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ABSTRACT Various human assistance robots that effectively assist the daily activities of persons with
perception deficits have recently been developed. In this paper, a perception assist method with an upper
limb power assist exoskeleton robot is proposed for meal activities, which are important in daily living.
The proposed robot-based method assists users by appropriately assessing utensil trajectories and posture
performance according to the target position of the user. A method to predict the user’s target position based
on the user’s motion trajectories and shoulder muscle electromyographic (EMG) signals is also proposed.
Two kinds of virtual tunnels (for the utensil trajectory and utensil posture) corresponding to the user’s target
position are defined in the proposed method to monitor the accuracy of the executed motion. The spatial
relationship between the virtual tunnels is controlled to perform the eating task with the assistance of the
power assist robot. The user’s hand motion is automatically modified by the robot in real time if the utensil
trajectory and/or posture exits the respective virtual tunnel during meal activities. The effectiveness of the
proposed method is evaluated through experiments.

INDEX TERMS Virtual tunnels, exoskeleton robot, upper limb, perception assist, power assist, meal activity.

I. INTRODUCTION
In recent decades, population aging has become a serious
issue worldwide [1]. Many types of power assist robots have
been designed to help people with physical issues, such as
elderly people or people with disabilities, with their daily
activities [2], [3], [4], [5], [6], [7], [8]. In addition to declines
in motor ability, many people with disabilities show cognitive
decline due to illnesses or accidents. Moreover, overall neural
degenerationmay lead to sensory and perception deficits such
as visual impairment and hearing loss in older people [9].
The degradation in sensory and perception abilities may
lead to serious problems in the daily lives of elderly and
disabled individuals. These individuals might not recognize
the surrounding environment and perform tasks incorrectly.
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For instance, users walking in an area with obstacles may
fall if they cannot accurately identify information such as
the position and height of obstacles [10], [11], [12], [13],
[14], [15]. To compensate for their deteriorated perceptual
function, approaches that provide support can aid the user in
perceiving the environmental information and correcting their
inappropriate motions to properly complete tasks [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24].

To date, many strategies, including predefined trajectory-
based assistance techniques [25], [26], [27], [28], [29],
intention-driven human-robot collaboration approaches [30],
[31], [32], [33], [34], [35], [36] and perception assist
methodologies [18], [19], [20], [21], [22], [23], [24], have
been developed to leverage robots to aid users in perform-
ing different tasks with improved efficiency and precision.
In predefined trajectory-based assistance methods, which are
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usually used in rehabilitation, the robot motion trajectory
or motion pattern is designed in advance and not changed
based on specific reactions or changes from the users [25],
[26], [27], [28], [29]. These techniques are suitable for preset
tasks with fixed trajectories but are not suitable for arbi-
trary tasks with variable trajectories in daily life movements.
In intention-driven human-robot collaboration approaches,
the robot should recognize the user’s motion intentions and
accordingly adjust its actions to better collaborate with the
user, thereby completing the intended tasks [30], [31], [32],
[33], [34], [35], [36]. These approaches focus on monitoring
humanmovements and directing the robot to operate based on
these observations, without consideringwhether these actions
are appropriate for the tasks at hand or not. Therefore, these
approaches can lead to inefficiencies in certain applications
where human movements are not suitable for the intended
task. On the other hand, perception assist methodologies
focus on analyzing a user’s movements and correct them if
necessary. In these methods, the robot needs to infer a user’s
motion intention and provide automatic motion correction for
inappropriate motions [18], [19], [20], [21], [22], [23], [24].
Therefore, when a power assist exoskeleton robot is used
to help individuals with reduced cognitive ability perform
daily activities, the robot can provide the necessary assistance
required for these tasks. Since the user’s hand movements
may deviate from the appropriate trajectory during the move-
ment process, the robot needs to offer necessary assistance
to help users correct inappropriate motions while not hinder-
ing the user’s normal movements via the perception assist
methodology. This paper proposes a specific perception assist
method for meal activities to assist individuals with declining
perceptual functions who retain the fundamental perception
abilities needed to perform reaching motions with the goal of
obtaining food utilizing a utensil (forks, chopsticks, spoons,
etc.) with the help of an upper limb power assist exoskeleton
robot.

In perception assist approaches, it is important to obtain
the user’s motion intention in real time, which can be
inferred by observing their body signals and their environ-
mental interaction information [16], [17], [18], [19], [20],
[21], [22], [23], [24], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
such as human biological signals (electromyography (EMG),
electroencephalography (EEG), etc.), eye gaze, and motion
characteristics (limb velocity/acceleration, motion trajectory,
interaction force/torque with environments, etc.). To pick up
food during meal activities, target position recognition is the
main part of intention prediction [21], [22], [23]. Research
has demonstrated that gaze cues and hand positions (trajecto-
ries) effectively predict the specific target position of a user’s
reaching motion [46]. However, when eye gaze is used for
prediction, an additional measuring device is needed, and
its accuracy is affected by lighting conditions and is limited
if interference occurs [47]. When hand positions (trajecto-
ries) are used for prediction, some motions such as meal

activities typically follow a curved path that can be inferred
via feature points—the starting point of motions and the
vertex of curved trajectories—to discern user intention [23].
However, recognizing these points, particularly the vertex
along curved trajectories, suffers from delays exacerbated by
sensor accuracy variances, often necessitating a threshold to
confirm feature point locations after surpassing certain limits.
Therefore, this study suggests the use of EMG signals to
identify motion phases before and after the vertex, aiming
for earlier detection of this point to increase target position
estimation.

When the user’s motion intention is recognized, it is
also necessary to determine whether the user’s motion is
appropriate in the perception assist approach and to modify
inappropriate motions as necessary [18], [19], [20], [21],
[22], [23]. Threshold-based methods and machine learn-
ing approaches are applicable for detecting inappropriate
motions of the user [18], [19], [20], [21], [22], [23], [48],
[49], [50], [51], [52], [53], [54], [55]. A set of thresholds
based on the user’s joint angle/speed [49], [50] or end-effector
motion spaces [18], [19], [20], [21], [22], [23], which can be
called a ‘‘virtual tunnel’’ or ‘‘virtual wall’’, are defined as the
boundary of an acceptable motion range. When the human
body moves beyond/into the boundary, the motion is consid-
ered inappropriate [18], [19], [20], [21], [22], [23], [49], [50],
[51], [52], [53]. Machine learning approaches such as neural
networks [54] and support vector machines (SVMs) [55] can
also be used to recognize and classify appropriate and inap-
propriate motions. In previous research, motion trajectory
evaluation and modification have been performed with such
approaches [18], [19], [20], [21], [22], [23], [49], [50], [51],
[52], [53]. Although not only the user’s motion trajectory
and utensil’s posture but also their corporative relation are
important in the context of meal activities, their corporative
relation has not been discussed in the existing methods.

In this paper, to infer a user’s motion intention more
accurately during meal activities and address the challenge
of linked control of both the utensil trajectory and posture,
a meal activity perception assist method is proposed to enable
users to obtain food from the chosen dish with a utensil
following a suitable trajectory and posture. The proposed
method can be divided into two parts. First, since the user’s
motion intention is acquired by estimating the target position,
the method involves determining the target position by track-
ing the applied utensil trajectory and monitoring the EMG
signals of the shoulder muscles. Shoulder EMG signals are
used to identify different motion phases in real time, and the
feature point (vertex) in the motion trajectory are accurately
obtained to improve the target position prediction accuracy.
Furthermore, the spatial relationship between two kinds of
virtual tunnels (one for the utensil trajectory and one for the
utensil posture) is defined to aid users in maintaining the
utensil trajectory and utensil posture within acceptable ranges
and accurately performing the intended task. The two virtual
tunnels are interrelated and can facilitate coordinated control
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FIGURE 1. Proposed perception assist method for meal activities.

of the utensil trajectory and utensil posture. The effective-
ness of the proposed method for meal activities is confirmed
through experiments in which an exoskeleton upper limb
power assist robot is used.

II. MEAL ACTIVITIES PERCEPTION ASSIST WITH AN
UPPER LIMB POWER ASSIST EXOSKELETON ROBOT
A meal activity perception assist method is proposed to aid
individuals with perception impairments in properly perform-
ing the motion of reaching for food while using a utensil,
with the help of an upper limb power assist exoskeleton
robot. The proposed method consists of two parts. In the
first part, the user’s motion intention is estimated, specifically
by predicting from which dish the user intends to retrieve
food. In the second part, inappropriate utensil trajectories
and utensil postures are detected and modified, enabling the
user to complete the expected motion of obtaining food. The
overall flowchart of the proposed method is shown in Fig. 1.

A. ESTIMATION OF THE USER’S TARGET POSITION
Using the motion trajectory of the upper limb end-effector
(hand/utensil) is a practical method to estimate the position of
the user’s intended dish. Specifically, in daily activities, when
healthy individuals use utensils to obtain food, the trajectory
of the hand/utensil typically begins at the table and moves to
a certain height before moving down to the intended dish to
retrieve food (refer to Fig. 2(a)). It is considered the character-
istics of the task tend to generate consistent motion patterns.
Based on this context, three pivotal trajectory points (initial
position Ph, intermediate position Pp and target position Po)
are defined in this study to delineate the characteristics of
the curved utensil trajectory. These three points are defined
as the position of the utensil tip before the motion starts,
the vertex of the utensil trajectory, and the location of the
dish from which the user wants to retrieve food. By ana-
lyzing motion data acquired from healthy individuals, the
correlation among the coordinates of these three points can

FIGURE 2. Utensil trajectories during meal activities in daily life. Point Ph
is the initial position of the utensil tip before the motion starts; Pp is the
trajectory’s vertex, signifying the intermediate position in the motion
process; and Po is the location of the intended dish, denoting the user’s
target position. (a) Appropriate utensil trajectory. (b) Inappropriate utensil
trajectory.

be established. As demonstrated in our previous study [23],
given the coordinates of the initial and intermediate positions,
the user’s target position can be estimated. The initial position
is the location where the motion begins and can be directly
observed. Timely and precise acquisition of the intermediate
position allows for the estimation of the user’s target position.
Nonetheless, for individuals with perception impairments,
the prediction of the target position based solely on the ini-
tial and intermediate positions may lead to inconsistencies,
as illustrated in Fig. 2(b). By utilizing data acquired from
dish position detection systems such as cameras or 3D lidars
[21], [22], the positioning of all the dishes can be precisely
determined. With this technology, the dish closest to the
predicted position can be determined as the target position.

The movement of utilizing a utensil to pick up food
involves coordinated action of the forearm, elbow, and shoul-
der joints [56]. Given the activity in these regions, EMG
signals from the associated muscles can serve as indirect
indicators of the user’s motion trajectory. As the user tran-
sitions from the initial position to the intermediate position,
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FIGURE 3. Modification of the trajectory and posture using virtual tunnels. (a) Modification of an inappropriate utensil trajectory with a virtual tunnel.
Point Pp is the intermediate position and Po is the target position, as previously defined. Phc is the location of the utensil tip. Pref indicates the nearest
point in the reference trajectory to Phc. RTH represents the radius of the virtual tunnel. (b) Modification of an inappropriate utensil posture with a virtual
tunnel. The utensil posture depends on the position of the utensil tip Phc, with respect to Pf , the position of the base of the index finger. θ represents the
observed utensil posture. θref is the reference utensil posture. The tolerance angle θTH represents the size of the virtual tunnel.

the shoulder flexion angle increases, which corresponds to an
increase in the intensity of the EMG signals of the involved
muscles. As the user subsequently moves from the intermedi-
ate position to the target position, the shoulder flexion angle
begins to decrease. This reduction in flexion is associated
with a corresponding decrease in the EMG signal intensity
of the involved muscles. Therefore, as the shoulder flexion
angle increases or decreases during movement, the EMG
signals related to the shoulder joint flexion angle change,
reflecting the transition in the movement pattern. This infor-
mation can be used to infer the arrival time at the intermediate
position, which is crucial for tracking the motion progress.
The deltoid-anterior and pectoralis major (clavicular head)
muscles, which serve as agonists for shoulder flexion, exhibit
significant activity during this movement [57], [58], [59].
Therefore, the EMG signals of these two muscles are used
to determine the exact moment at which a user reaches the
intermediate position in motion. When an exoskeleton robot
is utilized, the position of the utensil’s tip is calculated via
the exoskeleton kinematics in real time, which determines
the hand’s position based on the exoskeleton’s link lengths
and joint angles, extending the kinematic chain to incorporate
the utensil’s fixed relationship with the hand during move-
ment. This method integrates shoulder EMG information
with mathematical relationships among key trajectory points,
including initial, intermediate, and target positions [23].
By enhancing the precision of identifying the intermediate
position, it improves the accuracy of predicting the user’s
intended target position.

B. MOTION EVALUATION AND MODIFICATION
Once the target position has been determined, to enable the
user to complete the intended meal task, it is necessary to

evaluate whether the user’s motion is performed properly by
monitoring the trajectory and posture of the utensil held by
the user in real time. In the proposed method, two virtual
tunnels (one for the tip trajectory and the other for the pos-
ture) are defined to assess the utensil trajectory and posture
performance. When the user’s utensil trajectory and posture
remain within the virtual tunnels, they are recognized as
appropriate. However, when they deviate from this range,
they are deemed inappropriate. The integration of these two
virtual tunnels enables coordinated control of the utensil
trajectory and posture. When the user performs inappropri-
ate motions, deviations occur as utensil trajectories/postures
exceed the boundaries of the virtual tunnel, and the power
assist exoskeleton robot applies modification forces/torques
to guide the utensil trajectory/posture back within the virtual
tunnels. The proposed method continuously evaluates the
appropriateness of user movements, from the initial predic-
tion of the target position through to its successful attainment.

1) VIRTUAL TUNNEL FOR UTENSIL TRAJECTORY
The definition of the virtual tunnel for the utensil trajectory
is shown in Fig. 3(a). After the user’s trajectory arrives at
the intermediate position and the target position is estimated,
a reference trajectory toward the intended dish is calculated.
The reference utensil trajectory approximates a quadratic
curve passing through the intermediate position Pp and target
position Po. Relative to the x-axis, this trajectory can be
described by the following equations:

y =
yo − yp(
xo − xp

)2 (
x− xp

)2
+ yp (1)

z =
zo − zp(
xo − xp

)2 (
x− xp

)2
+ zp (2)
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Around this trajectory, a virtual tunnel of radius RTH is gen-
erated. Initially, the tunnel width offers a generous movement
range, reducing the need to have a precise trajectory, thereby
reducing user strain. However, as the user approaches the
target position, the tunnel width decreases, helping users pre-
cisely pick up food. Assume that the maximum andminimum
radii of the virtual tunnel are RTH,max and RTH,min, respec-
tively. As the user approaches the target position, the radius
of the virtual tunnel progressively decreases. The formula to
achieve this functionality, represented by RTH , is provided
below:

Dhc,o =

√
(xhc − xo)2 +

(
yhc − yo

)2
+ (zhc − zo)2 (3)

Dp,o =

√(
xp − xo

)2
+

(
yp − yo

)2
+

(
zp − zo

)2 (4)

RTH =
(
RTH,max − RTH,min

) (
Dhc,o

Dp,o

)2

+ RTH,min (5)

where Dhc,o denotes the Euclidean distance between the
utensil tip Phc and the target position Po. Similarly, Dp,o
represents the Euclidean distance between the intermediate
position Pp and the target position Po. Although the radius
of the virtual tunnel near the target position should be min-
imized, it is essential to consider elements such as typical
dish sizes to ensure that the radius RTH,min remains large
enough for users to complete eating tasks. In the initial phase,
the radius RTH,max should be set to accommodate more user
behaviors.

If the utensil’s tip strays outside this tunnel, namely, if the
spatial geometric distance sDist surpasses the thresholdRTH ,
a modification force in the direction of sDist is applied to
redirect the utensil tip. The formula for calculating sDist is
described as follows:

sDist

=

√(
xhc − xref

)2
+

(
yhc − yref

)2
+

(
zhc − zref

)2 (6)

where Phc ≡ ( xhc,yhc,zhc) is the position of the utensil
tip and where Pref ≡ ( xref ,yref ,zref ) denotes the nearest
point on the reference utensil trajectory to Phc, indicating
the ideal position of the utensil tip. To refine this distance in
three-dimensional space, constraints are set for the x, y, and z
directions based on the tunnel radius. The appropriateness of
the trajectories executed by the user in the x-, y-, and z-axis
directions is determined via Eqs. (7), (8) and (9):

sDistx =
∣∣xhc − xref

∣∣ >

√
R2
TH
3

(7)

sDisty =
∣∣yhc − yref

∣∣ >

√
R2
TH
3

(8)

sDistz =
∣∣zhc − zref

∣∣ >

√
R2
TH
3

(9)

These formulas are used to determine the directions in which
the motion modification forces should be applied.

2) VIRTUAL TUNNEL FOR UTENSIL POSTURE
To evaluate and modify inappropriate utensil postures, a sec-
ond virtual tunnel was created, as shown in Fig. 3(b). The
utensil posture is determined by the position of its tip Phc in
relation to the base of the index finger Pf . The postures in
the x-y, z-x, and z-y planes are defined via Eqs. (10), (11),
and (12):

θxy = atan2
(
xhc − xf ,yhc − yf

)
(10)

θ zx = atan2
(
zhc − zf ,xhc − xf

)
(11)

θ zy = atan2
(
zhc − zf ,yhc − yf

)
(12)

Here, θ represents the user-induced utensil posture, while
θ ref represents the reference posture. A virtual tunnel char-
acterized by a tolerance angle θTH is established surrounding
the reference posture. The maximum and minimum sizes of
the virtual tunnel are assumed to be θTH,max and θTH,min,
respectively. Analogous to trajectory modification, this pos-
ture virtual tunnel is designed to narrow progressively as the
user approaches the target position. The formula for calculat-
ing θTH is presented below to accomplish this function:

θTH =
(
θTH,max − θTH,min

) (
Dhc,o

Dp,o

)2

+ θTH,min (13)

As illustrated in Eqs. (3) and (4), Dhc,o is the distance from
the utensil tip Phc to the target position Po, and Dp,o is the
distance from the intermediate position Pp to Po. For the
posture virtual tunnel, the minimum size θTH,min should con-
sider the natural tilt range of general human hand operations
during meal activities, thereby ensuring the basic freedom of
the utensil posture. Additionally, θTH,max needs to enhance
the initial posture flexibility.

To quickly detect notable deviations in any direction
and apply the necessary corrective torque, trigger angles—
defined as θTH,xy, θTH,zx and θTH,zy—are set in the x-y,
z-x, and z-y planes, all of which are constrained to not sur-
pass θTH . If the utensil posture exceeds the tolerance limits
along any of the axes, a corresponding modification torque is
needed. The criteria to identify unsuitable postures are given
by Eqs. (14), (15), and (16):

θgap,xy =
∣∣θxy − θ ref ,xy

∣∣ > θTH,xy (14)

θgap,zx =
∣∣θ zx − θ ref ,zx

∣∣ > θTH,zx (15)

θgap,zy =
∣∣θ zy − θ ref ,zy

∣∣ > θTH,zy (16)

Here, θgap represents the absolute difference between the
observed utensil posture θ and the reference posture θ ref .
By using these equations, the direction of the unsuitable
utensil posture can be determined, guiding the application of
the modification torque.

3) TRAJECTORY/POSTURE MODIFICATION USING
ADDITIONAL MODIFICATION FORCE/TORQUE
When implementing these adjustments, it is crucial to balance
user comfort with efficient trajectory and posture modifica-
tions. Abrupt changes in the forces/torques at virtual tunnel
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boundaries can make the user experience feel disjointed or
unnatural. To address this issue, an external boundary is
delineated around the virtual tunnels. Unlike conventional
methods that apply constant modification forces/torques,
the system’s modification forces/torques gradually change
between the tunnel boundary and the external boundary. The
external boundary is defined around the virtual tunnels. The
size of this external boundary is influenced by parameters
1L1 and 1L2, which are positioned at distances of 1L1 ×

RTH and 1L2 × θTH from the tunnel boundary, respectively.
Within the confines of the virtual tunnel, no modifications
are applied. These modifications are applied only when the
utensil trajectory or posture surpasses the tunnel boundaries.
In the space between the tunnel boundary and the external
boundary, the force or torque applied for modification incre-
mentally changes depending on either sDist or θgap, thus
manifesting a linear progression from 0 to the maximum
value. If sDist or θgap exceeds the external boundary, the full
modification force/torque is applied.

During trajectory corrections, the magnitude of the modifi-
cation force,F (sDist), depends on the overall deviation of the
utensil from its reference trajectory in space. The expression
for this force is detailed in the following formula:

F (sDist)

=


0, sDist≤RTH
K fFmax, RTH < sDist < (1 + 1L1)∗RTH
Fmax, sDist≥(1 + 1L1) ∗RTH

(17)

K f =
(sDist−RTH )

1L1∗RTH
(18)

When sDist exceeds the boundaries of the virtual tunnel and
deviations in certain directions surpass their set constraints,
a modification force is proportionally applied to those spe-
cific directions based on the deviation’smagnitude. In posture
adjustments, the modification torque T

(
θgap

)
is considered

separately for the x-y, z-x, and z-y directions. In this process,
three torques corresponding to the posture deviation angle are
calculated in the θgap,xy, θgap,zx, and θgap,zy directions. These
are subsequently integrated to modify the utensil posture
comprehensively. The following formula defines the modi-
fication torque applied in each direction:

T
(
θgap

)
=


0, θgap ≤ θTH

K tTmax, θTH<θgap<(1 + 1L2) ∗θTH

Tmax, θgap ≥ (1 + 1L2) ∗θTH
(19)

K t =

(
θgap − θTH

)
1L2 ∗ θTH

(20)

4) INTEGRATION OF THE TWO VIRTUAL TUNNELS
To understand and modify the utensil trajectory and posture
simultaneously and coordinately, the two virtual tunnels must
be linked in space (Fig. 4). As the user guides their hand

FIGURE 4. Integration of two virtual tunnels. Phc
′ is the expected

position of the utensil tip. Under the circumstances in this figure, the
expected position of the utensil tip is also the intersection (Pi) of the
perpendicular line from Phc to the reference trajectory and the virtual
tunnel for trajectory.

toward the desired location, the posture of the utensil changes
with movement. This ensures that the utensil has the optimal
posture for food retrieval. Therefore, the key to linking these
two virtual tunnels is to determine the spatial relationship
between the utensil trajectory and posture. Regression neural
networks, which are popular machine learning models, can
be used to determine relationships between input and output
datasets. Consequently, these trained models can be utilized
for prediction. In our research, a neural network regressor
was employed to connect the reference utensil trajectory and
posture. By using motion data from healthy participants, the
reference utensil posture θ ref based on the reference utensil
position Pref can be predicted in real time. This is crucial as
Pref provides a stable benchmark, especially when the actual
utensil position deviates from the determined virtual tunnel.

Following the construction of the virtual tunnel for the
utensil trajectory, the virtual tunnel for the utensil posture is
dynamically synthesized. The anticipated utensil tip position
P

′
hc serves as the focal point, which is based on the refer-

ence utensil posture θ ref . P
′
hc is determined via the spatial

geometric distance sDist and real-time utensil position Phc,
as depicted in Eq. (21):

P
′
hc =

{
Phc, sDist < RTH
P i, sDist ≥ RTH

(21)

Here, P i denotes the intersection point of the perpendicular
from Phc to the reference trajectory and the boundary of the
trajectory virtual tunnel. Specifically, if the utensil tip remains
within the trajectory virtual tunnel, its corresponding posture
tunnel is designed using the current position of the utensil tip
Phc as the focal point. However, if the utensil tip drifts outside
this tunnel, the focal point of the relevant posture tunnel is
shifted to the adjusted position of the utensil tipP i. Therefore,
the two virtual tunnels intersect via a perpendicular line,
as determined by the focal point of the posture tunnel and
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orthogonal to the trajectory tunnel’s central line (reference
utensil trajectory). This approach enables simultaneous and
coordinated control over the user’s utensil trajectory and
posture.

III. EXPERIMENTS
A. EXPERIMENTAL AIM
To demonstrate the efficacy of the proposed perception-assist
method for meal activities, two kinds of experiments were
conducted. Experiment-1 was carried out for two purposes:
first, to confirm that the EMG signals of the deltoid-anterior
and pectoralis major (clavicular head) muscles can be used to
determine if a user’s movement has reached the intermediate
position and evaluate the ability to accurately predict the
user’s target position; second, to demonstrate the feasibility
of utilizing neural network models to establish the correla-
tion between the utensil trajectory and the utensil posture
throughout the movement process. Experiment-2 aimed to
demonstrate the efficacy of the defined virtual tunnels in
correcting users who performed inappropriate utensil trajec-
tories/postures bywearing a power assist exoskeleton robot in
practical settings. This experiment aims to demonstrate the
practical applicability of the proposed methods. The exper-
iments were approved by the research ethics committee of
Kyushu University, School of Engineering (2023-01). After
being fully briefed on the experiments, the participants pro-
vided their informed consent.

B. EXPERIMENTAL SETUP AND PROCEDURE
1) EXPERIMENT-1
In this experiment, three healthy right-handed participants
(one male subject and two female subjects) participated.
Table 1 lists participant data on age, sex, height, weight, and
hand dominance. The participants performed motions that
simulated reaching for food using utensils in real-life sce-
narios, interacting with designated positional markers rather
than tangible dishes in the process. The experiment was con-
fined within a 300 mm × 300 mm workspace on a desktop
and partitioned into nine equally sized regions arranged in
a 3×3 grid pattern, as shown in Fig. 5(a). Each region,
measuring 100 mm × 100 mm, corresponded to a specific
target position index. Positional markers were placed at the
center of each region to indicate the target positions. The
experiment involved the use of three kinds of utensils: a
fork, chopsticks, and a spoon. The utensil trajectories and
postures for different target positions and the corresponding
user’s EMG signals were recorded. To measure the utensil
trajectory and posture, markers were attached to both the
utensil tip and the base of the participant’s index finger,
and a motion tracker (V120 Duo, OptiTrack) was utilized to
measure the marked positions, capturing data at 120 frames
per second (fps). Furthermore, EMG sensors (EM-U810BF,
Ultium) were used to measure the EMG signals (Table 2)
of each participant’s shoulder muscles. EMG sensors were
positioned along the muscle fibers at the belly of the selected
muscle, ensuring placement at themost prominent part during

FIGURE 5. Experimental setup. (a) Settings for the marks on the desktop.
(b) The scenario in which the experiment was conducted. (c) The utensils
that were utilized. (d) Attachment locations of EMG sensors on shoulder
muscles.

resistance contraction (see Fig. 5(d)). The EMG data were
recorded at a sampling rate of 2 kHz, with the low-pass filter
set at 500 Hz and the high-pass filter set at 10 Hz. Addition-
ally, synchronization signals were established between the
data collected by the OptiTrack system and the EMG signals.
During this experiment, the participants sat straight so that
their upper body posture was not altered. The experimental
procedure can be described as follows.

1. Each participant was instructed to hold the fork at the
initial position on the table; then, the fork trajectory,
fork posture, and subject’s EMG signals were recorded.

2. The participant starts to perform a reaching motion
toward target position 1 and then returns to the initial
position. The participant repeats this process by per-
forming motions toward target positions 2 to 9 in order.

3. Steps 1 and 2 are repeated three times.
4. The fork was replaced with chopsticks and then a

spoon, and steps 1 to 3 were repeated.
In this experiment, a ten-second break was provided between
each motion trial to ensure participant recovery. Prior to data
collection for each motion trial, the motion tracking sys-
tem underwent consistency checks. Additionally, the EMG
signals were monitored to remain near zero under static con-
ditions, thus establishing a stable baseline.

2) EXPERIMENT-2
In this experiment, a healthy right-handed female participant,
aged 29 years, with a height of 160 cm and a weight of 50 kg,
was included. The upper limb power assist exoskeleton robot
used for the experiment is shown in Fig. 6 and was attached
to a wheelchair. This robot employs an EMG-based control

VOLUME 12, 2024 115143



Y. Hou, K. Kiguchi: Generation of Virtual Tunnels for Meal Activity Perception Assist

FIGURE 6. (a) Overview of the 7DOF upper limb power assist exoskeleton
robot. (b) Experimental environment.

TABLE 1. Participant details.

TABLE 2. Muscles for each EMG channel.

strategy to respond to the participant’s motion [4], while the
perception assist method proposed in this study allows the
robot to adjust the participant’s inappropriate motions by
applying modification forces or torques. The robot supports
seven degrees of freedom (7DOF) for upper limbmovements,
including multiple motions of the shoulder, elbow, forearm,
and wrist. Two degrees of freedom for the shoulder and
elbow are enabled by wired DCmotors, while the other joints
are directly controlled via DC motors. The angle of each
joint is measured by encoders, and the robot’s forearm and
wrist are equipped with tri-axial force sensors to measure
the interaction forces with the user. For the experimental
setup, the participant performed tasks while wearing the
exoskeleton robot in the environment depicted in Fig. 6(b).
This environment consists of three dishes labeled D1, D2,
and D3, whose positions are predefined at coordinates
(-0.50 m, 0.20 m, 0.50 m), (-0.60 m, 0.10 m, 0.50 m),

and (-0.50 m, 0.10 m, 0.50 m), respectively, in the robot’s
world coordinate system. These positions are assumed to be
measured practically with a dish position detection system,
although these position data are directly used in this study.
The participant was instructed to select one dish as a target
and use a utensil to retrieve food from the chosen dish.

To assess the effectiveness of the proposed perception
assist method, the participant was instructed to execute the
motion using inappropriate utensil trajectories and/or pos-
tures. The experiment was divided into three trials: in trial
A, the participant deliberately performed an inappropriate
utensil trajectory during motion, deviating slightly from
the planned path and exceeding the boundaries of the vir-
tual tunnel, while the utensil posture remained within the
normal operational range. In trial B, the user moved the
utensil normally toward the chosen dish, but the utensil
posture was intentionally altered during the motion, deviat-
ing from the planned posture and exceeding the boundaries
of the virtual tunnel. In trial C, which was a combina-
tion of the strategies applied in trials A and B, incorrect
utensil trajectories and postures were both applied during
motion.

The experimental procedure was set as follows.
1. The participant was instructed to pick up a utensil and

place it at the initial position on the table.
2. The participant conducted Trial A.
3. Step 1 was repeated, and the participant conducted

Trial B.
4. Step 1 was repeated, and the participant conducted

Trial C.
Empirically, the trajectory virtual tunnel is defined with a
minimum radius RTH,min of 50 mm and an upper limit
RTH,max capped at 100 mm. In terms of the posture virtual
tunnel, tolerance angles are set with a minimum size θTH,min
at 15 degrees and a maximum θTH,max of 30 degrees. The
maximum motion modification force, denoted as Fmax, was
determined to be 1.4 N [60], while the posture modification
torque, Tmax, was set at 2.5 N/m. The external bound-
aries of the virtual tunnels lie at 1.2 times RTH /θTH from
the reference trajectory/posture, with 1L1 and 1L2 both
being 0.2.

IV. RESULTS AND DISCUSSION
A. EXPERIMENT-1
As a representative result, Fig. 7 shows the measured utensil
trajectory and processed EMG signals of the deltoid-anterior
muscle and pectoralis major muscle (clavicular head), when
participant 1 performed the motion of acquiring food from
target position 9 using a fork. Fig. 7(a) shows the EMG
results for the deltoid-anterior and pectoralis major (clav-
icular head) muscles. During preprocessing, the raw EMG
signals were processed by taking the root mean square (RMS)
over a 500 ms window length to extract features from the
original EMG signals. A median filter was subsequently
used to remove noise and smooth the EMG-RMS signals
over a 15 ms window size. The filtered EMG-RMS signals
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FIGURE 7. Example result of the estimation of intermediate position based on the EMG signals for subject 1 using a fork moving toward target position
nine. (a) The EMG-RMS values of the deltoid-anterior and pectoralis major (clavicular head) muscles were calculated with a 500 ms window length and
filtered using a median filter with a window size of 15 ms. (b) The change rate of the filtered EMG-RMS values of the deltoid-anterior and pectoralis major
(clavicular head) muscles. (c) The measured utensil trajectory.

are represented by the dashed-dotted line. During movement
from the initial position to the intermediate position, the RMS
signals of both muscles increased with the flexion of the
shoulder. Conversely, in the trajectory from the start to the
target position, the RMS signals of both muscles decreased
with the extension of the shoulder. Fig. 7(b) shows the rate
of change in the EMG-RMS signals for the deltoid-anterior
and pectoralis major (clavicular head) muscles. Fig. 7(b)
shows that the EMG-RMS signal peaks at the instant when
the EMG-RMS rate of change transitions from positive to
negative. Fig. 7(c) presents the measured utensil trajectory.
The red arrow indicates the moment at which the trajectory
reaches the intermediate position, as predicted by the EMG
signal, while the green arrow indicates the actual intermediate
position along the utensil trajectory. The deviations between
the actual intermediate position reached by the user’s utensil
trajectory and the location estimated at that moment via the
EMG signals in the x and y directions are detailed in Fig. 8.

In a previous study [23], the target position, represented by
the coordinates (xo, yo) of a given utensil, was derived from
the intermediate position Pp and the initial position Ph. The

FIGURE 8. The deviation in the distances on the x and y axes between the
intermediate positions reached by the users’ utensil trajectories and the
positions at those moments estimated through EMG signals in
Experiment-1.

relationships are captured in the following equations:

xo = autensil,x ∗ xp + butensil,x ∗ xh + cutensil,x (22)

yo = autensil,y ∗ yp + butensil,y ∗ yh + cutensil,y (23)

The z-coordinate for the target position is not included
because motion targets lie on the table, making the
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z-coordinate constant. The coefficients a, b, and c are
adjusted on the basis of the utensil and the x or y axis.
By inputting the EMG-predicted intermediate position into
the target position calculation formula, and applying coeffi-
cients specifically derived from this study, the error between
the actual target position and the estimated target position was
computed. Based on the data acquired across all movement
trials, the most significant deviation between the inferred and
actual intermediate positions was 0.0304 m on the x-axis and
0.0298 m on the y-axis. The inferred and actual intermedi-
ate positions were both incorporated into the target position
calculation. As a result, the difference between the derived
target positions was found to be less than 60mm. Considering
that the diameter of a standard dinner plate is approximately
250 mm (10 inches), such deviations are within an acceptable
margin of error. An analysis of the movement and EMG data
collected during this experiment revealed a robust correlation
between the intermediate position and the EMG signals from
the deltoid-anterior and pectoralis major (clavicular head)
muscles. Notably, as the participants approached the inter-
mediate position, there was a marked peak in the EMG-RMS
signals of either muscle, followed by its inaugural negative
rate of change. This pattern was observed for all test par-
ticipants, demonstrating the efficacy of using EMG-RMS
signals from the deltoid-anterior and pectoralis major (clav-
icular head) muscles as indicators of the user’s arrival at the
intermediate position. Furthermore, the inferred intermediate
position was combined with the initial position to estimate
the target position of the users.

To determine the reference posture based on the real-time
utensil location, a three-layer neural network regressor,
as illustrated in Table 3, was employed in this study. The
neural network regressor was designed to accept three input
features: utensil trajectory data (along the x-, y-, and z-axes),
the index of the user’s target position (from 1 to 9) and the
type of utensil being used (fork, chopsticks, or spoon). These
inputs were transmitted to a hidden layer, which included
40 neurons. The neurons in this layer use the hyperbolic tan-
gent function for activation to introduce nonlinearities, while
the output layer had a linear activation function to estimate
the reference utensil posture [61]. The network employed
error backpropagation learning algorithm for training, with
weights initially set at random and optimized during training

TABLE 3. Structure and hyperparameters of the neural network regressor.

TABLE 4. R-squared statistics of the neural network regressor used in the
X-Y, Z-X, and Z-X directions.

TABLE 5. Error between the real average utensil posture of three subjects
and that estimated by the neural network regressor.

to minimize prediction errors [62]. The mean squared error
loss function quantified the discrepancy between the predic-
tions and actual outputs, and the learning rate was set at
0.0001 to control weight adjustments [63], [64]. To prevent
overfitting, a dropout technique randomly disabled 30% of
the neurons per layer in each iteration, enhancing the gener-
alizability [65]. Additionally, the network used normalization
to enhance training stability and efficiency, and denormaliza-
tion to interpret outputs at their original data scale, optimizing
performance [66]. To ensure that the model captures broad
behavioral patterns and considers the potential variations
between individual subjects, the average data from three par-
ticipants were utilized in the experiments. The averaged data
were divided into three sets: two sets were used for training,
and the remaining set was reserved for testing.

The accuracy of the neural network regressor was verified
by comparing the utensil posture estimated by the trained
neural network to the actual posture in the x-y, x-z, and y-z
directions. The R2 statistic was used to evaluate the reliability
of the modeling results. The R2 statistic is defined as follows:

R2 = 1 −

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳi)2

(24)

where yi represents the actual utensil posture, ŷi represents
the estimated posture, and ȳ is the mean of the actual utensil
posture. R2 values range between 0 and 1. A higher R2 value
typically indicates that the trained model fits the data better.
The R2 values for the three utensil postures, θ ref ,xy, θ ref ,xz
and θ ref ,yz, are shown in Table 4, and the values are 0.93, 0.88,
and 0.97, respectively. Furthermore, the root mean square
error (RMSE) was used to validate the estimation results. The
RMSE values for the estimated utensil postures in the x-y, x-z,
and y-z directions were 1.88◦, 1.69◦, and 1.54◦ respectively.

The maximum absolute errors between the estimated uten-
sil posture and the actual posture in the x-y, x-z, and y-z
directions are 13.18◦, 11.90◦ and 8.58◦, respectively. The
experimental results confirm the effectiveness of using the
neural network regressor to identify the reference utensil
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posture accurately. Given the current position of the utensil,
this regressor can predict the reference utensil posture.

B. EXPERIMENT-2
The results of experiment-2 are presented in Figs. 9-11,
which correspond to trials A, B and C, respectively. In these
trials, by generating two interconnected virtual tunnels in
space, the utensil trajectory and/or posture were modified
when they were found to be inappropriate. The effective-
ness of this method is determined by its ability to detect
deviations and autonomously correct inappropriate utensil
trajectories/postures that exceed the boundaries of the virtual
tunnels, thereby restoring the user’s motion to an appropriate
state. In Fig. 9-11(a), the green region represents the extent
of the virtual tunnel formed for the utensil trajectory, with the
external boundary indicated by the dot-dashed green lines.
The orange solid line represents the shortest distance, sDist,
from the utensil tip to the reference trajectory. The black
dot-dashed, dotted, and dashed lines represent the deviations
sDistx, sDisty, and sDistz in the x (i.e., forward/backward), y
(i.e., left/right), and z (i.e., up/down) directions, respectively.
In Fig. 9-11(b), the blue dot-dashed line, yellow dot-dotted
line, and gray dashed line illustrate the modification forces
in the x, y, and z directions, respectively. In Fig. 9-11(c),
the green region represents the virtual tunnel formed for the
utensil posture, with a similar dot-dashed green boundary.
The solid blue, yellow, and gray lines represent the deviations
θgap between the actual and reference utensil postures in
the z-y (θgap,zy), z-x (θgap,zx), and x-y (θgap,xy) directions,
respectively. If the deviations exceed the allowable range,
posture modification torques are exerted in the corresponding
directions. In Fig. 9-11(d), the torques in the z-y, z-x, and x-y
directions are depicted by the blue dot-dashed, yellow dot-
dotted, and gray dashed lines, respectively. Since the virtual
tunnels are generated after the target position is determined,
there is no initial phase evaluation or modification of the
motion. Evaluation and adjustments to correct any improper
utensil trajectories and/or postures become possible after the
target position has been assessed and tunnels have formed,
as depicted in the results (Figs. 9-11).
Fig. 9 presents the experimental results for trial A, in which

an inappropriate utensil trajectory was used for the motion.
The exoskeleton determines the deviation sDist, as illustrated
in Fig. 9(a), to determine if and in which directions the
motion should be modified to align the trajectory toward the
target position. The evaluation results show that when sDist
surpassed the tunnel boundary, sDistx exceeded the constraint
in the x direction. Hence, a motion modification force was
progressively applied by the exoskeleton in the x direction,
and its magnitude increased with the deviation sDist and
peaked when the deviation crossed the external boundary.
Aided by this force, the tip position crossed the outer bound-
ary, at which point the modification force decreased until
the tip position re-entered the allowable range; then, the
modification force was stopped. The trajectory was subse-
quently adjusted within the virtual tunnel. Since the necessary

FIGURE 9. Experiment results for trial A. (a) Trajectory deviation.
(b) Trajectory modification force. (c) Posture deviation. (d) Posture
modification torque.

condition in the y and z directions are not satisfied, the
motion in those directions was not modified. During the
entire trial, the utensil posture consistently remained within
the acceptable limits, so no posture modification torque was
applied (Fig. 9(c) and 9(d)). The trial A results confirmed that
trajectory modification for an impropriate utensil trajectory
can be realized as expected.

Fig. 10 shows the experimental results for trial B, in which
the motion was executed with an inappropriate utensil pos-
ture. In this trial, no motion modification force was applied,
as the utensil trajectory consistently remained within the vir-
tual tunnel throughout the entire trial (Fig. 10(a) and 10(b)).
As illustrated in Fig. 10(c) and 10(d), upon the initial gen-
eration of the virtual tunnels, the deviation angles θgap,zy
and θgap,xy surpassed the tolerance angle of the posture vir-
tual tunnel in the z-y and x-y directions. This indicates that
the postures in these directions were unsuitable, with the
posture in the x-y direction deviating beyond the external
boundary. To correct the posture, modification torques were
applied to guide the posture toward the virtual tunnel. As the
posture in each direction returned to the virtual tunnel, the
applied modification torques were gradually reduced and
finally stopped. The posture in the z-x direction did not meet
the necessary condition for adjustment, so no modification
torque was applied in that direction. The outcomes of trial B
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FIGURE 10. Experiment results for trial B. (a) Trajectory deviation.
(b) Trajectory modification force. (c) Posture deviation. (d) Posture
modification torque.

confirmed that modifications for unsuitable utensil postures
can be effectively executed, as expected.

Fig. 11 illustrates the results of trial C, during which
both incorrect utensil trajectory and posture were executed.
As shown in Fig. 11(a), after sDist crossed the tunnel bound-
ary, sDistx and sDistz exceeded their respective constraints
in the x and z directions. Consequently, the exoskeleton
deployed modification forces in these directions that were
proportional to the magnitude of the deviation. The forces
increased as sDist increased and reached their maximum
values when the deviations crossed the outer boundary. This
force guided the tip back toward the boundary and decreased
when the tip was within the allowed range; thus, the trajectory
was readjusted toward the virtual tunnel. No modifications
were made in the y direction as the condition was not violated
in this direction. Figs. 11(c) and 11(d) show the posture
deviations θgap,zy and θgap,zx in the z-y and z-x directions,
respectively. These deviations exceed the virtual tunnel, indi-
cating inappropriate postures in these directions. To correct
these postures, modification torques were introduced to guide
the posture toward the virtual tunnel. As the posture in each
direction returned to the virtual tunnel, the applied modifica-
tion torques were gradually reduced and finally stopped. The
posture in the x-y direction did not meet the necessary condi-
tion for adjustment, so no modification torque was applied in

FIGURE 11. Experiment results for trial C. (a) Trajectory deviation.
(b) Trajectory modification force. (c) Posture deviation. (d) Posture
modification torque.

that direction. The results of trial C confirmed that trajectory
modification and posture modification for impropriate utensil
trajectories/postures can be realized, as expected.

Based on these experimental results, the virtual tunnel
generation mechanism for the utensil trajectory and utensil
posture during meal activities can be effectively executed by
applying the proposed perception assist method. This allows
for real-time identification and modification of inappropriate
utensil trajectories and/or postures, enhancing the user’s per-
formance in meal activities. Other investigations have shown
that, in both perception assist [15], [16], [17], [18], [19],
[20] and rehabilitation [49], [50], [51], establishing a virtual
space such as a virtual tunnel is beneficial for evaluating
the rationality of user motion and modifying unreasonable
motions. In conclusion, the proposed method can effectively
assist users with meal activities.

V. CONCLUSION AND FUTURE WORK
In this study, a perception assist method integrated with
an upper limb power assist exoskeleton robot is proposed,
aimed at aiding individuals with perception impairments in
performing meal activities. The proposed method includes
two main components: first, the user’s target position is
determined based on the utensil trajectory and the user’s
shoulder EMG signals (deltoid-anterior and pectoralis major
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(clavicular head) muscles); then, inappropriate utensil trajec-
tories and/or postures are identified and modified through
two spatially related virtual tunnels. To validate the effec-
tiveness of this method, two experiments were conducted.
The results demonstrated that the shoulder EMG signals
could be used to effectively identify intermediate positions
in the utensil trajectory during motion, enabling accurate
inference of the user’s target position. Additionally, the neural
network regressor successfully mapped the spatial relation-
ship between the reference utensil trajectory and the utensil
posture. Importantly, the proposed technique could correct
inappropriate utensil trajectories and postures in real time
with the assistance of an upper limb power assist exoskeleton
robot. The proposed method is assumed to be universally
applicable across a variety of tasks that require coordinating
the position and posture of a utensil. This includes tasks
similar to meal activities, which involve nonlinear motion
trajectories where the user should initially raise the uten-
sil before lowering it toward the target position. Although
the proposed target position prediction method using EMG
signals is applicable to suchmovements, it might not be appli-
cable to other types of reaching movements. While this study
involved young, healthy individuals, future research aims to
include participants from a broader range of ages and physical
conditions to comprehensively evaluate the influence of these
factors.
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