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ABSTRACT Fish species Fine-Grained Visual Classification (FGVC) is important for ecological research,
environmental management, and biodiversity monitoring, as accurate fish species identification is crucial for
assessing the health of marine ecosystems, monitoring changes in biodiversity, and converting conservation
plans into action. Although Convolutional Neural Network (CNN)s have been the conventional approach for
FGVC, their effectiveness in differentiating visually similar species is not always satisfactory. The advent of
Vision Transformer (ViT)s, in particular the Shifted window (Swin) Transformer, has demonstrated potential
in addressing these issues by using sophisticated self-attention and feature extraction techniques. This paper
proposes a method of combining the FGVC Plug-in Module (FGVC-PIM) and the Swin Transformer.
The FGVC-PIM improves classification by concentrating on the most discriminative image regions, while
the Swin Transformer acts as the framework and provides strong hierarchical feature extraction. The
performance of the method was assessed on 14 different datasets, which included 19 distinct subsets with
varying environmental conditions and image quality. With the proposed method it was achieved state-of-
the-art results in 13 of these subsets, exhibiting better accuracy and robustness than previous methods, in
2 subsets (not yet explored by other authors) new baseline results are presented, and in the remaining 4 it
was achieved results always above 83%.

INDEX TERMS Computer vision, convolutional neural networks, fine-grained visual classification, marine
biodiversity monitoring, swin transformer.

I. INTRODUCTION
The accurate identification of fish species is an integral task in
ecological research and environmental management, helping
to assess the health of marine ecosystems, track biodiversity
changes, and implement effective conservation strategies, for
which the Fine-Grained Visual Classification (FGVC) of fish
species can be a vital tool. FGVC methods were traditionally
based on Convolutional Neural Network (CNN)s, which,
despite succeeding in various image classification tasks, can
struggle when differentiating between the subtle distinctions
that set apart visually similar species, which is a particularly
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challenging task in the different aquatic environment
conditions.

Advancements in Vision Transformer (ViT)s in recent
times have demonstrated a significant potential to sur-
mount these constraints. ViTs are especially well-suited for
fine-grained classification tasks, as they use self-attention
mechanisms to capture complex details and long-range
dependencies within images. Out of all these models, the
Shifted window (Swin) Transformer stands out due to its
ability to extract features in a hierarchical manner and handle
multiscale data efficiently, both of which are essential for
FGVC high accuracy.

This paper proposes integrating the Swin Transformer [1]
with the FGVC Plug-in Module (FGVC-PIM) [2] for a new
domain of application for fish species detection. The present
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method is based on the Swin Transformer, which offers
strong hierarchical feature extraction: by concentrating on
the most discriminative areas of the pictures, the FGVC-PIM
further improves this procedure and helps the model to better
classify various fish species. Thus, combining the advantages
of both architectures, this integration improves performance
on FGVC tasks.

The method was tested using 14 different datasets with
19 distinct subsets, all with different characteristics. The
environmental conditions covered by these datasets are
diverse and include images taken in controlled laboratory
settings, images taken on-board vessels, and underwater
images taken in natural habitats. Given real-world scenarios
where fine-grained classification is necessary, this diversity
provides a thorough evaluation of our method’s robustness
and adaptability. The experimental results obtained shows
that the method in the majority of subsets outperformed
previous approaches (15 times in 19). These findings
emphasize the Transformers’ potential for FGVC tasks to
be a scalable and efficient solution for applications in the
field of marine biology and environmental management.
In addition, it demonstrates the method’s broad applicability
and effectiveness, since it adapts to various datasets and
particular conditions.

The main contributions of this paper are: (i) the exten-
sive application of the FGVC-PIM, combined with Swin
Transformer as backbone on the task of FGVC of fish
species; (ii) the comprehensive evaluation across 14 dif-
ferent datasets, resulting in 19 different experiments while
maintaining the same hyperparameters, demonstrating the
proposed method’s versatility and robustness, covering a
wide range of environmental conditions and variable image
quality; (iii) the achievement of 13 state-of-the-art results,
outperforming multiple previous methods, proving the ViT’s
potential for FGVC tasks; (iv) additionally, the inclusion of
2 new baselines, and one novel subset (counting the above,
15 state-of-the-art results in 19 datasets/subsets); (v) and a
detailed performance analysis, providing multiple analysis
on the datasets’ characteristics and distribution, reporting
a comprehensive evaluation of the proposed method’s
performance accompanied by additional metrics.

The remainder of this paper is structured as follows:
Section II reviews related datasets and related work, estab-
lishing the context for the research and highlighting the
significance of the addressed challenges. Section III details
the methodology, including the organization, acquisition,
and preprocessing of the datasets, and explains the pro-
posed method integrating the Swin Transformer with the
FGVC-PIM. Section IV presents the experiments and results,
describing the configuration, hyperparameters, data split
strategies, and a comprehensive comparison of the proposed
method against state-of-the-art techniques. In this section it is
also discussed the results, highlighting the method’s versatil-
ity and robustness across different conditions and identifying
areas for improvement. Finally, Section V concludes the
paper, summarizing the findings and suggesting directions for

future research to enhance model performance and broaden
its application scope.

II. RELATED WORK
This section is divided into three subsections. It starts
with a presentation and brief description of the most
common datasets used in state-of-the-art publications, in a
chronological order of their publication dates. Subsequently,
the methods applied to each of them are categorized under
the specific dataset, also listed chronologically by publication
date. The section is closed with a discussion that synthesizes
and analyzes the datasets and methods presented. Table 1
summarizes the state-of-the-art, and Figure 1 provides some
example images from each dataset.

A. DATASETS
The QUT fish dataset [12] includes 3,960 real-world images
of fish from 468 species, captured in different conditions
defined as controlled, out-of-the-water, and in-situ. Out-of-
water photos show fish against a variety of backgrounds
and lighting conditions, while controlled shots provide crisp
visuals with steady backgrounds and lighting. In-situ catches
are made underwater with unpredictable environmental
conditions. Additional bounding box annotation is provided
to further differentiate the subject from the background.

The Croatian Fish Dataset [5] is made up of 794 photos
that represent 12 distinct fish species. These photos were
taken from high-definition footage that was shot in Croatia’s
Adriatic Sea. The dataset is dedicated to fine-grained
natural environment visual classification. Bounding boxes
and species names are labeled on fish in the dataset. The
variations in the frequency of a species’ appearances in the
films are reflected in the number of photos for each species.
For instance, Sarpa salpa only occurs 17 times, whereas
Diplodus vulgaris, the most commonly encountered species,
is represented in 110 photos.

The Fish4Knowledge dataset [8] is a sizable collection of
data gathered over a period of 1,000 days using 12 hours of
daily observation and 9 underwater cameras at 3 different
sites. Twenty-three different fish species were included in
this dataset. Throughout the trial, 1.44 billion individual fish
instances were discovered, each large enough to facilitate
identification efforts (at least 50 × 50 pixels). Afterwards,
a total of 145million monitored fish were created by connect-
ing the detected fish across different video frames. The final
dataset included 261,751 ten-minute video clips, or 43,625
hours of film, after accounting for many factors including
false detection rates, duplicated videos with different spatial
resolutions, and removal of non-fish objects. The 27.4million
fish trajectories in this final batch are usually the same fish
that have been traced over a number of video frames.

The Fish-Pak dataset [7] is a collection of 915 photos
of six distinct fish species from Pakistan, designed to sim-
plify visual feature-based classification. With a transparent
background and high quality images, and a resolution of
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FIGURE 1. Examples of images from each dataset, from top to bottom, left to right: A Large-Scale Dataset for Fish Segmentation and
Classification [3], BDIndigenousFish2019 [4], Croatian Fish Dataset [5], Fish-Gres [6], Fish-Pak [7], Fish4Knowledge [8], FishNet [9], FishNet Open
Images Database [10], OBSEA [10], OzFish [11], QUT Fish Dataset [12], SEAMAPD21 [13], WildFish [14], and WildFish++ [15].

5184 × 3456 pixels, the photos highlight the three main
elements of the subject: the body, head, and scale.

The WildFish dataset [14] is a large-scale, diverse bench-
mark collection for fish recognition in the wild, containing
54,459 unconstrained images of 1,000 fish species. Along
with the dataset, two unique tasks are also included: paired
text recognition for fine-grained recognition, which consists
of 22 highly similar pairs of fish species, containing
additional textual description between the pairs of species,
and open-set fish classification, consisting of 685 fish species
for training and the complete 1,000 species for testing, where
the remaining 315 species should be defined as unknown.

The BDIndigenousFish2019 dataset [4] contains 2,610
photos of Bangladeshi indigenous fish species, which are
divided into 8 categories. These specimens were pho-
tographed at 3968×2796 pixels with a mobile phone camera
against a non-uniform white background.

The OzFish dataset [11] was created as part of the
Australian Research Data Commons Data Discoveries pro-
gram, designed to enhance machine learning research for
automated fish detection in videos. It contains almost 80,000
annotated bounding boxes of fish from more than 3,000
recordings, spanning 200 genera and 70 families and more
than 500 species. The dataset also includes nearly 45,000
bounding box annotations for machine learning models,
spanning 1,800 frames.

A Large-Scale Dataset for Fish Segmentation and Clas-
sification [3] is a comprehensive compilation of photos
from a supermarket fish counter that is intended to be
used for fish segmentation and classification. There are
a total of 1,000 augmented images across nine classes,
with 50 unique images for seven classes and 30 for the
other two. To replicate real-world settings, fresh fish were
photographed at several angles and locations against a
noisy, blue background. The photographs were resized to
590 × 445 pixels, almost maintaining its aspect ratio. After
that, these photos underwent augmentation, which included
rotation at non-repeated random angles and reflections,

to provide a large dataset that makesmachine learningmodels
useful in real-world scenarios.

The Fish-Gres dataset [6] is composed of images from
eight different fish species, with each species contributing
between 240 and 577 images, sourced from traditional
markets in Gresik, East Java, Indonesia. The assortment
and quantity of images in the collection are indicative
of the species’ availability in these markets. The images
were captured against diverse backgrounds to emulate the
typical conditions of thesemarketplaces, aiming to accurately
represent the range of fish species encountered there.
To facilitate uniformity and ease of analysis, images were
downscaled from an original resolution of 4160×3120 pixels
to 390×520 pixels. This dataset serves as a valuable resource
for academic research involving the identification and study
of fish species from this region.

The FishNet Open Images Database [16] consists of
406,463 bounding boxes in 86,029 images of 34 different
fish species, obtained from 73 different electronic monitoring
cameras. This large-scale dataset of fish images is intended to
be used for the development of computer vision algorithms
in fisheries, for fish detection and fine-grained classification
onboard commercial fishing vessels. The images were
captured during real-world fishing trips, providing a realistic
context for the development of computer vision algorithms in
fisheries.

The SEAMAPD21 dataset [13] contains 90,000 anno-
tations describing 130 species and was collected between
2018 and 2019, using baited underwater video technology.
However, the bulk of the species are not as often annotated
as others, with Lutjanus campechanus being one of the most
highly represented species. The species’ varying prevalence
is highlighted by this bias, which presents opportunities and
challenges for in-depth picture analysis aimed at improving
fishery monitoring and stock assessment.

The WildFish++ dataset [15] is an enhanced dataset which
extends upon the previous WildFish dataset [14], consisting
in 2,348 fish species, distributed across 103,034 images in the
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wild, and accompanied by 3,817 fish descriptions, totaling
213,858 words. The authors outline four key challenges:
fine-grained recognition with comparison texts, exploring
the multi-modal approaches, the open-set classification,
continuing the work presented on the previous publication,
the cross-modal retrieval, offering additional biological fish
information, and the automatic fish classification, providing
the largest fish dataset to date, serving as a foundational tool
for both model training and methodological advancements.

The FishNet dataset [9] serves as a comprehensive
baseline for the detection, identification, and functional trait
assessment of large-scale aquatic species, comprising 94,532
images across 17,357 aquatic species. This collection is
meticulously organized using an extensive aquatic biolog-
ical taxonomy, featuring 8 taxonomic groups, 83 orders,
463 families, and 3,826 genera. It includes 22 features
divided into habitat, ecological rule, and nutritional value
to aid in the study of ecological functions and interspecies
relationships. The dataset is also divided into three main
categories: fish classification, fish detection, and functional
trait identification.

The OBSEA dataset [10] encompasses 33,805 images with
a total of 69,917 human-identified fish specimens, collected
using the OBSEA underwater video platform off the coast of
Barcelona, Spain. Situated 20 meters below the surface and
4km off the coast of Vilanova i la Geltrú, in a fishing protected
area, this extensive collection was acquired over a two-year
period (2013-2014), with recordings taken every 30 minutes
to capture a wide array of seasonal and diurnal variations. The
dataset not only provides high-resolution visual data but is
also enriched with concurrent oceanographic and meteoro-
logical measurements, including salinity, water temperature,
and solar irradiance, offering a multidimensional snapshot of
the marine environment at each moment of capture.

Figure 1 shows some examples of images from each
dataset. The next section presents the methods used for each
specific dataset by chronologically publication date.

B. METHODS
Current research using the QUT fish dataset [12] has shown
a number of novel approaches to fish species categoriza-
tion, showcasing notable developments in the use of deep
learning technology. In order to improve the categorization
of fine-grained fish images, Qiu et al. [17] combined
refined Squeeze-and-Excitation (SE) blocks and Bilinear
CNN (B-CNN) with enhanced data augmentation through
super-resolution reconstruction. Hridayami et al. [18] utilized
a VGG16 model pre-trained on ImageNet, incorporating
transfer learning with diverse preprocessing methods, like
RGB color space and Canny filters. Adiwinata et al. [19]
employed the Faster Region-based CNN (R-CNN) Inception-
v2 architecture without the need for preprocessing images.
Islam et al. [20] developed a content-based fish recognition
system that fuses Local Binary Pattern (LBP), Scale Invariant
Feature Transform (SIFT), and Speeded-Up Robust Features

(SURF) as local features and Color Coherence Vector (CCV)
as global features. Then, various machine learningmodels are
used for the classification.

Mathur and Goel [21] applied transfer learning to a
Residual Networks (ResNet)50 network without data aug-
mentation. Guo et al. [22] presented a cross-domain approach
to transfer learning where the Deep CNN (DCNN) was
fine-tuned on ImageNet dataset, then on the Flowers102
dataset, and finally on the QUT fish dataset [12]. Zhang et al.
[23] introduced a novel deep adversarial learning framework,
named AdvFish, focusing the training on adversarially
perturbed images, improving the results against noisy images.
Deka et al. [24] fine-tuned a ResNet50 model and applied a
Support Vector Machine (SVM) classifier. Ahmad et al. [25]
used Efficient-Net, pre-trained on ImageNet, and fine-tuned
with Global Average Pooling (GAP) to improve localization
accuracy and Focal Loss (FL) to alleviate class imbalance.

To improve underwater fish recognition on the Croatian
Fish Dataset [5], Pang et al. [26] utilized a teacher-student
model, consisting of Feature Similarity Alignment (FSA)
and Kullback-Leibler (KL) Divergence (KLD) to distill
interference in underwater fish images, improving species
recognition efficiency by reducing light absorption and scat-
tering challenges. In order to address the problems of noise,
light attenuation, and dataset imbalance, Sudhakara et al.
[27] used enhanced CNN models with Underwater Image
Enhanced GAN (UIEGAN), which combines a CycleGener-
ative Adversarial Network (GAN) with a Deep Convolutional
GAN (DCGAN), and SmallerVGG.

A refined SE and a hybrid CNN-SVM framework
were proposed by Veluswami and Panneerselvam [28] to
improve the automatic fish species classification on both
large and small-scale datasets. By combining a quantized
ResNet18 model with Variational Quantum Algorithms
(VQAs), Chen [29] presented a novel framework for image
classification that requires fewer parameters and better
classification performance than classical models. This is
achieved by removing the need for global pooling in order to
capture more fine-grained details and discriminative features.
Fish classification accuracy was improved across multiple
datasets without the need for additional parameters thanks to
the introduction of the AttentionConvMixer neural network
by Viet et al. [30], which used Priority Channel Attention
(PChA) and Priority Spatial Attention (PSA).

For the Fish4Knowledge dataset [8], Sun et al. [31]
proposed an RGB-AlexNet-SVM model as part of a knowl-
edge transfer framework for underwater object recognition,
effectively addressing low-light and high-noise challenges by
extracting discriminative features from low-contrast images
and utilizing a weighted probabilities decisionmechanism for
improved object identification in video frames.

On this dataset (Fish4Knowledge), Zhang et al. [23] also
used the AdvFish framework on this dataset. By presenting
two EfficientNet models for fine-grained fish classification
– one with Efficient Channel Attention Module (ECA) and
another with Coordinate Attention (CA) – Gong et al. [32]
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addressed problems with conventional fishing supervision
and permitted the reallocation of human resources to
management and enforcement activities. Yang et al. [33]
presented an enhanced Flow Direction Algorithm (FDA)
and search agent strategy to optimize an Extreme Learning
Machine (ELM) underwater target classification Fuzzy-C-
Means (FCM) algorithm.

Jiang et al. [34] presented Efficient Vision Transformer
with Token-Selective and Merging Strategies (TSMVT),
which incorporates token-selective and merging module
to reduce computational demands, and a Multi-Attention
Weighting Token-Selective (MAWTS) module that dynam-
ically adjusts attention weights to focus on key features,
also applying it on this dataset (Fish4Knowledge). Qu et al.
[35] introduced ConvFishNet, which incorporates large
convolutional kernels and depth-wise separable convolutions
to reduce the model parameters, along with PixelShuffle
upsampling to enhance feature information, which rearranges
elements of low-resolution, multi-channel feature map into a
high-resolution feature map.

With class-balanced focal loss and SE-ResNet152,
Xu et al. [36] presented a method for fish species
identification that addresses the issues of small sample sizes
and category imbalance on the Fish-Pak dataset [7], across the
three fish image views (body, head, and scale). To overcome
the difficulties of structural deformation and orientation
misalignments in out-of-water fish images, N.S. et al.
[37] presented a multisegmented fish classification method
utilizing an AlexNet model with a naive Bayesian fusion
layer. The refined ResNet50model with a SVM classifier was
further applied by Deka et al. [24] to this dataset. To address
difficulties with manual identification, Deka et al. [38] used
ResNet50 and AlexNet. Label smoothing and Gradient-
weighted Class Activation Mapping (Grad-CAM) were used
by Gong et al. [39] to improve feature extraction and model
optimization in Fish-TViT, conjoining the fish classification
technique based on transfer learning and ViT.

For weakly supervised fine-grained recognition, Yu et al.
[40] introduced the Spatial-Channel Aware Attention
Filters (SCAF) method, which, when combined with
Multi-Channel Multi-Level (MCML) and non-randomly
(Non-Rdn), improves discriminative regions in both spatial
and channel dimensions on the WildFish dataset [14]. The
AdvFish framework was also applied to this dataset by
Zhang et al. [23]. A Two-Tier Knowledge Distillation (T-KD)
approach with interlayer mapping similarity-preserving
(IMSP) and layer tail response (LTR) was presented by
Li et al. [41], in order to improve accuracy and decrease
parameters, along with a novel Fish37 dataset. Jiang et al.
[34] also applied TSMVT to this dataset. Manikandan
and Santhanam [42] introduced Amended Dual Attention
oN Self-locale and External (ADANSE) mechanism-based
Vision Transformer, that combines self-locale and external
attention mechanisms. Using block-tokenization and a novel
dual attention approach, ADANSE extracts deep features

and considers relationships among image blocks, with their
outputs from the attention mechanism being fed into a Multi-
Layer Perceptron (MLP).

Together with the BDIndigenousFish2019 dataset [4],
Islam et al. [4] presented a Hybrid Local Binary Pattern
(HLBP) for classifying indigenous fish species of Bangladesh
using different SVM kernels for classification. Dey et al. [43]
suggested a CNN-based automatic classification system. The
outcomes of testing VGG16, Inception V3, MobileNet, and a
specially designed 5-layer CNN called FishNet were similar
to those of the pre-trained models. Adam and Root Mean
Square Propagation (Rmsprop) optimizers outperformed the
other five gradient descent-based optimizers in Smadi et al.
[44], which also presented an efficient CNN-based fish
classification technique. The Attention ConvMixer neural
network with PChA and PSA was also applied to this dataset
by Viet et al. [30].
On the Large-Scale Dataset for Fish Segmentation and

Classification [3], Mampitiya et al. [45] used dimension
reduction techniques like Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA); neverthe-
less, the authors achieved better results with Random Forest.
Using the Chaotic Oppositional based Whale Optimization
Algorithm (COWOA) and EfficientNet B0, Aziz et al. [46]
presented a fish classification technique that outperformed
models such as CNN, VGG-19, ResNet150V2, DenseNet,
Inception V3, and Xception. Li et al. [41] additionally
employed the T-KD technique with IMSP and LTR, on this
dataset. In order to help people with seafood allergies and
clinical immunology specialists, Reddy et al. [47] proposed
a system that uses custom CNN algorithms for detecting
and classifying fish that cause allergies. MobileNetV2 was
utilized in conjunction with transfer learning strategies by
Kranthi Kumar et al. [48].
Using the Fish-Gres dataset [6], Prasetyo et al. [49]

proposed the MLR-VGGNet architecture, which combines
low-level and high-level features using Multi-Level Residual
(MLR) and Depthwise Separable Convolutions (DSC).
According to Azhar et al. [50], adding Histogram Equaliza-
tion (HE) and Contrast Limited Adaptive HE (CLAHE) to
fish image datasets increased the classification accuracy of
CNN, with the ResNet50 model delivering the best results.
On this dataset, Viet et al. [30] additionally used the Attention
ConvMixer neural network with PChA and PSA.

FishNet Open Image Database [16] was presented by
Kay and Merrifield [16], who also published the baseline
accuracy of fish detection using the Inception-V3 model.
Mujtaba and Mahapatra [51] used transfer learning and data
augmentation to create the Regulated Networks (RegNet)X-
16GF model, which effectively classified fish species in
electronicmonitoring footage and showed improved accuracy
on this dataset. In order to address seafood mislabeling,
Mujtaba and Mahapatra [52] developed a deep-learning
model using transfer learning with VGG, ResNet, and
RegNet. The RegNetX-16GF model achieved the best results
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in accurately distinguishing betweenmorphologically similar
fish species. Mujtaba and Mahapatra [53] used RegNetY-
800MF fine-tuned with transfer learning to achieve the
best results in fish species identification from electronic
monitoring footage. Also on this dataset, Gong et al. [39] used
label smoothing and Grad-CAM to enhance Fish-TViT.

Boulais et al. [13] introduced SEAMAPD21 [13], and
presented the baseline accuracy using ResNet50 with SE
blocks.

Zhuang et al. [15] developed WildFish++ [15], a large-
scale vision-language benchmark focusing on fine-grained
classification of fish species by leveraging comparison
fish descriptions to improve CNNs’ ability to identify
subtle differences between similar species, and presented
the baseline accuracy using Progressive Multi-Granularity
(PMG) with training of Jigsaw Patches. Li et al. [41] also
applied the T-KD approach, with IMSP and LTR, to this
dataset.

Khan et al. [9] introduced FishNet [9], along with
the baseline results using ConvNext with Class-Balanced
Training.

In the course of a year, Ottaviani et al. [54] quantified the
degradation in fish detection and classification performance
using ResNet18 due to concept drift in visual data from
the OBSEA cabled video-observatory [10] and discussed
methodological solutions for effective real-time automated
classification.

Finally, in the case of OzFish dataset [11], no results for
the image classification task where found.

Table 1 summarizes the datasets and methods, with
datasets listed in alphabetical order and methods for each
dataset listed chronologically. Table 3 summarizes the
accuracy results of the methods presented above by datasets.
The next section presents a brief discussion about the
methods.

C. DISCUSSION
The majority of state-of-the-art methods in the field of FGVC
continue to rely on traditional machine learning approaches
coupled with CNN. These techniques have proven to be quite
effective in a number of applications, but their applicability
to the generalization of this task is restricted. An exception
to this pattern and a shift toward more modern architectures
can be found in the suggested approach by Gong et al. [39],
which utilized ViT. In addition, all methods presented have
only been proven to work with a maximum of three datasets.

The most relevant prior work in this field is Fish-TViT
by Gong et al. [39], which applied ViTs to fish classifi-
cation. Fish-TViT used transfer learning, label smoothing,
and Grad-CAM to enhance feature extraction and model
optimization. While Fish-TViT showed improvements over
CNN-based methods, our approach extends this work
with the combination of the Swin Transformer with the
FGVC-PIM. Our method aims to address a broader range
of datasets and environmental conditions, potentially offering

greater versatility and robustness in fish species classification
tasks.

In conclusion, none of the methods presented a
general-purpose solution for fish classification under various
conditions and image quality levels. It is also clear that the
majority of existing methods are highly localized, and not
as flexible to new datasets or conditions, given that they are
usually customized and fine-tuned for their particular dataset.

The localization of these methods is a significant draw-
back, as these techniques and methods are rendered less
applicable to countless applications. For instance, they may
lack the capacity to detect foreign species that could appear in
different regions of the globe. By contrast, the development
of a method that can deliver a uniform performance vari-
ous datasets, handling different species and environments,
would highlight its potential as a general framework for
FGVC, ensuring a wider applicability and effectiveness for
applications that require dependable performance in diverse
contexts.

A method with the above characteristics can establish a
new standard for future research in this field, while also
improving upon the current state-of-the-art.

III. METHODOLOGY
The method proposed for fish classification in this study
stands out due to its broad applicability across 14 distinct
datasets. As shown, the previous state-of-the-art approaches
have only been proven to work with a maximum of three
datasets. The variety and resilience of the proposed method,
which aims to provide a general-purpose solution for fish
detection under various conditions and image quality levels,
are demonstrated by the breadth of the datasets.

The Methodology is divided into Datasets and Methods.
Section III-A outlines the preparation of the datasets used
in this study and the proposed method for FGVC of fish
species, i.e., it covers the datasets and the processes –
data extraction, organization, and acquisition – required
to prepare the images for training, including an analysis
of the datasets’ data distribution, particularly focusing on
imbalances. Section III-B goes into great detail about our
suggested approach, emphasizing in particular how the Swin
Transformer [1] is integrated with the FGVC-PIM [2].
By combining the Swin Transformer as its backbone to
leverage its hierarchical and efficient feature extraction
capabilities with FGVC-PIM enhances the performance
of Vision Transformer by focusing on the extraction of
discriminative features crucial for fine-grained classification
tasks.

A. DATASETS
This subsection goes into detail about the organization,
acquisition, and extraction procedures for each dataset. The
number of images and the distribution of classes is referred to
illustrate the variations in conditions between datasets, which
will be presented in descending order of the Normalized
Shannon Entropy (NSE), as shown in Table 2.
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TABLE 1. Summary of datasets and methods, with datasets listed in alphabetical order and methods for each dataset listed chronologically.
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Shannon Entropy, H (X ), a probabilistic measurement that
quantifies the degree of uncertainty or randomness in a
dataset, is demonstrated by Equation 1,

H (X ) = −

n∑
i=1

p(xi) log2 p(xi), (1)

with H (X ) being the entropy of an X dataset, n is the number
of classes, p(xi) is the probability of a certain i class. It aids
in figuring out how evenly distributed the class labels are
in relation to class distributions. Whereas a lower value
implies that some classes are significantlymore common than
others, a higher Shannon Entropy indicates a more uniform
distribution.

Shannon’s maximum entropy, defined by Hmax(X ) =

log2n, represents the highest possible entropy for a given
number of classes, which is the logarithm of the number
of classes. Normalized Shannon Entropy (NSE or H ′),
is calculated using Equation 2, and normalizes the entropy
value between 0 and 1,

H ′
=

H (X )
Hmax(X )

. (2)

A perfectly balanced dataset is indicated in this case by
the maximum NSE value, which shows that every class in
the dataset has the same amount of images. Alternatively,
a lower value signifies a high level of imbalance, with notable
differences in the quantity of images in various classes.

The Minority-Majority Ratio (MMR) calculates the rela-
tion between the number of images in the smallest class
relative to the biggest class. With certain classes being
notably underrepresented, a lower ratio denotes a higher
degree of imbalance. The majority and minority classes are
the only ones represented in this ratio – the full dataset is not
included.

Box and whisker plots were used on a logarithmic scale
to show the distribution of images by class in the datasets.
By emphasizing the skewness and variability in the number
of images across different classes, this method successfully
illustrates the class probabilities. Normalizing all datasets
metrics allows for meaningful comparisons between them.
A better understanding of the dataset’s class distribution is
obtained by plotting the data logarithmically, which allows to
more easily observe differences between classes, especially
those with notably fewer or more images.

As already mentioned, sample images from each dataset
are shown in Figure 1, where the different conditions in which
the images were taken can be observed. The pre-training
processed datasets, including the number of classes, images,
MMR, NSE, and class distribution, are summarized in
Table 2.
The Large-Scale Dataset for Fish Segmentation and

Classification [3] contains 9 classes with 1,000 images each,
totaling 9,000 images. For this dataset description and the
ones that follows, please see Section II-A. The images are
already augmented by rotation. The dataset is well-balanced,
with a NSE, and aMMR, of 1.0000, indicating that each class

has the same number of images. The class distribution can
also be observed as a box and whisker plot on the right side of
Table 2, where a single line can be observed in the logarithm
scale, representing the absence of variability of the amount of
images per class.

The QUT Fish Dataset [12] images are available in raw
format and already cropped. The raw images were used
for these experiments. The images were captured under
five conditions – controlled, in-situ, rubbish, sketches, and
uncontrolled – the previous mentioned condition out-of-the-
water is the uncontrolled images. This dataset was divided
into three subsets: A, B, and C. Subset A contains 27 classes,
all of which are in-situ, which means they were taken
underwater, with every class having at least 10 images.
Subset B and C contain images from the controlled, in-situ,
and uncontrolled conditions. Subset B consists of the top
50 classes by the quantity of images available.

The variation between these two subsets is minimal on the
NSE, whereas the difference on theMMR is more noticeable,
due to the greater disparity in the number of images per
class for the majority and minority classes, with the subset
A having a difference of 6 images between the minority and
majority classes, and the subset B having a difference of 9.

Subset C contains all the classes with a minimum of
3 images per class, resulting in a total of 464 classes, after
excluding the images from the rubbish and sketches condi-
tions. On this subset, it is easier to observe the imbalance in
the box and whisker plot in Table 2, in comparison to the
other subsets, with the minority class having 3 images and
the majority class having 26 images.

Although the FishNet dataset [9] contains 17,357 aquatic
species, the dataset was created aiming the classification of
the species’ family or order. Both were considered for the
experiments, with 462 family classes and 83 order classes.
The NSE starts to decay as the class distribution becomes
more imbalanced, as can be seen on Table 2. Either of these
datasets splits have also a disparity associated to the minority
and majority classes, with the family classes having a ratio of
4 by 4,782 and the order classes having a ratio of 4 by 21,827.
To create a more practical subset for the experiments, only
199 classes were included.

The FishNet dataset [9] provides bounding box annotations
for each image, targeting either the family or order level.
To further refine the dataset, species were correlated, and
only those with more than 30 images were considered,
ensuring a minimum threshold of 165 images for inclusion.
This experimental dataset subset contains 52,149 images,
with a NSE of 0.9959, and a MMR of 0.4940, indicating a
moderate imbalance in the dataset. The class distribution can
be observed in the box and whisker plot in Table 2.

Both the WildFish dataset [14] and the WildFish++
dataset [15] represent a large and challenging dataset, with the
first containing 1,000 classes of fish species and the second
containing 2,348 classes. Both publications present different
challenges associated with additional metadata or specific
tasks. For this experiment, the complete set of both datasets
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were used. Some of the original images were corrupted, and
the dataset was pre-processed to remove them. The WildFish
dataset remained with 54,453 images, while the WildFish++
filtered dataset contained 103,025 images.

The above-mentioned datasets have a slight long-tail
distribution, which greatly affects the MMR as evident from
Table 2, while the class distribution is relatively balanced
overall, there are a few outlier classes that deviate from
the general pattern, while the rest of the distribution is still
condensed, even with both datasets presenting the largest
number of classes. This is reflected in the NSE, with
the WildFish dataset having a value of 0.9903 and the
WildFish++ dataset having a value of 0.9882.

The Fish-Gres dataset [6] did not require any pre-
processing, as it was already well-organized. Nevertheless,
it is important to note that there are multiple images that
contain more than one specimen, which can lead to misclassi-
fication in the task of fine-grained image classification, where
only one sample of the species per image is preferred. The
class distribution for these 8 classes varies from 240 images
to 577 images per class.

The BDIndigenousFish2019 dataset [4] did not need any
pre-processing as well. Similar to the Large-Scale Dataset for
Fish Segmentation and Classification [3], the images were
augmented by rotation. As the one before, this dataset also
contains 8 classes, although the number of images per class
varies from 120 to 500.

The Croatian Fish Dataset [5] also did not require any pre-
processing. This dataset contains 12 classes, with the number
of images per class varying from 17 to 111. It is important to
note that the smallest image in this dataset has 36×12 pixels,
while the largest has 503× 231 pixels. The class distribution
can be observed in the box and whisker plot in Table 2.
For the Fish-Pak dataset [7], only 4 corrupted images were

removed, and from the three available subsets – body, head,
and scale – only the body subset was used. This dataset
contains 6 classes, with the number of images per class
varying from 11 to 73. These dataset images appear to contain
multiple poses of the extremely similar specimens.

The OzFish dataset [11] contains the metadata in a separate
file and then bounding boxes already cropped from the
original footage. The images were distributed by genus and
species. From the original 594 classes, only those with more
than 10 images were considered, resulting in 425 classes.
The number of images per class varies from 10 to 6,095,
where a long-tailed distribution can be observed. This class
distribution with the existence of multiple outliers is visible
in the box and whisker plot in Table 2. A lower NSE was also
observed, with a value of 0.7900, and a very low MMR, with
a value of 0.0003.

A long-tailed distribution is also observed in the
SEAMAPD21 dataset [13], where the minority class has
3 images, while the majority class has 15,199 images. For
this experiment, only classes with a minimum of 10 images
were considered, with 110 classes remaining and 8 classes
discarded. Nevertheless, the majority class still corresponds

to more than 19% of the dataset. The metadata containing
the bounding boxes’ locations was used to crop the images.
The missing association between some images and the
corresponding bounding boxes was discarded. The images
were distributed into genus and species.

The OBSEA dataset [10] follows the same long-tailed
distribution as the previous datasets. The metadata containing
the bounding boxes’ locations was used to crop the images.
The unknown species and 45 corrupted images were dis-
carded. This experiment only considered the species with a
minimum of 10 images per class, resulting in 25 classes. The
class distribution observed in the box and whisker plot in
Table 2 results from the minority class having 10 images and
the majority class having 14,299 images, with the first and
second major classes corresponding to 57.7% of the dataset.

For Fish4Knowledge dataset [8], the fish recognition
ground-truth data was used, containing 27,370 fish images
captured by nine cameras at three different locations
in unconstrained environments. The dataset contains
23 classes, with the number of images per class varying
from 16 to 12,112, with the top 5 classes representing 91%
of the dataset, with a NSE of 0.5721. This imbalanced class
distribution can be observed in the box and whisker plot in
Table 2. The images were already cropped and prepared for
training.

The FishNet Open Images Database [16] contains two
subsets – L1, and L2 – with L1 consisting of 21 classes, and
L2 consisting of 10 classes. The class distribution for both
subsets is long-tailed, and both contain ambiguous labels.
The L1 subset does not follow the conventional scientific
classification – genus species – and the L2 subset contains
coarser classes based on theASFIS List of Species for Fishery
Statistics Purposes. The cropped images were obtained from
the bounding boxes’ location available. On both L1 and L2
subsets, the majority class represents more than 50% of the
dataset. There are also more than 10,000 duplicates present
in this dataset, and a large portion of images containing more
than one specimen. These subsets obtained the lowest NSE,
with the L1 subset having a value of 0.4399, and the L2 subset
having a value of 0.5546. The class distribution, especially
the outliers of the top classes, can be observed in the box and
whisker plot in Table 2.
In the next section, the authors’ method is explained in

further detail.

B. METHODS
Our method applies the FGVC-PIM with Swin Trans-
former backbone, an architecture originally designed for
fine-grained visual classification. While this integrated
architecture was initially optimized for bird classification,
its effectiveness for fish species identification across diverse
aquatic environments was explored.

To adapt this architecture for fish classification, the input
pipeline was modified to handle the varied image formats
and sizes found in fish datasets, implementing consistent
preprocessing for underwater, above-water, and controlled
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TABLE 2. Overview of datasets listed in descending order by the Normalized Shannon Entropy, also including the number of classes, images,
Minority-Majority Ratio, and data distribution.

environment images. The Feature Pyramid Network (FPN)
and selection modules were adjusted to focus on fish-specific
characteristics.

The training strategy involved a flexible regime based on
dataset size and complexity. A balanced loss function strategy
was also implemented to focus on the most relevant features
for fish classification while preventing overfitting.

These adaptations allowed us to explore the full potential
of the FGVC-PIM architecture in the context of fish
classification, demonstrating its versatility across different
aquatic environments and image qualities.

The foundation for the Fine-Grained Visual Classification
method is the Swin Transformer, which was first presented
by Liu et al. [1]. Each of the four stages composing the Swin
Transformer architecture is responsible for processing image

patches at different degrees of complexity and abstraction,
using a Multi-Head Self-Attention (MSA) mechanism.

Figure 2 shows a block diagram of the method. The
input image, with a width and resolution of 384 pixels
and 3 channels, is first split into non-overlapping patches
in the Patch Embedding block, each of which is handled
as a token. A convolutional window with a kernel size
and stride of 4 by 4 retrieves these small patches and
feed them to a normalization layer. These patches are
processed via multiple blocks of Swin Transformer. By com-
puting self-attention within local windows, the successive
Window-based MSA (W-MSA) and Shifted Window-based
MSA (SW-MSA) mechanisms, contained in the Swin
Transformer Block, effectively captures local dependencies.
While generating low-level features, this stage preserves
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fine-grained details that are essential for the original image
representation.

Patch merging layers that combine features from nearby
patches are incorporated in the following stages, while on
the Stage 1 block, the patches enter through the Linear
Embedding block. In doing so, the feature dimensionality
is increased and the resolution is effectively downsampled.
The number of channels is doubled at each second, third,
and fourth stages of the hierarchical downsampling, while
lowering the spatial resolution by a factor of two.

As a result of this design, the model can comprehend
intricate patterns and hierarchical relationships within the
image and is able to capturemid-level and high-level features.
Modeling long-range interactions while maintaining linear
computational complexity in relation to image size is made
possible by the shifted window approach, which makes it
possible to capture cross-window dependencies efficiently.

A residual connection, a feed-forward network (MLP
layers), a MSA module, and layer normalization make up
each Swin Transformer block. While layer normalization
standardizes the inputs and enhances the network’s con-
vergence, residual connections guarantee stable training by
addressing the vanishing gradient issue. The feed-forward
network enhances the features that the successive W-MSA
and SW-MSA module extracted.

The integration and enhancement of the Swin Transformer
was achieved by Chou et al. [2], who proposed FGVC-PIM.
By providing pixel-level feature maps and combining filtered
features to improve FGVC, this module is intended to be
a versatile add-on to popular backbones like CNN and
transformer-based networks. In order to improve classifica-
tion performance, the main purpose of this module is to
locate and highlight the image regions that are the most
discriminative.

To accomplish fine-grained classification, the FGVC-PIM
architecture consists of a number of essential parts. First,
feature maps are extracted from the input image by the
backbone model. In this case, the Swin Transformer is
integrated with a FPN, in order to handle multi-scale
features. After that, these feature maps are run through the
FGVC-PIM, which consists of a Weakly Supervised Selector
(WSS) and a Combiner.

The feature maps (C1, C2, C3, C4) obtained on each stage
of the Swin Transformer are passed through a FPN, with each
one going directly to the correspondent Pyramid Level Blocks
(P1, P2, P3, P4). Each of these blocks contains a projection
layer that ensures that all the feature maps from different
stages of the backbone network are converted to a common
feature dimension. The WSS uses a fully connected layer to
predict the category of each feature point in the extracted
feature maps. It is ensured that only the most discriminative
features are used in subsequent stages by keeping feature
points with high confidence scores and discarding those with
low confidence.

The selected feature points from the four WSS are fed into
the Combiner, which uses a Graph Convolutional Network

(GCN), which can efficiently combine each features points
without changing the results of the backbone model. The
GCN Combiner views the graph as a collection of nodes
representing features at different spatial scales and locations,
when receiving the feature points that have been selected,
which occurs in the Graph Convolutional Layers’ block. The
network can comprehend the relationships between different
nodes in the Attention Mechanisms block and capture the
spatial and contextual relationships between the features
with the aid of this graph structure. Following that, these
relationships are combined into super nodes by a pooling
layer. The averaged features of these super nodes are fed to a
linear classifier, which produces the final class predictions.

Targeting distinct phases of the feature selection and
combination process, the FGVC-PIM uses a loss function
strategy that combines multiple loss functions. A process
of careful modification of these loss functions’ weights
equalizes their contributions, which enables the model to
efficiently concentrate on the most relevant features, which
also prevents overfitting to the training set. The FGVC-PIM’s
performance of the Swin Transformer in fine-grained visual
classification tasks is markedly improved by the accurate
tuning, providing a reliable and accurate framework that
distinguishes between detailed visual features.

The configurations, tests and findings of this method are
presented in the next Section.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION
The effectiveness of the FGVC-PIM, with the Swin Trans-
former as backbone, was assessed using the datasets listed in
Section III-A, compared against the state-of-the-art methods
presented in Section II-B. Now, this Section will detail the
hyperparameters used in these experiments and describe how
the data was split for training and testing. Following that,
the results of the proposed method will be presented and
compared against the existing approaches. Finally, the results
will be discussed.

A. EXPERIMENTS AND RESULTS
The available splits were observed for the datasets with
predefined train-test splits [9], [16], to ensure consistency
with prior research. In order to ensure reproducibility across
the other datasets, a uniform split strategy was implemented
with a generator seed of 42. The data was divided as follows:
10%were set aside for model testing, 20% for validation, and
70% for training.

With a data input size of 384×384 pixels, the Swin Trans-
former serves as the foundation for FGVC in this study. The
training uses 12 worker threads for data loading and a batch
size of 16. The configurations for the Stochastic Gradient
Descent (SGD) optimizer have a weight decay and maximum
learning rate of 0.0005. There is an 800 batch warm-up phase
before the training, which lasts from 10 epochs to 50 epochs,
depending on the dataset size. For computational efficiency,
mixed-precision training is enabled.
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FIGURE 2. Architecture of the FGVC-PIM, a Swin Transformer-based Feature Pyramid Network with Weakly Supervised Selector and Graph
Convolutional Network Combiner for robust class prediction.

To handle multi-scale features, an integrated FPN with
a feature size of 1536 is used. The selection modules in
the model select 2048, 512, 128 and 32 feature points from
the respective layers, concentrating on the most discrimina-
tive regions. To improve classification performance, these
features are combined by the Combiner module. To ensure
that the contributions of the different loss components are
optimized, the loss function are balanced with specific
weights: base loss (0.5), selection loss (0.0), drop loss (5.0),
and combiner loss (1.0).

After each batch, the model’s parameters are updated,
and assessments are carried out every 5 epochs. The
model is intended to greatly enhance FGVC performance
by utilizing the multi-scale and hierarchical properties of
the Swin Transformer in conjunction with the FGVC-PIM
improvements.

From the 14 datasets utilized in this study, which are
presented in Section II-A, with the used data further detailed
in Section III-A, 19 experiments were conducted to account
for subsets within the datasets. Specifically, the FishNet
dataset [9] featured the original family and order subsets,
along with an additional species subset generated for this
publication; the FishNet Open Images Database [16] included
subsets L1 and L2; and the QUT fish dataset [12] comprised
three distinct subsets. It is important to note that the task
of classifying the family of order of a fish species is not

the purpose of this publication, which is focused on FGVC;
nevertheless, the obtained results on these tasks presents
novel state-of-the-art accuracies in both in comparison to the
baseline previously published. Detailed information on the
data splitting for each subset can be found in Section III-A.

All the values presented with the proposed method were
obtained either respecting the training and testing splits
provided by the authors or by using a uniform split strategy,
with the metrics corresponding to the top-1 accuracy of the
combiner over the test set, which corresponds to 10% of each
dataset.

The suggested approach produced state-of-the-art results
in 13 out of the 19 experiments. Furthermore, in three of the
experiments, the amount of classes trained are higher than
the previous state-of-the-art results. Additionally, because
comparative results were not available, two experiments
only presented baseline results. This thorough assessment
shows the stability and efficacy of the proposed method on
a wide range of inconsistent visual classification, varying
across image quality and conditions. Figure 3 provides a
comprehensive visual comparison of these results, illustrating
the consistent high performance of our method across diverse
datasets.

Table 3 presents the accuracy [55] values, which range
from 83.65% to 100.00% for the top-1 state-of-the-art
accuracy, and Figure 4 demonstrates some of the images
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FIGURE 3. Comparison of accuracy percentages across multiple fish classification datasets, split into top and bottom panels for clarity. Each bar
represents a different model, with textured bars marked ‘‘Ours’’ showing our current study’s results. The present method consistently achieves
high accuracy across diverse datasets, demonstrating robustness in various fish classification tasks. A comprehensive legend below identifies all
datasets from both panels, facilitating easy comparison across the entire range of studies.

that were misclassified by the corresponding models. The
experiments which achieved 100.00% in accuracy are further
studied bellow, where additional tests and metrics are
presented in Table 4.

In the QUT fish dataset [12] first two subsets, and the
Croatian Fish Dataset [5], where state-of-the-art results was
not achieved, the difference in accuracy compared to the
current leading methods varied between 0.49% and 4.34%.
Notably, the most significant deviation was observed in the
FishNet Open Images Database [16], where this method’s
accuracy was 14.71% below the current state-of-the-art,
achieving only 83.78%. After further analysis on the Mujtaba
and Mahapatra [51] publication, where the authors used data
augmentation in order to achieve a balanced dataset, it is
possible to observe on the presented training accuracy and
loss plots that the reported accuracy pertains to the training
set rather than the test set, which could explain a part of the
discrepancy.

Regarding the FishNet Open Images Database [16],
the proposed method achieved an 83.65% accuracy on
the L1 subset, which is 10.45% higher than the current

state-of-the-art baseline. It is important to note that
Gong et al. [39] achieved the second-highest accuracy in the
L2 subset results employing ViT.

This proposed method achieved multiple state-of-the-art
results using the same hyperparameters, demonstrating the
potential of Transformers in the task of FGVC across diverse
datasets. Furthermore, additional metrics were calculated for
clarity and to facilitate future comparisons with the obtained
results, as presented in Table 5. Thesemetrics [55] include the
precision, recall, and F1-score for each dataset using either
the macro average or the weighted average, as well as the
Matthews Correlation Coefficient (MCC) for Multiclass, and
also the top-1 accuracy from the Combiner. Considering tk
representing the number of times class k actually occurred,
pk representing the number of times class k was predicted, c
representing the total number of samples correctly predicted,
and s representing the total number of samples, MCC is given
by

MCC =
c× s−

∑K
k (pk × tk )√

(s2 −
∑K

k p
2
k ) × (s2 −

∑K
k t

2
k )

. (3)
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TABLE 3. The datasets, and their corresponding subsets, are listed in the table alphabetically. The number of classes used by each author and the
corresponding top accuracy attained are also presented. This thorough overview makes it possible to compare the effectiveness of the proposed method
versus various state-of-the-art methods in detail across a range of datasets and their corresponding subsets.1

The precision measures the accuracy of positive predic-
tions; the recall, or sensitivity, measures the models’ ability
to identify all relevant instances, and the F1-score combines
both metrics into a single value, providing a balance by taking
their harmonic mean. By averaging metrics determined for
each class, the macro average applies an equal treatment to
all classes. However, the weighted average accounts for class

1The values presented by the authors of this publication are all from
unseen data during the training phase, either by the available published splits
or by using a uniform split strategy, consistently considering 10% for testing.

size, favoring larger classes, which is helpful for datasets that
are unbalanced.

When dealing with imbalanced datasets, the MCC for
Multiclass metric is particularly helpful in assessing the
quality of a classification model. False positives, false
negatives, true positives, and true negatives are all considered
by the metric. The additional metrics displayed in Table 5
demonstrate how well the suggested approach performs on a
variety of datasets, including the FishNet dataset [9] subsets.

The results suggest that the full potential of the Trans-
former architecture is not being realized in the classification

VOLUME 12, 2024 113655



R. J. M. Veiga, J. M. F. Rodrigues: Fine-Grained Fish Classification From Small to Large Datasets

FIGURE 4. Failed detection samples from the proposed method. The top row, from left to right, includes failure samples from the Croatian
dataset [5], FishNet – Family, Order, and Species [9], FishNet Open Images Database – L1, and L2 [10], and OBSEA [10]. The bottom row features
failure samples from OzFish [11], QUT Fish Dataset Subsets A, B, and C [12], SEAMAPD21 [13], WildFish [14], and WildFish++ [15].

tasks for the family and order subsets of the FishNet
dataset [9]. These broader taxonomic categories likely do
not require the fine-grained feature detection capabilities that
Transformers excel at. In contrast, species-level classification
tasks better leverage the Transformer’s ability to capture
subtle visual distinctions. While the method produced state-
of-the-art results, the macro average results, when the classes
are treated equally, show that some classes are being severely
misclassified. This suggests that there are significant differ-
ences in the model’s classification performance, indicating a
struggle with some classes. These difficulties are lessened,
nevertheless, when using the FishNet dataset [9]’s novel
species subset, where the suggested approach performs
admirably on all metrics. This implies that the technique
works better for more detailed classification tasks, where
the fine-grained capabilities of the Transformer can be fully
utilized.

According to the metrics obtained for the FishNet Open
Image Database [16], the suggested method did not perform
as well as the other methods on this dataset. The macro
average precision, recall, and F1-score show this clearly,
being notably lower than the values for other datasets.
Because of the inherent difficulties in the data, these results
imply that the method struggles with the FishNet Open
Image Database [16]. Moreover, a lower MCC denotes a
less optimal balance between true and false positives as
well as negatives across the classes, which reflects the
general decline in effectiveness of the model. These findings
show how challenging it is to obtain a good classification
performance on this specific dataset using the proposed
method, suggesting that further data preprocessing may be
necessary to obtain better results.

Comparing the WildFish++ dataset to the WildFish
dataset, a decrease can also be seen in the overall performance
metrics in Table 5. The more than twofold increase in
the number of available classes significantly contributed to
the increased complexity and the decreased performance.
A future challenge would be the development of a founda-

tional model, combined with additional metadata, aimed at
classification of the maximum number of species. However,
for both datasets, the results are still cutting edge and
highly relevant, showcasing the adaptability and room for
improvement of the proposed method when working with
large and varied species datasets.

It was previously noted that some datasets achieved 100%
accuracy, as shown in Table 3 and Table 5. In all of
these occurrences, the datasets had fewer than 24 classes,
proving that using Transformers for small-scale datasets
outperforms the previous methods published. These results
were obtained following the same experimental configuration
and hyperparameters as the other datasets presented in this
publication. To ensure the robustness of these findings,
additional training was performed using random seeds for
each training session, with the experiment repeated ten times
per dataset. The results of these additional experiments are
presented in Table 4.

With Table 4 it is possible to confirm that for the
datasets: A Large-Scale Dataset for Fish Segmentation
and Classification [3]; BDIndigenousFish2019 dataset [4];
and the Fish-Gres dataset [6], the 100% accuracy remains
unchallenged, including the macro and weighted averages,
as well as the MCC. For the Fish-Pak dataset [7], and the
Fish4Knowledge dataset [8], it is possible to observe a small
reduction over the previous obtained metrics, although these
values still present state-of-the-art results.

Finally, Figure 5 provides some examples of how
Grad-CAM [56] is used to show how well the model
can differentiate between various species. The Grad-CAM
visualization technique highlights the critical areas of an
image for class prediction, and can be used to gain
insight into the model’s decision-making process. This
method falls under the category of Explainable Artificial
Intelligence (XAI), which aims to improve human compre-
hension and responsibility towards AI systems by enhanc-
ing the transparency and comprehensibility of AI model
outputs.
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TABLE 4. Additional experimental results for datasets with previously attained accuracy of 100%. Each dataset was trained ten times with randomized
seeds.

TABLE 5. Extended assessment of the suggested method which also includes the precision, recall, and F1-score for each dataset using either the macro
average or the weighted average. The corresponding top-1 accuracies from the combiner, the MCC for Multiclass is also provided.

B. DISCUSSION
The proposed FGVC achieved 13 state-of-the-art results
across 14 distinct datasets, encompassing 19 experiments,
and also presented 2 baseline results for a novel sub-
set, and a dataset lacking published results. The results
underscore the robustness and versatility of the method,
as it consistently outperformed several existing state-of-the-
art approaches across diverse datasets, each with unique
characteristics. These datasets included varied environ-
ments such as onboard boats, underwater, and neutral
backgrounds.

The model underperformed when multiple subjects were
present in the same data, or when the classes weren’t
narrow enough, with the same subjects showing up in
multiple classes. This restriction suggests that the proposed
method performs best when each image primarily depicts
a single subject and classes are clearly defined. However,
the method’s consistent top-1 accuracy scores, ranging from
83.65% to 100%, show that it has a great potential for a
wide use in FGVC tasks. The results, which are shown in

Table 3, highlight the effectiveness of the suggested method
to handle various image qualities and conditions, establishing
new industry standards.

In summary, the comparative results are presented across
three key tables. Table 3 offers a comprehensive comparison
of the method against various state-of-the-art approaches
across multiple datasets. It details the number of classes and
accuracy for each method, with the results highlighted in bold
for easy identification. Each dataset is delineated to facilitate
direct comparisons within specific contexts. Table 4 focuses
on the datasets where the method achieved 100% accuracy.
To demonstrate the robustness of these results, ten training
runs with different random seeds were conducted for each
of these datasets, providing additional performance metrics.
Table 5 extends the analysis by presenting a wide range of
performance metrics for all datasets used in the study. Finally,
Figure 3 provides a comprehensive visual comparison of
the accuracy achieved by the proposed method and existing
approaches across all datasets examined in this study. This
comprehensive view allows for a deeper understanding of the
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FIGURE 5. Examples of Grad-CAM technique to highlight the regions of interest. Four examples are depicted, each with three images: the original,
the Grad-CAM result, and the Grad-CAM superimposed on the original. The top row contains an example from the WildFish++ dataset [15] and
OzFish dataset [11]. The bottom row contains and example from the QUT Fish Dataset [12] and the FishNet Dataset [9].

method’s effectiveness across various conditions and dataset
sizes.

V. CONCLUSION
This study applies a new FGVC technique that utilizes
the Swin Transformer combined with the FGVC-PIM
module. After extensive testing on 14 different datasets with
19 different subsets, the method continuously outperformed
other approaches and reached state-of-the-art outcomes
in 13 of the experiments. These datasets validated the
robustness and adaptability of the method across a wide
range of conditions, including controlled laboratory settings,
underwater environments, and on-board vessels.

This research demonstrates that Transformers are a useful
tool for FGVC tasks, especially when working with a range
of complex datasets. Because of the integration of the
FGVC-PIM module with the Swin Transformer, the model
was able to achieve high levels of classification accuracy
by recognizing subtle differences between fish species.
Nevertheless, the approach faced difficulties with datasets
that included multiple subjects in the images or with class
labels that were not sufficiently specific, suggesting areas that
need to be further refined.

In summary, this work presents a comprehensive per-
formance study that offers different analyses based on the
distribution and features of the datasets, delivering a thorough
assessment of the suggested method’s performance, while
also providing supplementary metrics. The broad use of the
FGVC-PIM in conjunction with Swin Transformer as the
foundation for the task of fish species FGVC was validated
with a rigorous assessment over a variety of different datasets
and subsets, using identical hyperparameters, demonstrating
the adaptability and resilience of the suggested approach,
covering a broad range of environmental conditions and
variable image quality. The results highlighted the ViT’s
capability for FGVC tasks, introducing two new baselines
and one unique subset, making a total of 19 datasets/subsets
with 15 state-of-the-art outcomes, when counting the afore-
mentioned.

Future work will concentrate on addressing the above-
mentioned limitations by applying sophisticated
preprocessing data techniques and fine-tuning the model

to improve performance on unbalanced and ambiguous
datasets. Additionally, it was planned to leverage the Fish-
Vista dataset [57], which is based on museum images rather
than in-situ captures and apply knowledge transfer techniques
before proceeding to in-situ images. This intermediate step
using Fish-Vista dataset [57] could potentially bridge the
gap between controlled museum environments and more
challenging real-world underwater conditions, potentially
improving the model’s generalization capabilities. Also,
efforts will be made to combine the previous fish detection
model [58] (previous work) with the classification (present
work) to develop a complete framework that can work
underwater in real-time, under real-world conditions.

The ultimate goal is to create a foundational model for
marine life species that can manage an ample spectrum of
FGVC tasks. To that end, this research aims to expand and
add more metadata and classify additional species.
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