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ABSTRACT This paper proposes a new method for predicting the energy generated by Photovoltaic (PV)
panels with coolant Calcium Chloride (CaCl2). The study seeks to address heat-related issues that can affect
the performance of PV panels by reducing their operational temperature. High operational temperatures can
decreased electricity production, potentially cause permanent damage to solar cells, and shorten the panel’s
lifespan. Calcium Chloride compound possesses hygroscopic properties, meaning it can absorb water from
the surrounding air, thus serving as a cooling material. Calcium Chloride compound is applied as crystalline
granules placed in a container beneath the PV panel. This research seeks to evaluate the effect of Calcium
Chloride usage on reducing the operational temperature of PV panels and its influence on increasing PV
efficiency. Subsequently, using the temperature data of the PV panel, modeling is performed to predict the
PV output power using three predictivemodels:Multiple Linear Regression (MLR), Temperature Coefficient
of Power (TC-P), and Artificial Neural Network (ANN). These three models are then compared to test their
effectiveness. The research results indicate that using Calcium Chloride as a coolant is highly effective in
improving the performance and efficiency of PV panels. Additionally, the ANN model accuratelly predicts
power output based on temperature condition variations, with a Coefficient of Determination (R2 = 0.98).

INDEX TERMS Photovoltaic, calcium chloride, cooling of PV panels, ANN, MLR, TC-P.

I. INTRODUCTION
Photovoltaic (PV) systems face significant challenges related
to heat issues in renewable energy electricity generation.
The performance of PV is greatly influenced by its opera-
tional temperature [1], [2], [3]. Elevated temperatures can
reduce electricity production, particularly when exposed to
intense direct sunlight. [4], [5], [6], [7], [8]. PV temperature
affects the generated electrical power due to the photovoltaic
effect occurring within the semiconductor material [9], [10],
[11], [12]. The semiconductor material absorbs Photon
energy from sunlight, creating electron-hole pairs [13],
[14], [15]. Elevated temperatures increase the thermal energy
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of electrons, thereby reducing the energy needed to free them
from atomic bonds [16], [17], [18]. Consequently, the effi-
ciency of converting photon energy into electrons decreases,
resulting in reduced electrical energy output [19], [20],
[21], [22]. Moreover, excessive temperatures can shorten the
lifespan of PV systems, even causing permanent damage [23],
[24], [25]. Research in [26] shows that temperature is a
crucial factor affecting PV performance. The results reveal a
decrease in PV maximum power with increasing operational
temperature. This decrease ranges from 0.14% to 0.47% for
every 1◦C increase in temperature.

Many studies have been conducted on PV cooling sys-
tems to address this issue. One previous study proposed
heatsinks as described in the paper [27]. The heatsink con-
figuration consisted of three heatsinks, each with eight fins
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made of aluminum, aiming to enhance heat dissipation [28].
Adding these heatsinks successfully reduced the average tem-
perature of the PV panel from 45.8◦C to 42.2◦C (7.9%).
Based on these results, optimization is needed to further
enhance the temperature reduction in PV. Therefore, devel-
oping a cooling system using Calcium Chloride (CaCl2)
was pursued. Calcium Chloride possesses excellent cooling
properties and can be applied as a cooling material for PV.
Additionally, Calcium Chloride is known as a hygroscopic
compound, capable of absorbing moisture from the air, mak-
ing it highly water-absorbent [29]. The melting point of
Calcium Chloride is around 772◦C, while its boiling point is
approximately 1600◦C [30]. With these properties, Calcium
Chloride becomes a suitable chemical for cooling mate-
rial. The cooling process occurs due to the endothermic
nature of the Calcium Chloride solution when mixed with
water [31]. The compound requires heat energy during this
mixing process to break the bonds between calcium ions
(Ca2+), chloride ions (Cl-), and water. As a result, the com-
pound absorbs heat energy from its surrounding environment,
causing the temperature to decrease and creating a cooling
effect [32]. One of the main advantages of using Calcium
Chloride as a coolant is its ability to reach lower temper-
atures than pure water. In some cases, Calcium Chloride
material can achieve much lower temperatures than regular
salt solutions, making it highly effective in lowering temper-
atures in various industrial applications [33]. Several studies
have investigated Calcium Chloride as a cooling and heat-
absorbing agent, as reviewed in the paper [34]. This paper
discusses the heat transfer characteristics of Calcium Chlo-
ride solutions as gas coolants and evaporators. The results
indicate that the solution can reduce heat by up to 15%, thus
optimizing thermal effectiveness. Furthermore, the paper [35]
discusses using Calcium Chloride as zeolite 13X/CaCl2 com-
posite adsorbents, showing significant potential in enhancing
the performance of Adsorption Cooling Systems (ACS). ACS
is a system that utilizes the principle of adsorption, where gas
molecules are absorbed or trapped from a specific medium,
leading to temperature reduction [36]. The research results
show that the Specific Cooling Power (SCP), which measures
a material’s ability to absorb heat, increased by up to 34%
compared to pure zeolite 13X. On the other hand, several
different types of cooling materials have been studied to
reduce the operational temperature of PV. Literature related
to PV cooling methods is presented in Table 1. Based on
this literature review, it can be concluded that reducing the
operational temperature of PV can enhance efficiency and
generate electrical power.

Modeling the output power of PV with Calcium Chloride
cooling is part of developing this solution by understanding
the relationship between the influence of Calcium Chlo-
ride on operational temperature and PV output power [37],
[38], [39]. This study aims to explore the utilization of Cal-
cium Chloride as a cooling material in PV systems and to
simulate its effect on output power. This model shows how
the coolant Calcium Chloride system affects electrical power

production in PV [40], [41]. This modeling can accurately
predict the use of coolant Calcium Chloride systems in influ-
encing the performance and efficiency of PV under various
operational and environmental conditions [42], [43], [44],
[45], [46]. Several PV powermodelingmethods are discussed
in other literature, such as in papers [47] and [48]. These
papers discuss PV power output modeling using Multiple
Linear Regression (MLR), a statistical method used to ana-
lyze the relationship between one output variable and several
input variables, assuming a linear relationship. The results of
these papers mention that the MLRmodel is relatively simple
and easy to interpret, thus capable of explaining the linear
relationship between the operational temperature variable and
the power variable in PV. Furthermore, in the paper [49],
modeling is done using the Temperature-Coefficient of Power
(TC-P). The TC-P model explains the relationship between
output power and PV operational temperature, depicting the
power output changes for each specific temperature increase.
The paper states that measurement results show a significant
relationship between the operational temperature variable and
power output, thus allowing the prediction of PV power
at specific temperatures. Additionally, in papers [50], [51],
[52], [53], modeling methods using Artificial Neural Net-
works (ANN) are discussed. ANN is a computational model
capable of understanding complex data with high accuracy
and is thus able to handle various prediction problems. These
papers reveal that using ANN can provide accurate results in
predicting PV power output.

This study proposes a method of cooling PV using Cal-
cium Chloride to improve efficiency and overall performance
in PV. The Calcium Chloride compound used is made of
solid material in crystalline granules. This material is placed
in a container which is then covered by the PV panel. The
heat the PV receives is then directed to the material to be
absorbed, thus reducing its operational temperature. To fur-
ther understand the impact of cooling using CalciumChloride
on PV power output, temperature modeling is conducted
using MLR, TC-P, and ANN methods. This modeling can
account for the relationship between operational temperature
and PV power output, thus enabling the prediction of elec-
trical power generated under various temperature conditions.
The performance comparison of these three models is then
analyzed to determine the performance of each model. The
results of this analysis can aid in selecting the most accurate
model for predicting PV power output. Thus, cooling meth-
ods using Calcium Chloride can be optimized by modeling
PV power. This allows users to make more effective plans
for installing solar power plants to assess the available solar
energy potential. The main focus of this paper is as follows:

• We propose a method of cooling PV temperature using
Calcium Chloride compound as a cooling material.

• We propose modeling methods using MLR, TC-P, and
ANN to model the temperature of PV using Calcium
Chloride coolant.

• We compare the performance of these three models in
predicting PV power output.
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TABLE 1. Literature review of cooling method for photovoltaic.

TABLE 2. Summary of abbreviations.

For convenience, the abbreviations used in this paper are
summarized in Table 2.

II. EXPERIMENTAL METHOD
The experiment measured the performance level of using
Calcium Chloride as a coolant on PV panels. The Calcium
Chloride compound used is in the form of solid crystal parti-
cles placed in a square container with a PV panel mounted
on top, as shown in Figure 1. Technically, the cooling
material is placed at the bottom, adjacent to the PV panel.
The specifications of the PV used in this test are listed in
Table 3.
Meanwhile, the data in Table 4 depicts the thermal con-

ditions during the testing process, including air temperature,
humidity, and duration of sunlight exposure throughout the
day. The testing was conducted over three consecutive days in
Lhokseumawe, Indonesia. Furthermore, using the data from
PV measurements with coolant Calcium Chloride, modeling
was performed using three different predictive models: MLR,
TC-P, and ANN. This modeling aims to predict PV power
output based on varying thermal conditions and PV opera-
tional temperatures. These three models were then analyzed
to determine the level of accuracy in predicting PV power
output.

FIGURE 1. Placement of Calcium Chloride compound on PV.

TABLE 3. Photovoltaic module specification.

III. PROPOSED MODELS
A. MLR MODEL
The MLR model is used to model the linear relation-
ship between input variables and output variables, aiming
to understand and predict the influence of input variables
on output variables [62]. In this modeling, there are four
input variables: ‘‘TempTop’’, which is the temperature data
of the top side of the PV panel, while ‘‘TempBot’’ is the
bottom side, ‘‘Irradiance’’ is the sunlight irradiance data, and
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TABLE 4. Thermal conditions during the experiment.

‘‘Humidity’’ is the air humidity data. Meanwhile, the output
variable is the predicted value, ‘‘Power’’, which is the PV
power output. The proposed equation for the MLR model in
predicting PV power is as follows,

PMLR = β0 + β1.x1 + β2.x2 + β3.x3 + β4.x4 (1)

where, PMLR is the value of the ‘‘Power’’ variable. The vari-
ables β1, β2, β3, and β4 respectively represent the regression
coefficients of ‘‘TempTop’’, ‘‘TempBot’’, ‘‘Irradiance’’, and
‘‘Humidity’’. Meanwhile, the variables x1, x2, x3, and x4
respectively represent the values of ‘‘TempTop’’, ‘‘Temp-
Bot’’, ‘‘Irradiance’’, and ‘‘Humidity’’. The variable β0 is
the intercept coefficient, which can be calculated using the
following equation,

β0 = SP− β1.Sx1 − β2.Sx2 − β3.Sx3 − β4.Sx4 (2)

where, SP is the mean value of the ‘‘Power’’ data, while
Sx1, Sx2, Sx3, and Sx4 respectively represent the mean values
of ‘‘TempTop’’, ‘‘TempBot’’, ‘‘Irradiance’’, and ‘‘Humidity’’
data. Meanwhile, to calculate the regression coefficient val-
ues of each variable β1, β2, β3, and β4, the following equation
is used,

βj =

∑n
i=1 (xij −Sxj)(Pi −SP)∑n

i=1 (xij −Sxj)2
; 1 ≥ j ≥ 4 (3)

where, βj represents the regression coefficient of input j,
xij is the input j value in data i, Sxj is the mean value of
input j, Pi is the ‘‘Power’’ value in data i, and Sy is the
mean value of ‘‘Power’’. Based on the calculation results,
the MLR model to predict PV output power is obtained as
follows,

PMLR = −52.7 + 1.5x1 + 0.17x2 + 0.03x3 + 0.37x4 (4)

Next, MLR analysis was carried out to determine the
model’s performance. The Standard Error indicates how
accurate the coefficient estimates are, while the t-statistic and
p-value assist in analyzing the statistical significance of these
coefficients.

Table 5 shows that the variable ‘‘Irradiance’’ has a statisti-
cally significant coefficient with a low p-value of 0.001. This
result indicates a strong influence on the ‘‘Power’’ variable.
However, other variables, such as ‘‘TempTop’’, have slightly
higher p-values, namely 0.065. This value suggests a weaker

TABLE 5. The MLR analysis.

influence. In contrast, the variable ‘‘Humidity’’ shows no sig-
nificant relationship with the ‘‘Power’’ variable, as evidenced
by the p-values of 0.23.

B. TC-P MODEL
The TC-P model is used to model the relationship between
the output variable, which is the PV power, and the input
variable, which is the operational temperature of the PV. The
TC-P model estimates PV output power based on specific
PV temperatures [63], [64]. The equation for TC-P can be
expressed as follows,

PTCP = PSTC
(
1 + β

(
Tpv − TSTC

))
(5)

where, Pout is the PV output power at a specific tempera-
ture, PSTC is the solar panel output power at Standard Test
Conditions (STC), which is when irradiance has a value
of 1000 W/m2, Tpv is the PV temperature under operational
conditions, TSTC is the PV temperature under STC condi-
tions, and β is the power temperature coefficient, which is
the percentage change in PV output power for each specific
temperature increase [65]. The value of β can be calculated
using the gradient of the regression line between temperature
data and PV output power, which can be computed using the
following equation,

β =

∑n
i=1 (xi −Sx)(yi −Sy)∑n

i=1 (xi −Sx)2
(6)

where, xi and yi are the values of each variable in data i,Sx and
Sy are the mean values of variables x and y, and n is the total
data.

Based on the calculations using measurement data of
45 instances, the value of β is 3.1% per ◦C or 0.031 per ◦C.
Furthermore, measurements of PV under an irradiance con-
dition of 1000 W/m2, resulted in an output power of
100W with an operational temperature of 50.4◦C. Based on
these measurement results, the TC-P model is expressed as
follows,

PTCP = 100
(
1 + 0.031

(
Tpv − 50.4

))
(7)

C. ANN MODEL
The ANN model is a computational model inspired by
the structure and function of biological neural networks in
humans. This model consists of simple processing units
called neurons or nodes, interconnected in a network structure
comprising multiple layers. This study uses the ANN model
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TABLE 6. The ANN structure.

to predict PV output power based on variations in temperature
and environmental conditions. This proposed ANN model
uses four input variables: ‘‘TempTop’’, ‘‘TempBot’’, ‘‘Irra-
diance’’, and ‘‘Humidity’’, with the output variable being
‘‘Power’’. Both variables are then trained to understand the
patterns of relationships between variables [66]. The pro-
posed ANN network structure can be seen in Table 6.

A learning process consisting of two stages is required
to obtain the ANN model: Feed-forward and Back-
propagation [67]. Feed-forward is the process where input
data is passed through the network from the input layer
through the hidden layers to the output layer. In this stage,
each node in the layer forwards its input signal by applying an
activation function to the nodes in the next layer. This is done
so that the ANN can understand the patterns and structure of
the given input data. The initial stage of Feed-forward is to
calculate the values of the nodes in the hidden layer. In this
case, there are two hidden layers. To calculate the values of
the nodes in the first hidden layer, the following equation is
used,

H (1)
x = f

(∑120

j=1

∑4

i=1
Ii.H

(1)
wij + H (1)

bj

)
(8)

where, H (1)
x is the value of the x node in the first hidden

layer, f is the applied activation function, Ii is the value of
the i node in the input layer, H (1)

wij is the weight value from the
i node in the input layer to the j node in the first hidden layer,

andH (1)
bj is the bias value of the j node in the first hidden layer.

The activation function used in both hidden layers employs
the sigmoid function, expressed as follows,

f (x) =
1(

1 + e−x
) (9)

where, e is the Euler’s number, which is the base of the
natural logarithm. Furthermore, calculations are performed
to compute the nodes in the hidden layer using the following
equation,

H (2)
x = f

 72∑
j=1

120∑
i=1

H (1)
i .H (2)

wij + H (2)
bj

 (10)

where, H (2)
x is the value of the x node in the second hidden

layer, H (1)
i is the value of the i node in the first hidden layer,

H (2)
wij is the weight value from the i node in the first hidden

layer to the j node in the second hidden layer, and H (2)
bj

is the bias value of the j node in the second hidden layer.
The final step in this Feed-forward process is to calculate
the value of the nodes in the output layer. The calculation
of the node values in the output layer uses the following
equation,

Ox = f

(
72∑
i=1

H (2)
i .Owi + Ob

)
(11)

where, Ox is the output value at the x node, H
(2)
i is the value

of the i node in the second hidden layer, Owi is the weight
value from the i node in the second hidden layer to the node
in the output layer, and Ob is the bias value at the output
layer.

After the Feed-forward process is completed, the values in
the output layer are obtained. These values are then compared
with the target data to determine the error. The magnitude of
the error indicates how far the predictions deviate from the
actual values. To calculate the error, the following equation
is used,

error =

n∑
i=1

1
2

(Ti − O)2 (12)

where Ti is the target data in the i dataset, whileO is the output
data.

The following process is Back-propagation, where the
prediction results are used to adjust the networkmodel param-
eters by updating weights and biases, aiming to minimize
the error between the model predictions and actual values.
To update the bias values in the output layer, the following
equation is used,

Ob = (Ti − O) (1 − O)O (13)

where, Ob is the bias value in the output layer, Ti is the
target data in the i dataset, and O is the node’s value in
the output layer. The following process updates the weight
values from the second hidden layer to the output layer.
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The update process is performed using the following
equation,

Owi(k + 1) =

72∑
i=1

η.H (2)
i .Ob + δ.Owi(k) (14)

where, Owi is the weight value from the i node in the second
hidden layer to the node in the output layer, η is the learning
rate,H (2)

i is the value of the i node in the second hidden layer,
δ is the momentum factor, and k is the iteration value that
occurs. Then, to update the bias value in the second hidden
layer, the following equation is used,

H (2)
bi =

(
1 − H (2)

i

)
.H (2)

i .P(2) (15)

where,H (2)
bi is the bias value of the i node in the second hidden

layer, H (2)
i is the value of the i node in the second hidden

layer, and P(2) is the accumulation value between the weight
in the output layer (Owi) and the bias in the output layer (Ob),
calculated using the following equation,

P(2) =

72∑
i=1

Owi.Ob (16)

Then, the weight values from the first hidden layer to
the second hidden layer can be updated using the following
equation,

H (2)
wij (k + 1) =

72∑
j=1

120∑
i=1

η.H (1)
i .H (2)

bj + δ.H (2)
wij (k) (17)

where, H (2)
wij is the weight value from the i node in the first

hidden layer to the j node in the second hidden layer, andH (1)
i

is the value of the i node in the first hidden layer. To update
the bias value in the first hidden layer, the following equation
is used,

H (1)
bi =

(
1 − H (1)

i

)
.H (1)

i .P(1) (18)

where, H (1)
bi is the bias value of the i node in the first hidden

layer, H (1)
i is the value of the i node in the first hidden layer,

and P(1) is the accumulation value between the weight in the
second hidden layer (H (2)

wij ) and the bias in the second hidden

layer (H (2)
bi ), calculated using the following equation,

P(1) =

120∑
j=1

72∑
i=1

H (2)
wij .H

(2)
bi (19)

Then, to update the weight values from the input layer to
the first hidden layer, the following equation is used,

H (1)
wij (k + 1) =

120∑
j=1

4∑
i=1

η.Ii.H
(1)
bj + δ.H (1)

wij (k) (20)

where, H (1)
wij is the weight value from the i node in the input

layer to the j node in the first hidden layer, and Ii is the value
of the i input node in the input layer. The learning process
of this ANN continues iteratively until the specified iteration
and yields small error values [68].

IV. PERFORMANCE ANALYSIS
The analysis provides information on each model’s perfor-
mance results in predicting the PV power output based on its
operational temperature. The analysis methods used include
calculating the Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Coef-
ficient of Determination (R2).
MAE is one of the commonly used methods for analyzing

the performance of a model. MAE measures the average of
the absolute differences between the predicted values gen-
erated by the model and the actual values in the test data.
This result provides an overview of how close the model’s
predictions are to the overall values. The equation for MAE
is as follows,

MAE =
1
n

n∑
i=n

∣∣yi − ŷi
∣∣ (21)

where, n is the number of test data, yi is the actual value,
and ŷi is the predicted value by the model for the i data.
The lower the MAE value, the better the model performance,
indicating that the model’s predictions are closer to the actual
values [69]. Furthermore, MSE is an analysis method used
to measure the average of the squared differences between
the predicted values generated by the model and the actual
values in the test data. The equation for MSE is defined as
follows,

MSE =
1
n

n∑
i=n

(
yi − ŷi

)2 (22)

If the MSE value is lower, the model’s performance
is better, indicating that the model’s predictions are
closer to the actual values. Furthermore, there is RMSE,
which is similar to MSE. Still, RMSE calculates the
square root of the average of the squared differences
between the predicted values generated by the model and
the actual values. The equation for RMSE is defined
as follows,

RMSE =

√√√√1
n

n∑
i=n

(
yi − ŷi

)2 (23)

RMSE analysis provides insight into the average devi-
ation between the model’s predicted and actual values.
By taking the square root, RMSE has a more intuitive inter-
pretation in the same units as the target variable. Lower
RMSE values indicate better model performance, indicat-
ing that the model’s predictions are closer to the actual
values. [70]. Then, R2 analysis, also called the Coeffi-
cient of Determination, assesses how effectively the model
can explain the variability observed in the data. The
equation for the Coefficient of Determination is defined
as follows,

R2 = 1 −

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ŷ)2

(24)
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FIGURE 2. The comparison result of photovoltaic temperature on (a) day 1, (b) day 2, and (c) day 3.

where, ŷ is the mean of all yi values, the R2 value ranges
from 0 to 1, and the closer it is to 1, the better the model
explains the data’s variability. R2 analysis can determine how
much of the variability in the PV output power data can be
explained by the panel temperature data [71].

V. RESULTS AND DISCUSSION
In this section, an evaluation is conducted to observe the
effect of PV cooling methods using Calcium Chloride on
PV temperature, power, and efficiency and to determine the
performance level of the MLR, TC-P, and ANN models in
predicting PV output power.

A. PHOTOVOLTAIC POWER ANALYSIS
Figure 2 shows a graph comparing the PV temperature
over time for three days, under two scenarios: when using
Calcium Chloride and when not using Calcium Chloride.
From the graph, it can be observed that there is a correlation
between temperature and irradiance, where an increase in
irradiance results in an increase in the operational temper-
ature of the PV. This result is consistent with the initial
hypothesis, considering that higher irradiance leads to more
solar energy absorbed, thus raising the PV temperature. It is
also noticeable that during periods of high irradiance, the PV
temperature with Calcium Chloride tends to be lower than
without Calcium Chloride. This demonstrates that Calcium
Chloride has a significant cooling effect on the PV panel.
However, in Figure 2(a), there is a strange phenomenon
where irradiance increases between 10:00 and 12:00 while
the temperature decreases. Several factors, such as increased
wind flow, can explain this behavior. This occurs because
the increased wind can carry heat away, accelerating the
cooling process. Additionally, air humidity also plays a
role. High humidity can enhance the cooling rate through
evaporation, decreasing temperature despite increasing
irradiance.

Figure 3 compares the PV power output with and with-
out the use of Calcium Chloride. The graph shows a clear
correlation between irradiance and the generated PV power.
Calcium Chloride results in a more stable and higher power
output than when it is not used. This indicates that Calcium

TABLE 7. Analysis of temperature photovoltaic.

Chloride may enhance electricity production by reducing its
operational temperature.

Figure 4 displays the PV efficiency graph over three
days, comparing the use of Calcium Chloride to not using
Calcium Chloride. PV efficiency is the ratio of electrical
energy generated to the solar energy received. The graph
shows that using Calcium Chloride can influence efficiency
by maintaining the panel temperature at an optimal level.
Typically, PV panels achieve higher efficiency at lower
operational temperatures. The effect of using Calcium Chlo-
ride can be seen through the position of the curve, which
is higher than the curve without Calcium Chloride. These
results indicate the effectiveness of Calcium Chloride in
managing PV temperature to enhance efficiency, consid-
ering that PV generally operates less efficiently at higher
temperatures.

Table 7 depicts the analysis of PV operational tempera-
tures measured under conditions with and without Calcium
Chloride over three consecutive days in April 2023. The
average PV panel temperature appears lower during the cool-
ing process using Calcium Chloride. In contrast, in the
absence of Calcium Chloride, the average PV panel temper-
ature consistently appears higher, by around 1◦C, than that
of panels using Calcium Chloride. Based on these results,
Calcium Chloride effectively reduces operational temper-
atures, enhancing PV systems efficiency. Table 8 shows
the analysis of the effect of power generated by PV sys-
tems under conditions with and without Calcium Chloride.
During the cooling process with Calcium Chloride, there
was an increase in power output from the PV systems.
The highest percentage increase in power, reaching 11.7%,
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FIGURE 3. The comparison result of photovoltaic power on (a) day 1, (b) day 2, and (b) day 3.

FIGURE 4. The comparison result of photovoltaic efficiency on (a) day 1, (b) day 2, and (b) day 3.

TABLE 8. Analysis of power photovoltaic.

indicates higher effectiveness of Calcium Chloride under
low irradiance conditions. Conversely, the lowest increase
in power, at 4.9%, suggests that under higher irradiance
conditions, the effectiveness of Calcium Chloride is not as
pronounced as under low irradiance conditions. Based on
these findings, it can be concluded that using Calcium Chlo-
ride impacts electrical power production in PV systems. The
magnitude of this power increase varies depending on daily
irradiance conditions. Table 9 compares the proposed PV
cooling method with previously evaluated cooling technolo-
gies. Based on this comparison, it can be concluded that the
proposed Calcium Chloride cooling method demonstrates an
average efficiency improvement of 11.3%, which is almost
comparable to the cooling method using water. This evalua-
tion indicates that the effectiveness of various cooling meth-
ods depends on the type of coolingmaterial and the irradiance
conditions.

B. MODELS PERFORMANCE ANALYSIS
Figure 5 shows the correlation between PV power mea-
surement data and prediction data using the MLR model.

TABLE 9. The comparative evaluation with other cooling methods.

The graph displays clustered data around the regression
line, indicating a strong correlation between the predicted
and actual data. Although some points deviate from the
line, the MLR model makes relatively accurate predic-
tions. The data spread is wider at the bottom of the
graph than at the top, indicating more significant prediction
variability.

Figure 6 illustrates the correlation between the predicted
and measured PV power data using the TC-P model. In the
graph, the gradient of the line is almost close to 1, indicating
that for every increase in power predicted by the TC-P model,
the measured PV power also increases almost proportionally.
This can be interpreted as the model having nearly perfect
predictive proportionality to the measured values. Only a
few data points are far from the line, indicating consistent
and accurate predictions in many cases. Figure 7 shows
the correlation graph between the predicted PV power data
using the ANN model and the actual power. In the graph,
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FIGURE 5. The correlation between prediction data and measured
photovoltaic power using the MLR model.

FIGURE 6. The correlation between prediction data and measured
photovoltaic power using the TC-P model.

the gradient of the line is slightly greater than 1, indicating
that the model’s predictions are somewhat higher than the
actual measurement values for each data point. The density
of data points near the regression line suggests that the ANN
model strongly correlates with the measured values. The
regression line almost blending with the data points indi-
cates a very high level of conformity between the model’s
predictions and the actual data. This consistency demon-
strates the success of training the ANN model in mapping
the relationship between the input variables and the PV power
output. However, some data points far from the regression line
indicate errors in specific predictions.

From the analysis results, a comparison of the model
performance is presented in Table 10. The ANN model
outperforms the other two models by a significant margin
based on the data. This is apparent from the R2 value,
which approaches 1, indicating a very high level of vari-
ability explained by the model. Additionally, the ANN
model’s MAE, MSE, and RMSE values are much lower
than the other two, indicating more minor prediction errors.
Therefore, the ANN model is better for accurately pre-
dicting power output based on the given thermal condition
data.

FIGURE 7. The correlation between prediction data and measured
photovoltaic power using the ANN model.

TABLE 10. The comparison of models’ performance.

FIGURE 8. The comparison result of prediction power (E = 970 W /m2,
Tpv = 43.6◦C).

C. POWER PREDICTION ANALYSIS
Figure 8 shows the comparison results of power predictions
from various models against actual measurements on the
PV panel, under irradiance conditions of 970 W/m2 and
a PV panel temperature of 43.6◦C. All prediction models
exhibit a similar pattern to the actual measurement data, with
fluctuations in power occurring over time. The ANN model
curve provides predictions that closely match the actual mea-
surements, following the trend well and with the slightest
variation. Conversely, the MLR model curve shows more
variable predictions, with some peaks and troughs not align-
ing with the actual data. Then, the TC-P model curve exhibits
significant variations from the actual data, especially around
midday, where its predictions are much higher than the actual
measurements.
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FIGURE 9. The comparison result of prediction power (E = 840 W /m2,
Tpv = 45.1◦C).

Figure 9 compares power predictions generated by sev-
eral models against actual measurements, with irradiance
conditions of 840 W/m2 and the PV panel temperature of
45.1◦C. Like the previous graph, all models exhibit a similar
trend to the actual measurements. The ANN model curve
provides results very close to the exact measurements, with
reasonable adjustments to the power fluctuations throughout
the day. On the other hand, the TC-P model curve also
approximates the measurements but shows slight deviations,
especially towards midday. Then, the MLR model curve has
more noticeable deviations from the actual data than the other
twomodels, particularly aroundmidday, where its predictions
are lower than the exact measurements.

Based on these results, it can be concluded that the ANN
and TC-P models exhibit more accurate results than MLR
in this condition, with ANN being the best among the three
models. This indicates that the ANN model performs better
in high data variability and non-linear conditions.

VI. CONCLUSION
This study demonstrates that using CalciumChloride (CaCl2)
as a coolant on PV panels effectively reduces the operating
temperature by up to 4.4◦C, with an average temperature
decrease of 2.9% compared to conditions without Calcium
Chloride. This cooling method can also increase PV power
by up to 55.8W, with an average power increase of 8.8%,
compared to not using Calcium Chloride. PV efficiency
also experiences a 5.3% increase compared to conditions
without Calcium Chloride. Furthermore, modeling was con-
ducted using MLR, TC-P, and ANN to predict PV output
power based on variations in operating temperature using
Calcium Chloride as a coolant. The results show that the
ANN model performs better in predicting PV output power.
This confirms that the ANN model can understand the com-
plexity of the relationship between operating temperature
and PV power. These findings provide insights into the
benefits of using Calcium Chloride compounds as cool-
ing materials on PV panels and the potential of ANN as

an effective predictive model. Based on the exergy aspect,
the system with Calcium Chloride cooling has higher
exergy than without because the lower PV temperature can
increase electrical energy conversion efficiency and reduce
energy losses.

While using Calcium Chloride in cooling offers several
significant advantages, some limitations must be consid-
ered. Firstly, this study is limited to testing conducted at
more than one specific location, which may not repre-
sent the environmental variations at other places. Secondly,
the long-term impacts of using Calcium Chloride in PV
systems still need to be fully understood. Therefore, fur-
ther research is required to test the effectiveness of the
coolant Calcium Chloride method on a larger scale and
under various environmental conditions, including broader
geographical and climatic variations. Additionally, studies
on the potential corrosive effects or other impacts that may
arise from using Calcium Chloride compounds on PV and
a Life Cycle Assessment (LCA) are necessary to under-
stand the long-term environmental effects of using Calcium
Chloride.
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