenging and requires
a customized, calibrated hardware setup; as a result, such
methods commonly rely on downsampling of high-resolution
data for constructing training instances; this approach is
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ineffective for training super-resolution models targeting real
depth images heavily contaminated by holes and noise, as we
illustrate in Figure 1.

One way to circumvent this issue is through the use
of unpaired learning methods [14], [15], [16], where the
model is trained on two datasets, a dataset of inputs and
a dataset of targets, with their elements not necessarily
forming pairs. While, in principle, one can directly apply
existing image-based unpaired methods to depth data, these
methods tend to significantly underperform in practice
as they fail to capture the distinctive characteristics of
depth data: unlike color photos, depth scans often contain
gaps; compared to RGB images where pixels take values
from a large but finite palette, the range of depth values
is, in principle, continuous and unbounded; additionally,
perceptually-relevant differences in depth scans are best
captured by depth-specific measures.

We propose, to the best of our knowledge, the first
learning-based method for depth super-resolution for real-
world sensor data, using unpaired data for training, i.e., a set
of raw sensor depth images and a set of high-quality, high-
resolution depth images generated by depth fusion, without
correspondences between images from these sets.

A key ingredient of our method is the introduction of
depth enhancement, i.e., a hole-filling and surface denoising
method, into the super-resolution pipeline; we demonstrate
that coupling depth enhancement and super-resolution tasks
yields significant improvements over the baselines. To imple-
ment this, similarly to recent literature (e.g., [14]), we design
a two-stage approach for training our method, includ-
ing (1) an unpaired training stage for a depth degradation
model, and (2) a supervised training stage for an enhancement
model.

Importantly for evaluating depth super-resolution methods,
most existing RGB-D scan datasets cannot be used as they
offer either high- or low-resolution sensor depth only. To this
end, we propose a paired dataset providing both real-world
RGB-D scans and high-resolution, high-quality reference
depth, that we construct by ray-tracing 3D reconstructions of
indoor scenes in ScanNet [17] obtained by depth fusion [18].
Basing on these, we develop a depth super-resolution and
enhancement benchmark, extending a standard evaluation
methodology with perceptual measures.

Our evaluation shows that our method outperforms sev-
eral state-of-the-art image-to-image translation approaches
applied to depth in a pure enhancement mode. Likewise our
approach outperforms straightforward combinations of deep
unpaired enhancement (e.g., [1]) and bicubic upsampling,
emphasizing the need for a close integration of enhancement
and super-resolution parts.

To summarize, our contributions are as follows:

e We introduce UDSR, the first dedicated method

for learning-based, unpaired depth super-resolution.
In comparison to state-of-the-art unpaired depth
enhancement techniques adapted for super-resolution
(e.g., [1]), our method demonstrates an impressive 28%
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improvement in depth super-resolution performance,
as measured by a perceptual MSE, quality measure.

« A key component of our approach is a novel unpaired
depth enhancement algorithm that efficiently performs
unpaired learning, incorporates RGB guidance, and
optimizes depth-specific performance measures. As a
result, we achieve superior denoising and inpainting
results for depth images. Compared to the state-of-the-
art unpaired depth enhancement method by Gu et al. [1],
our algorithm showcases an impressive 63% gain in
depth enhancement performance when evaluated using
the perceptual MSE, measure.

o We also introduce a new benchmark for real-world depth
super-resolution and enhancement, utilizing existing
datasets such as [17] and [19]. Additionally, we pro-
pose a robust methodology for comparing paired and
unpaired approaches.

Il. RELATED WORK

A. DEPTH SUPER-RESOLUTION (SR)

Depth super-resolution has been approached from mul-
tiple perspectives: filter-based [20], [21], optimization-
based [22] and [23], and data-driven [2], [3], [4], [5], [6], [7],
(81, [91, [101, [11], [24], [25], [26], [27], [28], [29], [30].

In non-learning context, single-frame RGB-guided depth
SR has been tackled with joint bilateral filters [21] and filters
with adaptive smoothing [20]; optimization-based shape-
from-shading approaches [22], [23] relying on photometric
constraints and a number of priors. While such techniques can
likely generalize across sensors, their ability to exploit RGB
and depth image-specific characteristics such as distribution
of depth values is limited.

Among data-driven approaches, CNNs have been used in
combination with optimization-based methods [7], [28], [29],
joint filtering methods [24], [30], as well as with progres-
sive or hierarchical multi-scale fusion of RGB and depth
features [8], [10], [27], [31]; we include an explicit RGB
guidance mechanism in our enhancement step, but without
applying any optimization to network predictions. Recent
trends also include applying to depth SR attention-based and
image transformer architectures [11], [32]. More recently,
perceptually-based depth SR [9] enabled more accurate
surface reconstruction; we integrate their loss function in
our training framework. Reference [11] introduced non-linear
downsampling degradations to improve robustness of their
depth SR method; in contrast, our method automatically
captures relevant degradation patterns by a learned depth-
to-depth translation step. SRFBN [4] is an established
supervised image SR method often used as a strong baseline
for evaluating depth SR; we compare against this approach
in our work. The most recent and concurrent work [33] is the
first which considers depth super-resolution on real sensor
data. It is trained on their own collected paired dataset of low-
and high-resolution depth maps. However, they rely on image
colorization [34] to inpaint holes in input low-resolution
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FIGURE 1. State-of-the-art depth super-resolution methods are designed for clean and complete images, but produce noisy, incomplete results in the
wild. In contrast, our novel unpaired super-resolution method inpaints holes and produces normals closer ( MSEy [9]) to the reference data. RMSE is
the depth error averaged over the area of valid (non-hole) pixels. We note that MS-PFL [10] is designed to perform depth SR, but not hole-filling.

depth maps as pre-processing stage. This could be inefficient
with big holes and areas of drastic change in depth. Moreover,
they do not use depth normals neither for evaluation nor in
their approach, which can lead to noisy surfaces reconstructed
from their output depth.

Importantly, all these methods need registered pairs of
input-output images of the same scene; differently, in this
work we explore an unpaired learning scenario where the
sets of source and target depth images may depict distinct
environments.

B. DEPTH ENHANCEMENT

Depth Enhancement [1], [12] is an umbrella task that encom-
passes denoising [35], [36], [37], [38], completion [39], [40],
and inpainting [41], [42], [43], [44], [45]. Among the
methods in this group, our approach implements a data
generation technique similar to LapDEN [12] who render 3D
reconstructions of scenes in ScanNet [17] to obtain training
data for their depth enhancement method; we also compare
our method to this approach.

C. UNPAIRED IMAGE SR AND ENHANCEMENT

More recently, image-based approaches have resorted to
using unpaired learning methods to more accurately model
image acquisition and processing artefacts; these formula-
tions bypass the need for paired data, greatly simplifying
construction of training datasets. Some approaches use inde-
pendent sets of low-resolution and high-resolution images
to learn the SR mapping without correspondences between
the images, commonly employing cycle consistency [46].
[47] trains a super-resolution model in a cycle-consistent
manner on a set of LR images acquired with one device
and pairs of LR-HR images acquired with a different
device. [48] proposes to embed the two domains of the
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low- and high-resolution images into a shared latent space
and find the translation between these domains using the
shortest path assumption regularization. Other approaches
rely on self-supervised training from low-resolution images
only [49], [50], [51], [52], [53]. Reference [51] trains a
denoising model for real-world images in a self-supervised
manner by breaking spatial correlations of the sensor noise.
Reference [52] employs bursts of noisy images as training
data for the same task. Reference [53] trains a denoising
model that decomposes the image into a noise free and a noisy
components with a technique similar to the cycle consistency,
by combining the predicted components using a pre-defined
noisy image formation model and feeding this image back to
the denoising model. Most unpaired systems are trained in
multiple stages: Cycle-in-Cycle [16] learns image cleaning
during the first cycle and SR in the unpaired setting using
the second cycle, Bulat et al. [14] learns degradation using
an unpaired setup, further performing supervised training for
SR. Maeda [15] decomposes SR mapping into a cleaning
step trained in an unpaired way and a pseudo-supervised SR
network; similarly, our method uses two-stage training.

D. UNPAIRED DEPTH ENHANCEMENT

Unpaired Depth Enhancement is similar in spirit to unpaired
image-to-image translation but requires considerable adapta-
tion of existing image-based methods. Gu et al. pioneered
a GAN-based unpaired depth enhancement [I] with a
four-stage learnable approach, involving hole prediction,
image adaptation, degradation, and final enhancement. Com-
pared to Gu et al. which focuses on depth enhancement
(specifically hole filling) but does not address super-
resolution (beyond trivial bicubic scaling) or denoising,
our algorithm integrates super-resolution and enhance-
ment. From a self-supervised perspective, [13] leverages

VOLUME 12, 2024



A. Safin et al.: Unpaired Depth Super-Resolution in the Wild

IEEE Access

photometric constraints to recover high-quality depth but
requires a non-standard acquisition setup. Learning from
unsynchronized low- and high-quality depth frames, [54]
proposes a self-supervised approach employing tempo-
ral and spatial alignment. Reference [55] proposes an
approach for super-resolution of dToF depth videos with
the guidance of high-resolution RGB frames. Among these
methods, we extensively compare to single-image unpaired
enhancement [1], adapting this method for depth SR via
complementing it with various upsampling methods.

E. RGB-D DATASETS FOR DEPTH SR

Among RGB-D datasets, Middlebury [56], NYU-Depth
V2 [57], SUN RGB-D [58], and the synthetic ICL-
NUIM [59] provide RGB-D frames but cannot serve as
evaluation data for depth super-resolution since they either
do not provide real-world sensor depth or lack corresponding
ground truth. Matterport3D [60] is a large-scale dataset with
high-quality depth but lacks corresponding depth from less
accurate sensors. ToF-Mark [61] contains depth maps from
a low-accuracy time-of-flight sensor and a high-accuracy
structured light scanner but only provides three pairs of
high- and low-resolution images, making it suitable for
qualitative evaluation only. Similarly, Redwood [62] consists
of RGB-D sequences obtained using a consumer Asus Xtion
Live depth camera and point clouds from industrial-grade
laser scanner but captures only five scenes. The largest to
date collection [63] is at the time of writing the manuscript
not available.

In the context of depth enhancement, [12] synthesized a
paired dataset from ScanNet [17], a large-scale collection
of RGB-D scans, using its complete 3D reconstructed
models obtained using BundleFusion [18]. These models
were ray-casted to obtain image pairs of the same resolution
for training neural networks targeting denoising and hole-
filling. We extend this approach to our task, additionally
creating high-resolution depth images from renderings of
3D reconstructions (Section IV). We additionally conduct
experiments using synthetic indoor data in InteriorNet [19].

IIl. UNPAIRED DEPTH SUPER-RESOLUTION FRAMEWORK
A. UNPAIRED DEPTH SUPER-RESOLUTION

1) TASK FORMULATION

RGB-D sensors capture the surface of the scene using
pairs (I, D%) of sensor data, where I is a color image and D* a
depth image, acquired jointly. Following the existing practice
in depth SR literature, we assume color images to come at
high resolution and satisfactory quality.

A common approach to depth SR is to fit a mapping from
sensed instances (I, D) to desired depth D! using a neural
network [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [24].
We refer to this learning-based formulation as supervised
(paired) depth SR. As an alternative formulation, in this work
we consider unpaired depth SR, a previously unexplored task
that does not rely on having paired image data during training;
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instead, our formulation assumes that source and target image
datasets are entirely independent. In practice, this means
that sensor data pairs (/ L DLy and target instances (/ H pH)
can capture non-overlapping segments of the scene or even
separate scenes; they may be collected using differing, non-
registered sensors, or at different periods of time (e.g.,
allowing the scenes to undergo changes). Such data is
significantly easier to collect, as no alignment or additional
hardware are necessary, and facilitates re-use of existing
datasets; as a consequence, our formulation enables a broader
scope of applications.

2) FRAMEWORK OVERVIEW

The input to our algorithm is a single RGB-D image with
a low-resolution, noisy, incomplete depth; as an output,
we produce a single high-resolution, denoised, complete
depth image. To achieve our objective, we designed a
learning-based framework to learn depth SR without paired,
registered training instances; we made a series of algorithmic
decisions to address the challenges of our task. The four main
components of our method are:

1) Framework Architecture (Section III-B). We follow
a two-step approach to depth super-resolution: first,
we upsample the input depth image to the desired output
resolution; second, we process the upsampled depth
image using our enhancement algorithm to produce the
final result. In our system, only the enhancement part is
trained by solving a two-stage unpaired learning task.

2) Enhancement Algorithm (Section III-C). We pre-
train four neural sub-networks using complementary
sub-tasks to provide rich photometric and geomet-
ric features, and integrate these models within our
learning-based enhancement algorithm ueny. Our best
performing learning configuration predicts an enhanced
depth image from the upsampled input RGB-D image,
its feature maps, and an intermediate depth estimate.

3) Unpaired Translation Algorithm (Section III-D).
We construct supervised data for training our enhance-
ment algorithm by synthesizing a realistic pseudo-
source RGB-D instance for each rarget (high-resolution)
RGB-D image. To this end, we pre-train a deep
translation network ggo7 using an unpaired, cycle-
consistent adversarial learning approach, minimizing
discrepancy between sets of source and target instances.

4) Construction of Datasets (Section 1V). We develop a
methodology to directly evaluate paired and unpaired
depth SR algorithms and construct three benchmarks of
up to 38,000 instances for our quantitative comparisons.

In the next sections, we describe each component in detail
and provide a rationale for our algorithmic choices.

B. TASK DECOMPOSITION AND FRAMEWORK
ARCHITECTURE

Our depth SR algorithm is designed to increase the spatial
resolution (i.e., do upsampling) and to suppress noise, fill in
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FIGURE 2. Architectural options we considered (see also Table 1 for
notation). Our architectural choice (e) enjoys both a simple design and
high performance in experiments. Enhanced source L. refers to a set of
RGB-D images with low-resolution but enhanced depth (used only in this
scheme).

missing areas, and resolve detail (i.e., do enhancement) in
an input depth image. We have considered a number of
alternatives for implementing these diverse modifications in
the unpaired learning context. We summarize our resulting
configuration and compare it to alternatives below, provide
more detail in Sections III-C and III-D, and discuss the effect
of various choices in Section V.

1) TASK DECOMPOSITION

We decompose the depth SR mapping into a sequence ug =
Uenh © Uyp Where a trainable enhancement algorithm uenn
succeeds (an optional) non-trainable upsampling opera-
tion uyp (see Figure 2 (e)); separating these stages is in
line with recent successful approaches to unpaired image
SR [14]. Compared to complementing a trainable enhance-
ment algorithm with a separate trainable upsampling network
(c.f. [14], Figure 2 (a)), our approach requires training only a
single model; adding a non-trainable upsampling operation
(Figure 2 (b)) yields results inferior to our algorithm,
according to our experiments. In comparison to integrating
the enhancement and upsampling stages inside a single
trained network (Figure 2 (c)), or complementing a trained
upsampling network with a non-trained enhancement oper-
ation (Figure 2 (d)), our approach enjoys greater simplicity
by avoiding the need for in-network upsampling [15]. Our
upsampling operation uyyp is bicubic interpolation: we upscale
the input w x & depth image to the output kw x kh resolution
(k being the SR factor). The enhancement algorithm uenn
takes in an RGB-D image with the upsampled depth and
produces a refined depth image at the same spatial resolution.
Making upsampling optional in this way enables using our
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FIGURE 3. Overview of the conceptual architecture and principal stages
of our learning framework. (1) We start with the training of the unpaired
translation algorithm and obtain bidirectional mappings gy»;, 912
between the source L and the downsampled H| sets. In the same stage,
we synthesize the pseudo-source Lp set by translating instances in H, .
(2) Next, we train the enhancement algorithm ug,, at low and high
resolution using a multi-task objective. (3) During inference for a source
instance from L, we perform upsampling by uyp and enhancement by
Uanh to compute the final prediction.

Pseudo-source L, Upsampled L

=

| synthesis/g;;,,

TABLE 1. Overview of the qualitatively different sets of RGB-D images

(1, D) used within the present work. “Low-quality” depth images are
prone to noise and incomplete depth values; “high-quality” depth images
are clean and complete.

Symbol Depth Properties Set Meaning
Resolution  Quality

L w X h low Source RGB-D images

Ly kw X kh low L with upsampled depth

H kw X kh high Target RGB-D images

Hj w X h high H with downsampled depth

Lp w X h ~low Pseudo-source RGB-D images

algorithm at different SR factors, including keeping the input
resolution of the image (k = 1).

2) ARCHITECTURE OF THE LEARNING FRAMEWORK
Conceptually, we reframe our unpaired learning task as two
arguably easier tasks: a data synthesis task, concerned with
generating appropriate training (pseudo-source) images,
and a supervised regression learning task, which addresses
learning an enhancement mapping from the pseudo-sources
and bears similarity to recent successful approaches to image
SR [15]. We elaborate on the design of our framework below;
we visually accompany this design by Figure 3 and present
an overview for the symbols denoting the different sets of
RGB-D data used throughout this work in Table 1.

The input domain for our depth SR method is the set of
source RGB-D images with low-resolution depth (source L),
that we upsample using uyp to obtain RGB-D images with
upsampled depth (upsampled L4 ). Our central learning goal
is to construct an enhancement algorithm uepp, that transforms
the upsampled L, to the set of target RGB-D images with
high-resolution depth (target H). In this context, our first
objective is to construct a collection of training RGB-D
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instances with source-like and target-like depth, suitable for
supervised training of the enhancement algorithm. To serve as
such source-like and target-like images, we define two sets
with w x h depth: pseudo-source RGB-D images (pseudo-
source Lp) and target RGB-D images with downsampled
depth (downsampled H ). The downsampled H | is obtained
by nearest-neighbour downsampling of the depth images
in the target set H. Pseudo-sources Lp are constructed
by training an unpaired image-to-image translation method
minimizing discrepancy between the distributions of the
pseudo-sources Lp and the sources L. Our second objective
is to use the paired data in the pseudo-source Lp and
downsampled H| sets to learn an effective enhancement
method. During training, we strive to maintain equally
high enhancement performance for the pseudo-source Lp,
source L, and upsampled L4 sets despite differences in their
distributions and resolution. Note that while the source L
and the upsampled Ly sets are related by the upsampling
operation uyp, including instances from both sets for training
the pseudo-supervised model remains crucial for upscaling
factors k > 1 to explicitly account for distribution shift
stemming from increase in resolution.

Following this design, we decompose our learning frame-
work into two interrelated trainable parts: the unpaired
translation algorithm, implementing the bidirectional transla-
tion between the downsampled /|, and the source L sets, and
the enhancement algorithm, implementing the enhancement
transformation uepn. We train them consecutively using two
stages. In the first stage, we train the translation algorithm
using the source L and the downsampled H | in an unpaired
manner, obtaining a deep translation network gpor : Hy — L
(Section III-D), and freeze the weights of ggor. In the
second stage, we use ggypr to process samples in the
downscaled H| and obtain the set of pseudo-sources Lp.
We train the enhancement algorithm using the synthesized
pseudo-sources Lp, sources L, and downsampled targets H
(Section III-C), and fine-tune it using the upsampled
sources Ly and the targets H. Note that while both trainable
parts can technically be trained jointly in a shared training
loop, in practice this would impose upon the system a heavy
memory footprint, reducing batch sizes and learning rates; we
thus opted on successive training. We give details of these
components below.

C. ENHANCEMENT ALGORITHM

Our enhancement algorithm uey, is designed to leverage
multiple complementary sensed and predicted images as
presented in a data-flow Figure 4. More specifically,
we include raw input color and depth images, estimate an
accurate intermediate monocular depth image from the input
color image, and construct two additional photometric and
geometric feature maps extracted from the input color and
depth images, respectively. During training, we (1) pre-
train a separate RGB guidance network (feature extractor)
using RGB-D data with low-resolution depth: source L and
downsampled H; (2) train an enhancement network using
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a mix of source L, pseudo-source Lp and target H sets in
a shared training loop. For inference with an input RGB-D
image, we (1) upsample its input depth to the target resolution
(kw x kh), (2) compute feature maps of the input RGB
and depth images using convolutional feature extractors, (3)
estimate an intermediate depth image from the RGB image
with the RGB guidance network, and (4) estimate the final
depth image from the input RGB-D image concatenated with
their feature maps and the intermediate depth image, using
the enhancement network.

We describe the supervised training procedure for our
enhancement algorithm below; we provide details on the
construction of its training data in Section III-D. We assume
that we have access to RGB-D images from the source L,
pseudo-source Lp, target H, and downsampled H| sets.
We obtain depth images in the pseudo-source Lp by applying
the translation network (Section III-D) to those in the
target H | ; depth images in the downsampled H are obtained
by nearest-neighbour downsampling of the depth from the
target H. The distributions of the source L and pseudo-
source Lp sets are assumed to be close to identical.

1) RGB GUIDANCE NETWORK

Color guidance has been established as an important visual
cue heavily utilised for RGBD-based depth SR [8] due
to the strong correlation between color and depth images.
Following this intuition, we exploit a simple color guidance
mechanism, that we demonstrate to serve as an effective
signal, particularly for recovering accurate depth in regions
where sensor depth measurements are missing or unreliable.
To achieve this, we define an RGB guidance CNN figp, used to
estimate a depth image from the respective monocular color
image. We implement fio, using a U-Net-like [64] encoder-
decoder architecture with two encoders, one for the source L
and one for the downsampled H | sets, and a shared decoder.
We pre-train fop by minimizing mean absolute error between
the monocular depth estimate fioh(/) and the reference depth
image D for a given RGB-Dimage (/,D) € Lor(I,D) e H,
and freeze its weights after pre-training. We describe the
architecture used for figp in the experimental Section V-A.

2) FEATURE EXTRACTORS

We separately mention photometric and geometric feature
extractors, represented by two smaller CNNs trained jointly
with the RGB guidance CNN and the enhancement CNN,
respectively. Their outputs, photometric x; and geometric xp
convolutional features, are extracted from the raw input RGB
and depth images, respectively, and used as additional inputs
to our enhancement algorithm (see Figure 4).

3) ENHANCEMENT NETWORK Feqp

We define an enhancement CNN f.n,, as our estimator of
the final high-resolution depth image pH using the diverse
available visual data. For an input RGB-D image (I, D),
we compute a depth estimate figh(/) using the pre-trained
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FIGURE 4. Scheme of depth super-resolution with our enhancement algorithm ug,,. We upsample depth via Bicubic interpolation to the target
resolution of the color image /, obtaining uyp (D). We use RGB guidance network f,.}, to extract a monocular depth estimate f,,, (/) and run feature
extractors to obtain photometric and geometric convolutlonal features (x;, xp). Finally, the enhancement network f,p}, predicts a refined depth image
by processing the concatenated data (uup(D), Xp, /, Xy, frgp (I))- We provide results of ablative studies assessing contributions of individual components
in Table 7 and give information on parameters of their tralnlng configuration in Table 1 in Supplementary.

image guidance network frop and extract photometric and
geometric convolutional features x;, xp, respectively. The
S-tuple (uwp(D), xp, 1, x;, frgb(l )) is fed in as an input data
for predicting the output D using fonn (see Figure 4). The
network architecture used for fepp is specified in Section V-A.

4) LOSS TERMS FOR TRAINING Fpp,

In our training scenario, the network is unlikely to auto-
matically pick up relevant patterns in absence of ‘“‘true”
large-scale paired data; we thus seek to give our regression
model the desired properties by optimizing it using a
combination of loss terms, that we find to directly impact
performance for our algorithm. We describe these properties
and the respective loss terms here.

We define pixel-weighted mean absolute error (MAE)
and mean squared error (MSE) by computing integral of
the pixelwise deviation in the predicted and reference depth
images

Ly(D1, D) = |[w, © (D1 = D2),
MAE = L;, MSE = L, (1)

where © denotes pixel-wise multiplication, and use a
combination of these with our depth-based loss term

Edepth = )\depth,lMAE + )‘-depth,ZMSE

= I:)Ldepth,l )»depth,z] [MAE MSE] = )‘depthLdepth
2)

where Ageptn Weights p-norms of pixelwise deviations.
While the two depth images may be close in the Euclidean
sense, appearance of their respective surfaces (as captured,
e.g., by a rendering) can vary significantly due to geometric
noise in local surface orientation. Thus, we assess surface
quality using perceptual losses [9] defined as p-norms of
pixelwise-weighted difference in surface renderings of depth
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images averaged over three orthogonal light directions e;:

3
1
Rp(D1, D2) = = > [wp © W1 = N2) - e,
i=1

MAE, = R;, MSE, = R,, A3)

where N1 and N, are finite-difference estimates of per-pixel
normals from the depth images D; and D», respectively
(computed as in [9]). We define our surface-based loss term
via
Lt = AMAE, + Ao MSE,
T
= I:)Lsurf,l )Lsurf,Z:I [MAEV MSEV] = )‘SurfL;rurf “)

We specify our pixelwise weighting functions w(u), u =
(i, ) for use within the depth- and surface-based loss terms
Equations (1) and (4) according to the general expression

w(u) = wixa, (W) + waxa, w)
= [ wa] [, 0 xa,0]"
=wx), (5)

where wi, wy € R, the function x4, (-) is an indicator function
of the set Ay of valid pixels, and x4, (-) is an indicator function
of the set A, of pixels corresponding to gaps (indicated as
NaNs in input depth readings). As we would like to plausibly
inpaint gaps, we typically set w; to a larger value compared
to wi. We specify particular values for per-pixel weights w),
in Section V.

To encourage sharp depth discontinuities at object bound-
aries, we use the edge-based regularizer term [65]

Redge(I, D) = |V;D|ly e VIt )| v,D||; e W (6)

where Vj and V, denote finite differences computed in
horizontal and vertical direction.
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To aid noise suppression and impose spatial smoothness on
the normals N for an RGB-D image (I, D), we additionally
optimize the total variation regularizer term [16], [66]
expressed by

Rsmooth(NV) = [IVaN [l2 + [VyN |l . (N

5) TRAINING PROCEDURE FOR Fey

Our core idea is to implement a shared enhancement
mapping for both source real-world L and pseudo-source
synthesized Lp sets using a single model, enabling it to treat
these sets in a unified way; this leads us to include two
critical ingredients in designing our procedure for training
the enhancement network fenn. First, to effectively perform
enhancement we require the network to minimize a pseudo-
supervised objective, aiming to reconstruct output depth
in H from respective synthesized images in Lp. For pseudo-
source samples in Lp, as accurate reference depth and normals
are available, we minimize

L (fonn) = Laepin(D?, D) + Louyt(D?, DHY)
+ )\LP Rsmooth(ﬁHi)’ (8)

smooth

where DV = fun(I, DY) is the refined depth image
produced by the enhancement CNN. However, this alone does
not guarantee achieving similar performance for real-world
images in L due to a discrepancy between L and Lp.
We thus additionally minimize a self-supervised objective
over instances from L which serves as a fixed point constraint.
For these instances, normals tend to be very noisy, and we
thus exclude the surface-based term Lq, s and instead focus
on detecting object contours using Redge by minimizing

Eénh(ﬁ:nh) = Ldepth(DLa BL) + )\gdgeRedge(BL)
+ AL o Rsmoon (D), 9)

smooth

where we expect the output depth image Dt = fenn(, DX) to
replicate the input depth D~ .

Note that each of the terms Laeptn(DF*, DY), Lot
(D, DY), and Lgepm(D*, DY) incorporate 1-norm and
2;‘norms weighted by respective weights X(ngpth, XsLlfrf, and
Ag

epth” T
Our full enhancement objective is

Lenn = L8+ £E (10)

enh enh

L . ..
where £} leverages the available pseudo-supervision and

’Cénh helps to achieve good performance for real instances.
Technically, we include an equal number of samples from
both Lp and L in each mini-batch while performing gradient

descent.

6) TRAINING AT HIGH RESOLUTION

We pre-train the enhancement network at w x h resolution
using instances in Lp, H, and L; after that, we fine-tune it
using kw x kh high-resolution images. We keep the same
objective in Equations (8) to (10) but set new hyperpa-
rameters giving heavier weight to depth and surface terms.
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Source 7, Reverse translation

Downsampled H,

Cycle-consistency
(accurate depth
and normals)

Forward translation
(degradation map)

FIGURE 5. We use the source L and the downsampled H, as the two sets
of RBG-D images involved in unpaired training of the translation network.

Section V describes specific values for weighting, details
of our parameter choices, and results of an ablation study
involving alternatives.

D. UNPAIRED TRANSLATION ALGORITHM

We design our translation step to perform data-driven
construction of pseudo-sources Lp required for training
the enhancement algorithm ueyy, from the downsampled
targets H|. To this end, we take inspiration from the
cycle-consistent learning paradigm [46] and its recent
applications to photo and depth SR [1], [14], [15], [16],
and construct two deep models for performing forward
and reverse translation between the downsampled H and
the source L. Note that performing this training under
the cycle-consistent adversarial framework does not require
having paired training instances as such models minimize
objectives formulated in terms of distributions. Once the
forward translation network has been trained, we may
proceed with generation of pseudo-source instances Lp via
passing through it images from the downsampled H .

1) TRANSLATION NETWORKS

We define a forward translation network ggo; to learn a
desired degradation mapping from the high-quality down-
sampled H| to the low-quality source L, and a concurrent
reverse translation network gy >z which learns to translate the
source L to the downsampled H . Depth images in both sets
have the same w x h spatial resolution. Operation of these
networks can be described in terms of relations

D' = gyor (1, D) and DMV = grop(, DY), (11)

where DE is the translated pseudo-source depth for a
downsampled (I, DY) € Hy, and Dl is the translated
downsampled depth of a source RGB-D image (I, DY) € L.
We additionally define a reconstructed depth image Bﬁi via

~H
Dret = gran(, guar (I, D*V)). (12)

2) OBJECTIVE FOR UNPAIRED TRAINING

We train the forward and reverse translation networks using
several distinct loss terms. We formulate an adversarial
loss term by adapting an existing image-to-image translation
objective developed in the context of image SR [15]. While
a straightforward adaptation already allows to optimize
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translation networks (generators) g7oy and gy along with
discriminators d(ﬁpth and dgepth, to further raise performance
for RGB-D data we develop an improved formulation
by integrating three modifications (we investigate their
effect in Section V). First, in a similar vein to [15],
we substitute the original D\ with a reconstructed Bzé for
the discriminator dgépth operating in the downsampled H :
we aim to relax the requirements for the generator and
to stabilize training. Second, to facilitate reconstruction of
faithful normals, we extend the adversarial part with surface
normals discriminator networks d  and dL  operating
on images in the downsampled H| and the source L,
respectively (we compute normals using finite differences).
Finally, we formulate all adversarial losses in terms of the
Least Squares GAN [67] that is known to improve GAN
performance by preventing gradient saturation via a least
squares penalty. We provide the full formulation of our
adversarial loss term L,qy in the Supplementary material.
Figure 6 illustrates the data flow used in training of our
translation network.

By the cycle-consistency property, we expect the recon-
structed depth image Dret from Equation (12) to approximate
the original image well: ﬁrz% ~ DH\. To implement cycle-
consistent training, we enforce the accurate reconstruction
of the original depth image when undergoing a composition
of forward and reverse mapping by minimizing the cycle-
consistency term (see Figure 5)

Leycle = MAE + MSE,, (13)

emphasizing the need to fit both depth and normals compo-
nents accurately (MAE and MSE, are defined in Equation (1)
and Equation (2), respectively). As the downsampled H
is the only set that provides accurate reference depth and
normals, we compute Ecycle(ﬁgé, DMV for instances in H 1
only.

The source L and downsampled H| sets have different
range and distribution of depth values; to prevent both
networks groy and ggor from learning systematic shifts,
we regularize translation via the two range regularization
terms

Riange(D") = MAE (gL (1, D"), D),

range

H
Riange(D™Y) = MAE (gy2. (I, DY), DHY). (14)

We additionally aim to prevent the reverse translation
network grog from distorting depth images in the clean
downsampled H | by introducing the idempotency regulariza-
tion term

Ria(DV) = MAE(g1om (1, D), DY), (15)

The system is trained by optimizing the following final
translation objective:

Etrans = Ladv + )\cycleccycle
4 AL RE ot

range’ “range range

H
Rraﬁge + AidtRige.  (16)
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For brevity, we specify formulation for our adversarial loss
Lagy in the Supplemental. We describe the architecture for
our models and hyperparameter choices in the experimental
Section V-A.

IV. METHODOLOGY AND DATA CONSTRUCTION

FOR EVALUATION OF PAIRED AND UNPAIRED
APPROACHES

The goals of our evaluation are (1) to compare our unpaired
depth SR method with paired and unpaired methods on as
equal terms as possible, and (2) to study the performance
of our method in a realistic unpaired training scenario.
For this, we develop a framework that enables directly
performing such comparisons; we use this framework for
creating a benchmark based on two datasets containing
RGB-D scans of indoor scenes: ScanNet [17], which
contains scans captured with Structure depth sensor, and
InteriorNet [19], which contains high-quality simulated
RGB-D scans.

A. DATASET CONSTRUCTION METHODOLOGY

We start from a paired dataset containing aligned low- (L)
and high-quality RGB-D images (such as H| or H) of the
same 3D environments (scenes) and adapt it as follows (see
Figure 7):

1) We split the dataset into training, validation and test sets,
each using a different subset of scenes.

2) We further split the training set into two dis-
joint parts, also using distinct scenes, Train A and
Train B.

3) The unpaired training set U includes low-quality
images in Train A and high-quality images in
Train B.

4) The paired training set P combines low-quality
images in Train B and high-quality images in
Train B.

5) Testset T, obtained at step 1, is the same for both paired
and unpaired methods.

This approach enables directly comparing unsupervised
methods trained on U with supervised methods trained on P.
We further develop a depth SR and enhancement benchmark,
that we describe below.

B. BENCHMARK VARIETIES

Our benchmark consists of three parts that serve distinct pur-
poses, as summarized by Table 2. ScanNet-RenderScanNet
is built from raw sensor RGB-D images from ScanNet
and high-quality depth rendered from 3D reconstructions
of ScanNet scenes obtained automatically using depth
fusion [18]. This benchmark aims to provide uniform training
data for both paired and unpaired methods, and is split
into three sub-parts Train A, Train B, and Val, following
the data construction framework. Additionally, training on
ScanNet-RenderScanNet allows to study unpaired methods in
a controlled training scenario when the low- and high-quality
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Degradation
mapping g,

Target RGB-D (7, D) |
(downscaled)

Finite diff.

Pseudo-source normals
th

Finite diff.

Source normals Source RGB-D (7, DY)

Reverse translation

3 mapping g; ,,,
Pseudo-source RGB-D (1, D'p)

Finite diff.

>
>

Reconstr. RGB-D (I, ﬁ;{; ) Reconstr. normals

Finite diff.

Translated normals

Translated source (1, D™'+)

FIGURE 6. During training of the the translation network, we use normals-based discriminator networks in addition to depth-based discriminators;

this leads to improved performance in our evaluation.

H (high-res, ‘ Train A | Train B ‘ Val Test
high-quality)

Unpa:W Pair% Paired
L (low-res,
low-quality) | Train 4 | Train B ‘ Val Test

FIGURE 7. Unpaired methods are trained on disjoint parts A and B, while
paired ones have training pairs.

TABLE 2. Summary of the used training and validation datasets.
“Rendered [18]" refers to rendering depth images from 3D
reconstructions of ScanNet scenes obtained using BundleFusion [18].

Split Set Source RGB Depth Volume

ScanNet-RenderScanNet (paired and unpaired)

TrainA L ScanNet [17] 1280 x 960 640 x 480 6221
TrainB L ScanNet [17] 1280 x 960 640 x 480 6221
H Rendered [18] 1280 x 960 1280 x 960 6221
Val L ScanNet [17] 1280 x 960 640 x 480 2945
H Rendered [18] 1280 x 960 1280 x 960 2945

ScanNet-InteriorNet (unpaired only)

TrainA L Train A (L) in ScanNet-RenderScanNet

TrainB H  InteriorNet [19] 1280 x 960 1280 x 960 13744

Testing dataset

Test L ScanNet [17] 1280 x 960 640 x 480 501
H Rendered [18] 1280 x 960 1280 x 960 501

data differ only in quality but not in semantics or other
properties which could impair training stability. ScanNet-
InteriorNet contains real-world sensor data from ScanNet
and photorealistic images and high-quality virtual scans of
procedurally generated scenes from InteriorNet [19]. With
this benchmark, we aim to evaluate unpaired methods in a
realistic training scenario when the low- and high-quality
data differ not only in quality, but also in semantic content,
distribution of depth values, etc. Testing dataset is a hold-out
set for evaluation of both paired and unpaired depth map
super-resolution methods; it consists of full-sized sensor
RGB-D images from ScanNet and their respective high-
quality renders.
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V. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP

We evaluate our method in depth map super-resolution with
a scaling factor k = 2, training it on either ScanNet-
RenderScanNet or ScanNet-InteriorNet, and testing on
Testing dataset. As our method is capable of perform-
ing depth enhancement at the original spatial resolution,
we present an additional evaluation on depth enhance-
ment task with k = 1. Finally, we study the individual
contributions of different components of our method in
an ablation study. We specify the experimental setup here
and give details specific to each experiment in respective
Sections V-B and V-F.

1) NETWORK ARCHITECTURES
Translation networks ggor and groy accept an RGB and
a depth image as input and produce a depth image as
output. Both networks share the same architecture that
consist of convolutional RGB and depth feature encoders
computing features that are concatenated and processed
by 9 ResNet [68] blocks, and a convolutional decoder that
produces a final depth image. For feature normalization
in these models, we apply GroupNorm [69]. All discrim-
inators follow the CycleGAN [46] discriminator archi-
tecture. We use Spectral Normalization [70] for weight
regularization but perform no feature normalization in
discriminators.

The RGB Guidance Network fr,p architecturally includes
a feature extractor (2 downsampling blocks, 6 ResNet
blocks, and 2 upsampling blocks) and the depth prediction
(a vanilla U-Net [64]) sub-networks. We use Instance
Normalization [71] in both these parts.

The enhancement network fen, architecturally is a vanilla
U-Net [64].

We include information on the specific network parameters
and training configurations in Supplemental, Table S1.
All networks in our algorithm are trained from scratch.
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2) DATA PREPROCESSING AND AUGMENTATION

All super-resolution methods in our experiments are based
on fully-convolutional neural networks and can be naturally
trained on crops of arbitrary size, and we build Train B
and Val sub-parts from crops instead of full-sized images
in order to increase the size of these subsets, as we explain
further.

For the three datasets (ScanNet, RenderScanNet, and
InteriorNet), we select RGB-D frames with the maximum
depth value not exceeding 5.1 m, corresponding to the 85th
depth range percentile in ScanNet [17]. Such filtering is
consistent with the depth range where commercial depth sen-
sors have sufficient precision while simultaneously allowing
to reduce discrepancy better between images in synthetic
and real datasets and providing common threshold for data
normalization, which is a common practice for deep learning.

The depth fusion process [18] is not perfect, and rendering
of reconstructed meshes has been shown to produce local
misalignments [12] and create unnatural regions in output
images. To reduce this effect, we applied a filtering procedure
similar to the one used in [12]: we extracted 320 x 320 and
640 x 640 patches from input RGB-D frames and measured
structured similarity [72] (SSIM) between the raw and
rendered depth patch and its downsampled version, selecting
images with SSIM greater than 0.8, and discarding pairs if
the rendering produces misaligned result relatively to the
sensor depth. We also store full frames with at least one patch
selected.

To improve hole inpainting performance, we randomly
add N rectangular holes to each training RGB-D frame,
sampling N uniformly in [10, 75] range. The holes have
random sizes (h,, w,) where h, is uniformly sampled in
the range H/128...H/8, and w, from W/128...W/8
where (H, W) represent the dimensions of the input depth
image. We perform this during each training iteration with
probability 0.9.

3) QUALITY MEASURES

We calculate seven performance measures by comparing
the super-resolved or enhanced depth images against their
high-quality counterparts. RMSE, the root mean squared
error, emphasizes large deviations. MAE, the mean absolute
error, quantifies an average error without taking outliers into
account. RMSE; and MAE;, the errors averaged over
pixels with missing input depth value, assess the inpainting
performance of the method. RMSEy and MAE, the errors
averaged over pixels with defined input depth value, measure
the quality of the method in regions with valid input, and
are well-suited for the evaluation of approaches that do not
perform inpainting. Finally, MSE, defined in Equation (3)
measures the perceptual similarity between the 3D surface
represented using an output depth map and the 3D surface
represented by a reference depth map. In all calculations,
we exclude pixels with unknown reference depth values.
We report all metrics except MSE, in millimeters.
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TABLE 3. For a paired scenario ScanNet-RenderScanNet (where
supervised training is possible), our UDSR outperforms all unpaired
methods and quantitatively approaches the supervised SRFBN [4] and
MS-PFL [10] methods. Lower = better; we show MSEy x 10~2.

Method RMSE] RMSE;, RMSE; MAE MAE;, MAE; MSE,
SRFBN [4]* 363.5 14355 129.0 1093 1392.1 27.1 25.8
MS-PFL [10]* 299.5 11638 1177 93.7 1110.6 29.3 24.9
Gu[l]+ SRBEN [4]* 107.7 194.1 947 568 1212 517 28.1
SRFBN [4]} 769 1764 585 222 925 164 164
MS-PFL [10]¢ 755 1684 604 302 1133 238 16.1
Bicubic + Gu [1] 1147 3230 785 563 2465 43.1 520
Gu [1] + Bicubic 108.0 193.8 950 57.1 1214 521 285
UDSR (Ours) 862 172.6 747 455 1138 40.6 20.2

§ supervised algorithms trained on (L, H)
* supervised algorithms trained on (H |, H)
non-marked methods Gu ez al. [1] and UDSR are unpaired

4) TRAINING COMPETITOR METHODS

For a fair comparison between competitors and our approach
we re-train all competitor methods on the datasets available
in our benchmark; we do not use datasets available from
respective authors as they are unable to provide equal
conditions for our comparisons.

B. SUPER-RESOLUTION ON SCANNET-RENDERSCANNET
1) METHODS AND TRAINING

We compare our method with three other learning-based
methods. MS-PFL [10] is a state-of-the-art supervised
depth SR method based on progressive multi-scale fusion
of features extracted from input depth and RGB images.
SRFBN [4] is an established supervised method for RGB
image super-resolution based on recurrent connections which
allow to incorporate high-level information flow. SRFBN
often serves as a strong baseline for evaluating depth
super-resolution methods (for instance, in [10], [11]). Fol-
lowing [10], we modified SRFBN to take a single-channel
depth tensor as input and produce a single-channel output
instead of a three-channel RGB one. Lastly, Gu et al. [1] is
the only existing unpaired method for depth enhancement
with a state-of-the-art performance. We adapt this method for
super-resolution as explained below.

To more fully characterize performance of supervised
methods, we include results obtained by training these
methods to predict clean high-resolution targets in H using
two distinct variants of input data (see Table 3). In the first
variant, we use synthesized low-resolution inputs from the
downsampled H as done commonly by depth SR literature;
the second variant consists in using registered real-world
inputs from the source L available in our benchmarks.

To adapt the enhancement method of Gu et al. for super-
resolution, we combined it with upsampling in three ways.
For the first combination (we denote it “Bicubic + Gu™),
we trained the method of Gu et al. on bicubically upsampled
sensor depth from the source L as inputs and high-resolution
high-quality depth images from H as targets, and for testing
applied the method to bicubically upsampled sensor depth.
For the second (“Gu + Bicubic”), we trained the method
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on sensor depth maps from L as inputs and downsampled
high-quality depth maps from the downsampled H as tar-
gets, and for testing applied bicubic interpolation to the output
of the method. For the last combination (“Gu + SRFBN”’),
we again trained the method of Gu et al. on depth maps from L
and H, but for upsampling during testing we used SRFBN
trained on pairs from H | and H.

2) RESULTS

We display statistical evaluation results in Table 3 and
visualize example predictions in Figure 8b. Our method
outperforms all variants of the unpaired method of Gu et al.
adapted for depth SR both quantitatively and qualitatively.
All variants, particularly “Bicubic 4 Gu” where enhance-
ment follows upsampling, produce surfaces with step-like
artefacts, which is illustrated by the greyish color of normal
maps, and which leads to a low perceptual quality (MSE, ) of
the result. Variants where upsampling follows enhancement,
i.e., “Gu + Bicubic” and “Gu + SRFBN”, produce very
similar results, so we only show the qualitative results for the
latter. We note that since our translation network ggoy plays a
similar role to Gu et al., similar results can be expected from
using combinations of the form “Bicubic + ggor” or “ggar
+ Bicubic”.

Compared to paired methods trained in the commonly
used scenario on downsampled inputs from H |, our method
achieves lower RMSEy and MSE, but a higher MAEg.
As illustrated by visuals of the normal maps, compared to
our algorithm, these methods produce significantly noisier
surface, almost as noisy as the input sensor data; this
is likely due to the domain shift between the synthetic
input during training and the real-world sensor input during
testing. This aligns with our initial motivation of exploring
unpaired methods against the lack of representative paired
data reflecting real-world input.

Compared to paired methods trained in the second scenario
on data from L and H, our unpaired method performs only
slightly worse quantitatively. At the same time, qualitative
results of these methods contain artefacts that are not present
in the predictions of our method; for instance, SRFBN
produces ringing artefacts around object boundaries, and
MS-PFL tends to output an over-smoothed depth.

C. SUPER-RESOLUTION ON SCANNET-INTERIORNET

1) METHODS AND TRAINING

For evaluation using the ScanNet-InteriorNet benchmark,
we compared our method with the three adaptations of the
method of Gu et al. described above.

2) RESULTS

Evaluation results are shown quantitatively in Table 4 and
visually in Figure Figure 9b. Our method outperforms
all three variants of Gu et al. which suffer from the
same issues as during training on ScanNet-RenderScanNet.
Notably, using ideal target data from InteriorNet leads to a
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TABLE 4. For an unpaired scenatio ScanNet-InteriorNet with geometric
and semantic differences in source and target datasets, our method
outperforms state-of-the-art depth enhancement [1] coupled with
trained [4] and untrained depth upsampling steps, across all quality
measures we computed. Note: we only show combinations of methods
that enable unpaired training. Lower = better; we show MSEy x 10~2.

Method RMSE| RMSE, RMSEy; MAE MAE;, MAE; MSE,
Bicubic + Gu [1] 2412 893.1 109.0 935 771.5 505 479
Gu[!]+ SRFBN [4] 107.2 2982  67.8 457 210.0 33.1 425
Gu [1] + Bicubic 107.1  297.7 67.9 46.1 2099 33.6 36.7
UDSR (Ours) 81.1 1979 61.0 28.0 123.5 20.6 26.1

similar or improved quantitative performance for our method,
compared to using renders of ScanNet reconstructions.

D. ENHANCEMENT ON SCANNET-RENDERSCANNET

1) METHODS AND TRAINING

In the task of depth enhancement with no change in
spatial resolution we compared our method with five other
learning-based methods: the unpaired method of Gu et al.
(which differs from our method both architecturally and
in its training procedure), LapDEN [12], a state-of-the-
art supervised method for depth enhancement based on
deep Laplacian pyramid network, and three unpaired meth-
ods for RGB image-to-image translation, CycleGAN [46],
U-GAT-IT [73], and NiceGAN [74]. We modified them to
take a single-channel depth tensor as input and produce a
single-channel output, and for CycleGAN we additionally
trained a version with four-channel RGB-D input.

2) RESULTS

The evaluation results are shown in Table 5 and in Figure 8.
Quantitatively, our method outperforms the other unpaired
methods in all measures. Notably, even for a harder task of 2 x
depth SR, our method achieves higher scores in all measures
except MSE, compared to other unpaired methods on the
task of depth enhancement (no change in spatial resolution).
Qualitatively, our method successfully performs denoising,
hole inpainting, and yields surface normals close to the
target while the other unpaired methods suffer from various
artefacts. Gu et al. produces the result with step-like artefacts,
which is indicated by the greyish color of the normal map
and a high value of MSE,; NiceGAN and U-GAT-IT suffer
from ringing artefacts around the object boundaries; U-GAT-
IT and CycleGAN fail to preserve the correct absolute depth
value, which is indicated by the shifted colors in depth image
visualization and high values of RMSE- and MAE-based
measures. Compared to the paired LapDEN, our method
performs slightly worse quantitatively and produces the result
with slightly noisier surface.

E. ENHANCEMENT ON SCANNET-INTERIORNET

1) METHODS AND TRAINING

We additionally perform evaluation of depth enhancement
using the data available in the ScanNet-InteriorNet bench-
mark, using the same methods as described previously.
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Input (L)  CycleGAN®  CycleGANT  U-GATIT

Input (L) SRFBNY MS-PFL$ SRFBN*

NiceGAN

Lap! DEN UDSR Reference (H)

UDSR Reference (H)

(b) Depth SR (with enhancement)

FIGURE 8. Enhancement and depth SR on ScanNet-RenderScanNet benchmark. Each column corresponds to a separately trained
network. The networks Gu et al. and SRFBN are tralned separately from the case ScanNet-InteriorNet. § and * mark the models
trained on (L, H) and (H,, H) pairs respectively. - and T mark the models with the depth only input and depth image concatenated

with RGB, respectively.

TABLE 5. Enhancement performance statistics using the
ScanNet-RenderScanNet benchmark indicates that our UDSR significantly
outperforms all existing unpaired methods and quantitatively approaches
the supervised LapDEN [12]. Lower = better; we show MSEy x 10~2

Method RMSE| RMSE;, RMSE; MAE MAE;, MAE4 MSE,

LapDEN [12] 760 1656 584 226 927 159 1.7

CycleGAN [46]  416.6 450.6 407.5 391.2 389.4 3925 13.3
U-GAT-IT [73]  292.8 508.0 261.3249.5 4345 2356 14.2
NiceGAN [74] ~ 156.5 4102 111.5 97.6 3248 795 19.5
Gueral. [1] 1083 1939 943 57.1 1202 517 33.1

UDSR (Ours) 771 169.6 633 33.0 1101 27.3 11.9

We consider two input possibilities where we supply depth
image or depth image concatenated with RGB as input to
CycleGAN [46]; U-GAT-IT [73], and NiceGAN [74] are
trained using depth images only.

2) RESULTS

The evaluation results presented in Table 6 demonstrate
significant quantitative performance gains across quality
measures we compute, particularly for MSE, . Visual results
Figure 9 demonstrate that our method recovers normals better
compared to Gu et al., resulting in more visually appealing
surface geometry.

F. ABLATION STUDIES
We study the effects of different components of our method
by training its several versions on ScanNet-InteriorNet
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TABLE 6. Enhancement performance statistics for ScanNet-InteriorNet
scenario. Our method outperforms all competitors across all measures
we computed. Lower = better; we show MSEy x 10-2,

Method RMSE| RMSE;, RMSE; MAE MAE;, MAEy MSEy

NiceGAN [74]® 2063.7 2824.6 1984.3 1860.0 2759.8 1787.0 59.5
U-GAT-IT [73]® 1300.2 1064.4 1311.4 12547 999.3 12764 244
CycleGAN [46]® 4059 640.0 359.5 356.8 566.6 336.6 482
CycleGAN [46]T 4719 5230 457.8 4251 4577 4219 439
Gueral.[1] 1073 290.1  66.8 46.1 201.0 33.1 444

UDSR (Ours) 80.8 1999 59.1 299 1248 222 147

¢ input: depth image
T input: depth image concatenated with RGB

benchmark. Results of this ablative study are presented
quantitatively in Table 7 and visually in Figure 10.

Removing the RGB guidance network frgp (UDSRT) and
training without augmenting input data using random gaps
(UDSR®) impairs inpainting performance both qualitatively
and quantitatively as assessed by RMSE, and MAE;.
These findings are expected, as RGB guidance enables
predicting depth in areas where direct range measurements
are unavailable, while adding random holes is meant to
provide robustness of our approach.

Compared to generating pseudo-examples using an
unmodified CycleGAN (UDSR"), our surface normals-aware
translation algorithm significantly improves performance
for the full method w.r.t. all measures. Training without
pseudo-examples at all (UDSR°) produces low-quality
surfaces, both qualitatively and as measured by MSE,.
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FIGURE 9. Enhancement and SR using the ScanNet-InteriorNet benchmark. Each column corresponds to a separately trained network.

Input (L) UDSR®  UDSR# UDSR* UDSR*

RGB

Surface
Normals ClOSC-up

UDSRT
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o o o, o i L s s i

UDSR®  UDSR® UDSR  Reference (H)

UDSR$

FIGURE 10. Ablation study of our depth SR method using data in ScanNet-InteriorNet benchmark (see Table 7 for notation).

TABLE 7. Ablation study of our depth SR algorithm using the data in
ScanNet-InteriorNet benchmark.

Method RMSE, RMSE; MAE, MAE; MSE,
UDSR® 2384 2038 183.7 1882 393
UDSR¥ 213.3 66.1 1352 310 244
UDSR* 208.6 693 1350 363 236
UDSR* 1920  63.1 1194 254 23,0
UDSRT 376.3 66.5 2715 297 412
UDSR$ 2284 716 1511 366 35.1
UDSR® 342.1 662 2799 288 288
UDSR® 1777 628 1042 246 432

UDSR (Ours) 197.9 61.0 1235 206  26.1

MOdlflCathnS of the unpaired translation algorithm:
® replaced with unmodified CycleGAN,
¥ trained without normals-based discriminators d  dk
* trained without MSE, in cycle-consistency loss Leycles
* trained without depth range regularizer R inge
Modifications of the enhancement algorithm:
 without RGB guidance network frgp,
¥ trained without normals-based loss term Luf,
© trained without additional holes in the input,
© trained without pseudo-examples.

VI. CONCLUSION

We have described a new approach to data-driven depth
super-resolution and enhancement, eliminating the need
for paired datasets and simplifying the training process
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using real-world depth data. Our learning-based pipeline
efficiently trains a depth enhancement model using diverse
data from different 3D environments, featuring varying
resolutions and qualities. Throughout it, we have introduced
several enhancements to improve robustness, accuracy, and
completeness of depth reconstructions.

Additionally, we have introduced a novel benchmark
for depth super-resolution, leveraging real-world RGB-D
scans from existing collections [17] and higher quality data
obtained by rendering reconstructions from multiple scans.
This benchmark provides a valuable evaluation framework
for comparing depth enhancement methods.

To summarize, our contributions comprise the develop-
ment of UDSR, a new method for unpaired depth super-
resolution, along with an efficient color-guided unpaired
depth enhancement algorithm. Furthermore, we have estab-
lished a comprehensive benchmark for real-world depth SR
and enhancement, advancing the state-of-the-art in these
domains.

A. FUTURE WORK

Although our method outperformed existing unpaired meth-
ods, we believe that performance can be further improved
with fine-tuning the models. The improvement of the model
robustness and scalability is another possible future direction.
Our method uses a simplistic augmentation models where
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rectangular holes are added into input data to simulate gaps
in real acquisitions; real holes, however, are likely to be
correlated with edges between foreground and background
objects. Richer, more effective augmentations including
hard cases could be created by special lighting and scene
arrangements. Another direction for future work is the
development of paired training and evaluation datasets
with high-fidelity reference depth measurements, for more
accurate validation and training [33], [63].
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