
Received 22 July 2024, accepted 11 August 2024, date of publication 14 August 2024, date of current version 23 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3443618

Factorized 3D-CNN for Real-Time Fall Detection
and Action Recognition on Embedded System
NADHIRA NOOR , (Student Member, IEEE), AND IN KYU PARK , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Inha University, Incheon 22212, South Korea

Corresponding author: In Kyu Park (pik@inha.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant
funded by Korean Government (MSIT) [Artificial Intelligence Convergence Innovation Human Resources Development (Inha University),
Foreground and Background Matching 3D Object Streaming Technology Development, and Artificial Intelligence Innovation Hub] under
Grant RS-2022-00155915, Grant 2022-0-00981, and Grant 2021-0-02068; and in part by the Inha University Research Grant.

ABSTRACT We present a novel approach for skeleton-based action recognition and fall detection, optimized
for real-time performance on embedded devices. Our method employs a factorized 3D convolutional
neural network (3D-CNN) to efficiently extract spatiotemporal features from skeletal data. Initially, a 2D
convolution layer is applied to capture spatial features from the input skeleton frames. Subsequently, a
1D convolution layer processes these spatial features to model temporal dynamics, effectively reducing
the computational complexity compared to traditional 3D-CNN approaches. This factorization enables
the creation of a lightweight model that maintains high accuracy while being suitable for deployment
on resource-constrained embedded systems. Our approach is particularly advantageous for surveillance
applications, such as autonomous driving or monitoring in elderly homes, where real-time action recognition
and fall detection are critical for ensuring safety. Experimental results demonstrate that our model achieves
high performance in recognizing various actions and detecting falls, highlighting its potential for practical
real-world applications.

INDEX TERMS Real-time action recognition, fall detection, skeleton-based action recognition.

I. INTRODUCTION
In real-world scenarios, human action recognition is crucial
for applications such as autonomous driving and elderly
surveillance, including fall detection. However, this field
faces significant challenges due to the computational com-
plexity involved in processing video data, which requires
attention to both spatial and temporal features. Existing action
recognition methods based on deep learning and RGB frames
as input [1], [2] often exhibit heavy computational demands.
These methods rely on processing large amounts of pixel data
from RGB video frames and utilizing 3D-CNNs to capture
the spatiotemporal features. Consequently, current meth-
ods are impractical for deployment on embedded devices
with limited processing power and memory. Moreover,
RGB-based methods can be affected by factors such as

The associate editor coordinating the review of this manuscript and
approving it for publication was Joao Neves.

background colors and occlusions, particularly during fall
detection, where fast movement and occlusion often occur.

Recognizing these limitations, researchers are increasingly
turning to skeleton-based approaches, which prioritize cap-
turing the underlying motion dynamics rather than pixel-level
details. Skeleton-based methods offer a promising alternative
to RGB-based approaches by abstracting away background
clutter and focusing solely on the spatial relationships
between body joints and human motion. Previous works in
this domain, such as PoseConv3D [3], have explored 3D con-
volutional architectures as the backbone for skeleton-based
action recognition. However, suchmethods remain unsuitable
for certain embedded devices, such as those utilizing
Rockchip processors, due to their computational require-
ments and limitations [4]. The challenges of implementing
efficient action recognition on embedded devices, particu-
larly for multi-person scenarios, are part of a broader issue
in integrating deep learning with IoT systems. A recent

112852

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0004-4599-5635
https://orcid.org/0000-0003-4774-7841


N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

comprehensive survey by Elhanashi et al. [5] highlights both
the potential and challenges of deploying deep learning
models on resource-constrained IoT devices across various
applications, including human activity recognition. Their
work underscores the need for efficient, lightweight solutions
that can handle complex, real-world scenarios. In line with
these challenges, several approaches [6], [7] tailored for
embedded deployment tend to sacrifice complexity in favor
of efficiency, resulting in reduced recognition accuracy.

To bridge this gap, we propose a novel approach to an
efficient skeleton-based action recognition model that can be
embedded in real-world devices with limited computational
resources and memory footprint, while maintaining high
accuracy and total trainable parameters count of less than
1 million. In our methodology, we represent human motion
by generating joint heatmaps from detected 2D coordinates
of human keypoints across the time frame. Inspired by [8],
we propose a method that decomposes the 3D-CNN into
a 2D-CNN followed by a 1D-CNN, offering an alternative
that works efficiently on embedded devices while effectively
capturing both spatial and temporal features. This factor-
ization significantly reduces computational complexity and
memory requirements compared to standard 3D-CNNs, as it
decreases the number of parameters and operations required.
The 2D convolution efficiently captures spatial features
and relationships between body joints in each frame, while
the subsequent 1D convolution models temporal dynamics
across frames, allowing for effective spatiotemporal analysis
with lower computational demands. This approach not only
makes the model more suitable for embedded devices with
limited resources but also enhances real-time performance
by reducing the processing time required for each frame.
Additionally, this decomposition enables our model to
run on embedded devices that may not support full 3D
convolutions, further broadening its applicability in resource-
constrained environments. Consequently, we can achieve
efficient real-time action recognition on embedded devices
without sacrificing the accuracy of the model.

This study is an extended version of our preliminary
work [9]. While our preliminary work [9] introduced a
2D-CNN approach for single-person action recognition
on embedded devices, this extended work makes several
significant advancements. Firstly, we transition from a
2D-CNN to a 3D-CNN architecture, allowing for better
capture of spatiotemporal features. Secondly, we expand our
model’s capability to handle multi-person scenarios, making
it more applicable to real-world situations. These enhance-
ments, along with more comprehensive experiments and
analyses, represent substantial improvements over our initial
work.

The contributions of this paper are as follows:
• We propose a lightweight deep learning model utilizing
a skeleton-based method suitable for action recognition
on embedded systems.

• We develop a real-time multi-person action recognition
system.

• We integrate compression techniques to reduce model
size, enabling efficient deployment on resource-
constrained devices.

II. RELATED WORKS
A. VISION-BASED FALL DETECTION
Fall detection is a critical application in elderly care, aiming
to provide timely assistance and prevent serious injuries.
Vision-based methods for fall detection leverage video data
to analyze human posture and movement patterns. Early
approaches [10], [11], [12] employed handcrafted features,
such as segmenting the subject from the background, which
often struggled with robustness and accuracy in complex
environments. Recent advancements have applied different
representations of human motion. For example, [13] trans-
forms the video into multiple dynamic images, whereas [14]
converts RGB input into optical flow images. However, these
methods typically rely on RGB video frames, which can be
computationally intensive and prone to errors due to lighting
variations and occlusions.

To mitigate these issues, some studies have explored
skeleton-based approaches, focusing on the movement of
body joints rather than pixel-level details [15], [16], [17],
[18], [19], [20]. For instance, [19] proposed a hybrid
CNN-LSTM model with 2D keypoints as input, the model
that captures temporal dynamics for more accurate fall
detection. Reference [17] utilized a ToF camera to extract
3D keypoints and then applied a handcrafted algorithm to
calculate the distance between the floor and the joints to
detect falls. Reference [20] also focused on the distance
between joints, enhancing their approach by using a LSTM
network trained on calculated angle and distance sequences
to classify falls and non-fall activities. These methods
demonstrate improved robustness but still face challenges due
to their dependency on the accuracy of the pose estimator.
Consequently, several methods have attempted to enhance
pose estimator accuracy. For example, [21] fine-tuned the
pose estimator on a falling motion pose dataset to improve
accuracy, while [15] used an additional CNN to generate
sequences of keypoints that the pose estimator failed to
extract.

B. SKELETON-BASED ACTION RECOGNITION
Action recognition is fundamentally a time series problem,
hence, early research predominantly employed RNN mod-
els [22], [23]. In [22], inputs are represented as 3D poses
divided into five segments, whereas [23] utilized the joint
locations of 3D poses directly as input. Another line of
research leveraged CNN models [24], [25], which directly
transform the coordinates in a skeleton sequence into a
pseudo-image, typically a 2D input of shape K ×T , where K
represents the number of joints and T is the temporal length.
While both RNN and CNN approaches utilize joint

coordinates, they do not explicitly capture the structural
topology of the joints, leading to the introduction of Graph
Convolutional Networks (GCNs) [26], [27], [28], [29], [30].

VOLUME 12, 2024 112853



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

GCN models, such as ST-GCN [30], utilize extracted
keypoint sequences as spatiotemporal graphs. AS-GCN [28]
employs multi-scale modeling and additionally predicts the
human pose. G3D [29] proposes a novel graph convolution
operator for capturing long-range joint relationships. Shift-
GCN [26] aims to reduce computational cost by proposing a
shift graph operation. For instance, HD-GCN [27] proposed
a hierarchical graph-based framework that leverages both
spatial and temporal dependencies among body joints for
improved action recognition performance.

However, for multi-person scenarios, all GCN methods
become computationally heavy as they multiply the input for
each detected person. To overcome this, a new approach using
3D-CNN, called PoseConv3D [3], was developed to handle
multi-person scenarios without additional computation costs.
Initially, 3D-CNNs for action recognition were applied to
RGB input, as seen in SlowFast [2]. The SlowFast network
captures spatial semantics and motion separately by using
different spatiotemporal resolutions for the two networks.
However, using RGB input requires many channels, making
the network computationally intensive. In contrast, PoseC-
onv3D [3] represents the RGB input as stacks of joint
heatmaps generated from extracted 2D human poses, forming
3D heatmap volumes as input for the 3D-CNN. This approach
efficiently handles multi-person scenarios without imposing
excessive computational burdens.

Moreover, 3D-CNNs can learn spatiotemporal features
more effectively than 2D-CNNs, making skeleton-based
approaches using 3D-CNNs outperform GCN-based meth-
ods. This makes them a more effective and efficient choice
for action recognition tasks. Efforts have also been made
to optimize skeleton-based action recognition models for
real-time implementation on embedded devices. Lightweight
network architectures and efficient inference techniques are
employed to reduce computational complexity and mem-
ory footprint while maintaining recognition accuracy. For
instance, Noor and Park [21] developed a real-time skeleton-
based action recognition system optimized for deployment on
GPUs.

C. ACTION RECOGNITION ON EMBEDDED DEVICES
The integration of deep learning models, particularly for
action recognition, into IoT and embedded systems presents
unique challenges and opportunities. Elhanashi et al. [5]
provide a comprehensive overview of this field, empha-
sizing the need for efficient implementations on resource-
constrained devices. Their survey not only highlights the
general challenges but also discusses specific techniques and
optimizations relevant to deploying deep learning models in
IoT contexts. In parallel with these developments, researchers
have been exploring various approaches for implementing
action recognition on embedded devices. Meng et al. [7] is
the first one to proposed an action recognition for embedded
device, the method utilized the Hierarchical Motion History
Histogram (HMHH) feature to capture motion data and
uses a Support Vector Machine (SVM) for classification.

FIGURE 1. Overall pipeline of the proposed method for real-time action
recognition on embedded devices. The pipeline includes connecting a
camera to the device, capturing frames, performing simultaneous pose
estimation and tracking, generating joint heatmaps and finally classifying
actions of each person detected. i refers to number of person detected.
Details explained in Section IV-B.

Jain et al. [6] designed a federated learning framework
that enables numerous devices to collaboratively learn
action recognition models without the need to share data.
Monisha and Mohan [31] implemented an action recognition
approach based on a template matching algorithm. The
templates were created using edge detection to identify the
contours of human postures and hand gestures. However, this
method may not be robust in real-world situations where the
background can vary.

III. PROPOSED METHOD
In this section, we present the proposed method, an efficient
real-time action recognition system, as illustrated in Figure 1.
Our framework consists of three main modules: pose
estimation, tracking, and action recognition. The details

112854 VOLUME 12, 2024



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

of the proposed method are discussed in the following
sections.

Firstly, we fine-tune a pose estimator model to accurately
predict falling motion poses. Next, we implement a tracking
system to track each person appearing in the frame, which
will give a unique identity for each person. Then, we generate
the corresponding pseudo joint heatmap for each person.
Finally, we utilize an efficient action recognition module,
which employs a factorized 3D-CNN for skeleton-based
action recognition.

A. POSE ESTIMATION
We opt for 2D pose estimators due to their significantly
lower processing time compared to 3D pose estimators [32],
[33], [34]. For instance, [34] reported a processing time
of 300.0 ms, while [35] reported a processing time of
233.2 ms. Moreover, according to the findings in [3], the
estimated 2D keypoints consistently outperform both sensor-
collected (NTU RGB+D [36]) and estimated 3D keypoints
in action recognition tasks. Therefore, to balance accuracy
and computational efficiency, we use 2D keypoints for our
method.

We employ a one-stage pose estimator [35] to optimize
time efficiency, aiming to construct an efficient pipeline for
real-world applications and embedded device implementa-
tion. The pose estimator receives input of RGB frames and
outputs bounding boxes BBox ∈ Rx,y,w,h and coordinate
triplets (x, y, s) for each joint in every person P detected.
Based onCOCOkeypoints [37] each person has 17 associated
keypoints, Pose ∈ R17×3.

P = {Pose,BBox}. (1)

Additionally, to ensure accuracy, we finetune the pose
estimator with a fall person dataset [21].

B. TRACKING
We utilize bounding boxes, RGB frames, and pose data as
input for tracking. Unlike the original implementation of
DeepSORT [38], which relies solely on bounding boxes and
RGB frames, we incorporate additional pose data to enhance
the tracking accuracy.

Therefore, the input for the tracker module includes both P
and the RGB frame. The tracker will output a unique identity
for each person. The output will represent each person i ∈

[1, 2, 3, ..n] at time t ∈ [1, 2, 3, ..T ], where n and T refer to
the number of person and frames, respectively. The tracker
output can be expressed as:

P it = {Poseit ,BBox
i
t }. (2)

C. PSEUDO JOINT HEATMAP GENERATION
The pseudo joint heatmap serves as the input representation
for the action recognition model. It represents spatial
information about the human body’s keypoints extracted
from the estimated poses. We employ the following steps to
generate the pseudo joint heatmap:

1) SUBJECT CENTER CROPPING
We perform a subject center cropping to ensure consistent
and focused regions. This method calculates the dimensions
of the input image and defines a centered square crop
and adjusting the joint coordinates to align them within
the new dimensions. This preprocessing step standardizes
the input frames, enhancing the accuracy and consistency
of the subsequent joint heatmap generation.

2) HEATMAP GENERATION
We generate heatmaps for each detected joint using Gaussian
maps as implemented in [3]. Given the location of each joint
(xk , yk ) and its confidence score sk , the heatmap for the k-th
joint is defined as:

Jkuv = sk · exp{−
(u− xk )2 + (v− yk )2

2σ 2 }, (3)

where (u, v) represents the coordinates in the heatmap grid,
and σ controls the variance of Gaussian maps. The confi-
dence score sk scales the peak of the Gaussian, ensuring that
joints with higher confidence have more pronounced peaks in
the heatmap. This method allows for precise localization of
joints in the generated heatmaps, which is crucial for accurate
action recognition. The result of this heatmap generation can
be represented as H ∈ RH×W×C . Thus, each individual
at every frame has their unique heatmap, which can be
represented as:

P it = {Poseit ,BBox
i
t ,H

i
t }. (4)

3) RESIZING DIMENSION
In order to comply with the spatial size prerequisites of the
action recognition module, we adjust the spatial dimension
of the pseudo joint heatmap to a uniform size of 112 × 112,
which results inH ∈ R112×112×C . The rationale for choosing
this fixed size will be explain in Section VI. This resizing step
normalizes the input data across all frames, thereby ensuring
uniformity and promoting efficient computation within the
action recognition module.

4) CONVERSION TO GRAYSCALE
To simplify the input data representation and reduce com-
putational complexity and memory requirements, we con-
vert the resized pseudo joint heatmap into grayscale,
H ∈ R112×112×1.

5) FRAME SAMPLING
Given the temporal nature of action recognition tasks,
we exploit temporal redundancy in the input data by
uniformly sampling a subset of frames for processing,
as validated by experiments in [3]. Specifically, we uniformly
sample 32 frames, this frame sampling strategy effectively
reduces the computational load while preserving temporal
information necessary for accurate action recognition. There-
fore, we can represent the output of heatmap generation and

VOLUME 12, 2024 112855



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

FIGURE 2. Examples of generated heatmaps. (a) The original RGB frame.
(b) Generated joint heatmap before subject center cropping. (c) Joint
heatmap after applying subject center cropping, ensuring focused regions
around the subject. (d) The final grayscale joint heatmap, resized to
112 × 112, used for action recognition.

the input for action recognition as:

8i = {H i
1,H

i
2,H

i
3, . . . ,H

i
32}. (5)

Examples of the generated joint heatmaps are shown
in Figure 2.

D. ACTION RECOGNITION
Our action recognition module leverages a factorized
3D-CNN architecture inspired by [8], balancing computa-
tional efficiency and recognition accuracy. As shown in
Figure 3, we use the generated heatmap8i as input, formatted
as T ×H×W ×C , where T ,H ,W , and C denote the number
of frames, height, width, and channels, respectively. The
backbone of our model is ResNet18 [39]. Unlike the usual
3D-CNN used in [3], our approach decomposes 3D convo-
lutions into separate 2D convolution as spatial convolution
and 1D convolution as temporal convolution within each
layer. This decomposition is complemented by non-linear
rectification and batch normalization steps between the
convolutions, which is crucial for enhancing model perfor-
mance and stability. The approach serves two main purposes:
it increases the number of non-linearities in the network,
potentially improving the model’s learning capacity, and it
enables our model to run efficiently on embedded devices
like the RV1126 EVB that have limitations in computing 3D
convolutions.

In our architecture shown in Table 1, the spatial con-
volution filters size are Ni−1 × 1 × d × d , where Ni−1
represents the number of input channels. The output channel
of this convolution is Mi, which serves as the input channel
for the subsequent temporal convolution. Thus, the temporal
convolution filters size is Mi × t × 1 × 1. The hyperpa-
rameterMi determines the dimensionality of the intermediate
subspace where the signal is projected between the spatial

TABLE 1. The proposed network architecture. The dimensions of the
kernels are denoted by H × W for height and width, and C for channels.
In each layer, the first convolution operation is a 2D convolution applied
spatially, followed by a 1D convolution applied temporally on the
intermediate channels (Mi ). The intermediate channels are calculated as
described in Section III-D. The output size format is (T × H × W, C),
where T refers to the number of frames.

and temporal convolutions. Following the approach in the
R(2+1)D model [8],Mi is calculated as,

Mi =
td2Ni−1Ni

d2Ni−1 + tNi
(6)

to ensure that the number of parameters in the decompose
convolution (2D+1D) is approximately equal to that of a full
3D convolution.

The intuition behind this model design is twofold. Firstly,
most embedded devices do not support 3D convolution, mak-
ing it impractical for real-time applications on such platforms.
Secondly, according to [8], decomposing the 3D convolution
into separate spatial and temporal convolutions effectively
doubles the number of nonlinearities in the network. This is
due to the additional ReLU activation introduced between the
spatial and temporal convolutions, as illustrated in Figure 3.
This increased nonlinearity enhances the model’s capacity
to learn complex features, improving action recognition
performance.

For training, we use the cross-entropy loss function
to measure the difference between predicted and ground
truth labels. Softmax activation is manually applied outside
the model to derive final class probabilities, providing
greater deployment flexibility and compatibility with various
applications. This design ensures that our action recog-
nition module is both accurate and efficient enough for
real-time deployment on resource-constrained embedded
devices.

112856 VOLUME 12, 2024



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

FIGURE 3. Architecture of the proposed action recognition model. Each layer in the ResNet block utilizes a factorized 3D-CNN,
decomposing the convolutions into separate spatial (2D convolution) and temporal (1D convolution) convolutions to enhance
computational efficiency and recognition accuracy, making it suitable for embedded device implementation. T refers the number of
frames.

IV. REAL-TIME ACTION RECOGNITION PIPELINE ON
EMBEDDED DEVICE
A. OPTIMIZATION
We apply several optimization techniques to ensure our
model can run efficiently on embedded devices. Specifically,
we employ quantization for pose estimation and tracker
modules to reduce the precision of the model weights,
thereby decreasing memory usage and improving inference
speed. Additionally, we apply pruning and a post-processing
algorithm in our pose estimation model to streamline compu-
tations. In this section, we provide a detailed explanation of
these optimization techniques.

1) QUANTIZATION
We employ ‘‘Post-Training Quantization’’ to optimize the
model, which allows direct deployment of the quantized
model without additional training. We test 2 different
quantization methods that will be explained in this section.

a: UNIFORM AFFINE QUANTIZER
According to [40], this quantization method yields the
smallest loss for most networks. We use the following
formula to quantize the variable.

Xint = round(
Xfloat
1

) + z,

Xquant = clamp(0,Nprec − 1,Xint ) (7)

where 1 is the scale and z is the zero-point that maps the
floating point to integers. We use the following formula to
de-quantize the results:

Xfloat = (Xquant − z)1 (8)

We use this method to quantize our model to unsigned
integer 8 (uint8).

b: DYNAMIC FIXED POINT
The second quantization method that we use is Dynamic
Fixed Point [4]. This method follows the formula below to
quantize a given value

Xint = round(Xfloat ∗ 2fl),

Xquant = clamp(Nmin,Nmax ,Xint ) (9)

where fl is how much a digit is shifted to the left and

clamp(a, b, x) =


a if x ≤ a
x if a < x ≤ b
b if x > b

Nmax = 2Nprec−1
− 1,

Nmin = −(2Nprec−1
− 1) (10)

We set (Nmin,Nmax) = (−127, 127) for 8-bit precision
(int8) and (Nmin,Nmax) = (−32768, 32767) for 16-bit
precision (int16). We use this method to quantize our model
to int8 and int16.

2) POSE ESTIMATOR OPTIMIZATION
a: PRUNING
To enhance the performance of our pose estimator network,
we employ a pruning strategy. This involves removing certain
operations from the original model that are not associated
with any model weights. Specifically, we have pruned
the terminal operations, which include transformation and
normalization processes. In the ONNX model of YOLOv8s-
pose [35], we extract the outputs from node IDs 388, 403,
418, 336, 350, and 364. These nodes provide the raw features
for detection and keypoints. By eliminating subsequent
nodes, we have effectively increase the inference speed of
the model.

VOLUME 12, 2024 112857



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

b: POST-PROCESSING
Building upon the pruning strategy, we implement custom
post-processing to extract the bounding box and keypoint
coordinates from the pose estimator’s output. This step
processes the model’s output, which consists of 6 sets of
arrays. For detection, we merge the outputs into a single array
of bounding box coordinates (xtop, ytop, xbottom, ybottom). For
keypoints, we combine the outputs into a single array
of 51 keypoint proposals, following the COCO-keypoints
format [37], which includes 17 keypoints, each represented
by 3 values (coordinates (x, y) and score (z)). Finally, we filter
out low-confidence detections and apply non-maximum
suppression (NMS) to remove redundant bounding boxes,
ensuring the accuracy and efficiency of the final detection and
keypoint outputs.

B. DEPLOYMENT ON EMBEDDED DEVICE
To fully utilize the capabilities of the Rockchip NPUmodule,
we need to convert the model to Rockchip’s file format,
called RKNN. First, we convert our PyTorch model to
either a TorchScript or ONNX format. In our method,
we choose to convert our model to ONNX with an opset
of 11 due to the capabilities and ease of use of the ONNX
format. After converting our models to ONNX, we can
then convert them to RKNN format using Rockchip’s built-
in conversion tool [4]. The real-time inference pipeline,
illustrated in Figure 1, integrates our method into embedded
systems for efficient action recognition. We leverage the
RKNN models of the pose estimator, tracker, and action
recognition module for implementation on the embedded
device.

The process starts by connecting webcam or CCTV camera
to the embedded device. Once frames are captured, the
device simultaneously performs pose estimation and tracks
individuals within the scene. Every 64 frames, the system
generates joint heatmaps, as described in Section III-C.
To optimize the temporal information, we uniformly sample
32 frames, ensuring a comprehensive understanding of
the motion dynamics. These joint heatmaps are then fed
into our action recognition module, which classifies the
actions of individuals within the frame. This streamlined
process enables efficient, real-time action recognition on
embedded devices, demonstrating the practical applicability
of our method in various surveillance and monitoring
scenarios.

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results of
our proposed method. First, we validate the ability of
our model to effectively distinguish falling motions from
other daily activities. Second, we conduct a comprehensive
comparison between our action recognition model and
pipeline against baseline methods. Third, we evaluate the per-
formance of our model when implemented on an embedded
device.

FIGURE 4. Rockchip RV1126 EVB specifications.

A. IMPLEMENTATION DETAILS
We train our action recognition model using stochastic
gradient descent (SGD) with a momentum of 0.9 and
weight decay set to 0.001. The learning rate is set to
decay with cosine annealing (SGDR) [41], starting from an
initial rate of 0.01 and decreasing to a minimum of 0.0001.
To stabilize training, we include a warm-up phase for the
first 10 epochs [42], with the entire training process spanning
240 epochs. Both training and testing were conducted on
an Intel i7-11700K CPU with 64GB of RAM, and NVIDIA
RTX 4090 GPU.

Following model evaluation on the GPU, we deployed
the trained model onto EVB Rockchip RV1126 embed-
ded device. This device is optimized for edge computing
applications and operates under limited computational and
memory resources. The specifications of the embedded
device are detailed in Figure 4. As discussed in Section IV,
deploying the model on the embedded device involved
optimizing for inference, taking into account constraints
such as computational efficiency and memory footprint. This
process demonstrates the feasibility and practicality of our
approach in real-world scenarios with resource-constrained
environments.

B. EVALUATION ON FALL DETECTION
We evaluate our proposedmodel, trained as a binary classifier
for fall detection, on two benchmark datasets and compare
its performance with previous fall detection methods. The
evaluation metrics for fall detection [43] are accuracy,
sensitivity, and specificity. Accuracy is the proportion of
correctly detected falls and non-fall behaviors. Sensitivity is
the proportion of correctly detected falls among all fall events.
Specificity is the proportion of correctly detected non-fall
behaviors among all non-fall events.

1) DATASETS
a: UR FALL DETECTION (URFD) DATASET [44]
contains 70 videos: 30 videos of falling motion from
2 different camera angles and 40 videos of activities of daily
living. For training and testing, we use a random dataset split
with an 80:20 ratio for each class.

b: AI HUB SENIOR ABNORMAL BEHAVIOR DATASET [45]
contains a total of 9,400 videos of 3 human actions. The actor
is assumed to be elderly and the action classes are threefold:

112858 VOLUME 12, 2024



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

FIGURE 5. Example frames of the proposed multi-person fall detection and action recognition system.

TABLE 2. Comparison with the state-of-the-art on the URFD dataset [44].
The † symbol denotes models trained with the pose estimator fine-tuned
using the fall person dataset [21].

TABLE 3. Comparison with the state-of-the-art on the AI Hub
dataset [45]. The † symbol denotes models trained with the pose
estimator fine-tuned using the fall person dataset [21].

fall down, wander, and dementia. We discard the dementia
class, and only use the falling and wander data.

2) COMPARISON WITH THE STATE-OF-THE-ART
Our fall detection model demonstrates strong perfor-
mance on both benchmark datasets, URFD [44] and AI
Hub [45], as shown in Table 2 and Table 3. On the
URFD dataset [44], our model achieves perfect accuracy,

specificity, and sensitivity, outperforming all previous meth-
ods. Notably, models fine-tuned with the fall person
dataset [21], denoted by †, achieve exceptional performance,
achieving 100.00% on all metrics. Similarly, on the AI
Hub dataset [45], our model demonstrates competitive
performance with prior works. Our model achieves an
accuracy of 98.37%, specificity of 96.26%, and sensitiv-
ity of 99.24%. These results indicate the robustness and
effectiveness of our approach in distinguishing between
falling and non-falling activities. Notably, our model’s
performance is competitive with state-of-the-art methods,
demonstrating its potential for real-world fall detection
applications.

C. EVALUATION ON ACTION RECOGNITION
1) DATASET
We train and test our method by using the 5 action combined
dataset (NTU RGB+D [36], NW-UCLA [46], URFD [44],
Multiple Cameras Fall Dataset [47], and AI Hub [45])
proposed in [21]. 5 action combined dataset is a compilation
of various datasets merged together, it is specifically curated
to represent the most prevalent indoor activities encountered
in real-world scenarios. The 5 classes are: Falling, Sit Down,
Stand up, Walking, and Laydown. In total, this dataset
provides 6,231 videos and also provides annotated sequences
of human keypoints for each video. For training and testing,
we use a random dataset split with an 80:20 ratio for each
class.

2) PERFORMANCE OF ACTION RECOGNITION ON GPU
Before deploying our proposed model on the embedded
device, we evaluate its performance on GPU. We assess
the computational efficiency of our model by calculating

VOLUME 12, 2024 112859



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

TABLE 4. Comparison with the state-of-the-art on 5 action combined
dataset [21].

FIGURE 6. Confusion matrix of the action recognition model evaluated on
the 5 action combined dataset [21]. Rows corresponding to actual classes
and columns corresponding to predicted classes.

the number of parameters (params), its disk size, and the
processing speed. Additionally, we evaluate the accuracy of
our proposed model across different classes by analyzing
the confusion matrix depicted in Figure 6, where each row
represents instances of the ground truth label and each
column represents instances predicted in a class. The diagonal
elements indicate the number of correctly classified instances
for each class, while off-diagonal elements represent misclas-
sifications.

In Table 4, we compare our results with prior methods.
Our model achieves a competitive accuracy of 95.62%,
with a significantly smaller size and faster processing
time. Specifically, our model is 20 times smaller and
25 times faster than the baseline model by Duan et al. [3],
which has an accuracy of 98.26%. Moreover, compared
to Noor and Park [21], our proposed model is 24.56 ms
faster. This demonstrates the efficiency and effective-
ness of our approach for real-time action recognition
tasks.

3) PERFORMANCE RESULT ON EMBEDDED DEVICE
a: PERFORMANCE OF THE QUANTIZED MODEL ON AN
EMBEDDED DEVICE
We evaluate different quantizedmodels for action recognition
on an embedded device by inferring 50 videos, with 10 videos
per class in the test set. Table 5 shows the accuracy and pro-
cessing time for each combination of quantized pose estima-
tor and tracker, while the action recognition model remained

unquantized (float32). Due to excessive processing time
(2.15 seconds per frame) of the unquantized pose estimator,
we excluded it from our evaluation. However, we tested the
unquantized tracker with various quantized pose estimators.
The results demonstrate that the performance of our models is
significantly influenced by the quantization level of the pose
estimator and tracker. Models quantized to int16 show lower
accuracy and slower processing speeds, while int8 or uint8
quantization improves both accuracy and speed. The optimal
configuration, achieving 90.00% accuracy with the fastest
processing times, includes a uint8-quantized pose estimator
and an int8-quantized tracker. This setup is ideal for real-time
action recognition on embedded devices. Qualitative results
are shown in Figure 5, demonstrating effective detection of
falling motion and accurate classification of other action
classes.

b: SPEED PERFORMANCE BETWEEN DEVICES
In Table 6 we compare action recognition accuracy and
processing times (in ms) across different devices. On GPU
our model achieves 95.62% accuracy with faster processing
times: 18.939 ms for pose estimation, 4.37 ms for tracking,
and 15.44 ms for action recognition. On CPU resulting in
longer processing times: 250.05 ms for pose estimation,
19.30 ms for tracking, and 24.07 ms for action recognition.
On the embedded device, accuracy drops to 90.00%, with
slower processing times: 94.14 ms for pose estimation,
3.56 ms for tracking, and 179.47 ms for action recognition.
We achieve frame rate of 7.9 Hz on the embbeded device and
16.3 Hz on GPU.

c: MEMORY USAGE EVALUATION
The details of the evaluation metrics of the memory usage of
the RKNN model during inference on Rockchip NPU are as
follows.
• System memory: System memory allocated by non-NPU
drivers, including memory allocated in the system for
models and input data

• NPUmemory: Indicates the memory allocated by the NPU
driver during model inference

The findings presented in Table 7 show that the pose
estimator is the most memory-intensive module, using the
highest system and NPU memory at both maximum and total
allocations. In contrast, the tracker and action recognition
modules have significantly lower memory usage.

VI. ABLATION STUDY
We evaluate the effect of different channel sizes in the
proposed network. In Table 8, we present the results of
our ablation study, focusing on the effects of varying
channel sizes in the initial convolutional layer and the
subsequent ResNet layers. While larger channel sizes appear
to yield slightly higher accuracy in the trained model,
the accompanying increase in total parameters presents a
notable trade-off. Our analysis reveals that the accuracy

112860 VOLUME 12, 2024



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

TABLE 5. Comparison of proposed modules on an embedded device (Rockchip’s RV1126). The table shows action recognition accuracy along with the
processing time (in milliseconds) for each module and model type. The best results are presented in bold. The row with bold cells indicates the selected
model for our real-time action recognition system on the embedded device.

TABLE 6. Action recognition accuracy and processing time of each
module on different computing devices.

TABLE 7. Memory usage (MB) of each module on the embedded device.
Max refers to the maximum memory allocated at any point during
execution, and Total refers to the total memory allocated over the entire
runtime.

TABLE 8. Comparison of performance across different channel sizes in
the proposed network.

decrease associated with smaller channel sizes is minimal,
suggesting that the benefits of larger channels may not justify
the additional computational cost. Consequently, we opt

for the smallest model configuration, utilizing a first
channel output of 8, as our baseline model. This deci-
sion balances model complexity and accuracy, ensur-
ing optimal performance while minimizing computational
resources.

VII. CONCLUSION
In this paper, we introduced an innovative approach to
tackle the challenges associated with real-time imple-
mentation of action recognition especially on embedded
devices. Our method leveraged skeleton-based action recog-
nition and employs Factorized 3D-CNN network architec-
ture, enabling real-time operation on resource-constrained
devices. By focusing on computational efficiency and
maintaining high accuracy, our proposed methodology was
well-suited for practical applications, particularly in surveil-
lance systems. The experimental results substantiated the
effectiveness of our approach. We achieved high recognition
accuracy while ensuring real-time performance, demonstrat-
ing the practical viability of our system. Overall, our work
contributed to advancing action recognition capabilities on
embedded devices, paving the way for enhanced applications
in various real-world scenarios. While our current imple-
mentation utilizes hardware with NPU support, we believe
our model’s lightweight architecture makes it adaptable to
a range of embedded devices, including those without NPU
support. However, this may involve trade-offs in latency,
power consumption, and frame rate. Future work could
explore additional optimization techniques such as pruning
or knowledge distillation to further reduce computational
requirements. Additionally, investigating the integration of
other sensor data and adapting our approach to different
application domains could broaden the impact of this
research.

VOLUME 12, 2024 112861



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

REFERENCES
[1] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new

model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jul. 2017, pp. 4724–4733.

[2] C. Feichtenhofer, H. Fan, J. Malik, and K. He, ‘‘SlowFast networks for
video recognition,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2019,
pp. 6201–6210.

[3] H. Duan, Y. Zhao, K. Chen, D. Lin, and B. Dai, ‘‘Revisiting skeleton-
based action recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2022, pp. 2959–2968.

[4] R. Hong. (2023). RKNN Documentations. [Online]. Available:
https://github.com/rockchip-linux/rknn-toolkit

[5] A. Elhanashi, P. Dini, S. Saponara, and Q. Zheng, ‘‘Integration of
deep learning into the IoT: A survey of techniques and challenges
for real-world applications,’’ Electronics, vol. 12, no. 24, p. 4925,
Dec. 2023.

[6] P. Jain, S. Goenka, S. Bagchi, B. Banerjee, and S. Chaterji, ‘‘Fed-
erated action recognition on heterogeneous embedded devices,’’ 2021,
arXiv:2107.12147.

[7] H. Meng, N. Pears, and C. Bailey, ‘‘A human action recognition system for
embedded computer vision application,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2007, pp. 1–6.

[8] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
‘‘A closer look at spatiotemporal convolutions for action recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6450–6459.

[9] N. Noor, F. Jametoni, J. Kim, H. Hong, and I. K. Park, ‘‘Efficient skeleton-
based action recognition for real-time embedded systems,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshop, Jun. 2024,
pp. 5889–5897.

[10] Y. Chen, W. Li, L. Wang, J. Hu, and M. Ye, ‘‘Vision-based fall
event detection in complex background using attention guided
bi-directional LSTM,’’ IEEE Access, vol. 8, pp. 161337–161348,
2020.

[11] P. Feng, M. Yu, S. M. Naqvi, and J. A. Chambers, ‘‘Deep learning for
posture analysis in fall detection,’’ in Proc. 19th Int. Conf. Digit. Signal
Process., Aug. 2014, pp. 12–17.

[12] Q. Feng, C. Gao, L. Wang, Y. Zhao, T. Song, and Q. Li, ‘‘Spatio-
temporal fall event detection in complex scenes using attention
guided LSTM,’’ Pattern Recognit. Lett., vol. 130, pp. 242–249,
Feb. 2020.

[13] Y. Fan, M. D. Levine, G. Wen, and S. Qiu, ‘‘A deep neural network
for real-time detection of falling humans in naturally occurring scenes,’’
Neurocomputing, vol. 260, pp. 43–58, Oct. 2017.

[14] A. Nuñez-Marcos, G. Azkune, and I. Arganda-Carreras, ‘‘Vision-based fall
detection with convolutional neural networks,’’Wireless Commun. Mobile
Comput., vol. 2017, no. 1, pp. 1–16, 2017.

[15] A. Apicella and L. Snidaro, ‘‘Deep neural networks for real-time remote
fall detection,’’ in Proc. ICPR Int. Workshops Challenges, vol. 12662,
2021, pp. 188–201.

[16] M. M. Hasan, M. S. Islam, and S. Abdullah, ‘‘Robust pose-based
human fall detection using recurrent neural network,’’ in Proc. IEEE
Int. Conf. Robot., Autom., Artif.-Intell. Internet-of-Things, Nov. 2019,
pp. 48–51.

[17] X. Kong, T. Kumaki, L. Meng, and H. Tomiyama, ‘‘A skeleton analysis
based fall detection method using ToF camera,’’ Proc. Comput. Sci.,
vol. 187, pp. 252–257, Aug. 2021.

[18] C.-B. Lin, Z. Dong, W.-K. Kuan, and Y.-F. Huang, ‘‘A framework for fall
detection based on OpenPose skeleton and LSTM/GRU models,’’ Appl.
Sci., vol. 11, no. 1, p. 329, Dec. 2020.

[19] M. Salimi, J. J. M. Machado, and J. M. R. S. Tavares, ‘‘Using deep neural
networks for human fall detection based on pose estimation,’’ Sensors,
vol. 22, no. 12, p. 4544, Jun. 2022.

[20] Y. Zheng, D. Zhang, L. Yang, and Z. Zhou, ‘‘Fall detection and recognition
based on GCN and 2D pose,’’ in Proc. 6th Int. Conf. Syst. Informat.
(ICSAI), Nov. 2019, pp. 558–562.

[21] N. Noor and I. Kyu Park, ‘‘A lightweight skeleton-based 3D-CNN for real-
time fall detection and action recognition,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. Workshops, Oct. 2023, pp. 2171–2180.

[22] Y. Du, W. Wang, and L. Wang, ‘‘Hierarchical recurrent neural network
for skeleton based action recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 1110–1118.

[23] J. Liu, G. Wang, P. Hu, L.-Y. Duan, and A. C. Kot, ‘‘Global
context-aware attention LSTM networks for 3D action recognition,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 3671–3680.

[24] G. Chéron, I. Laptev, and C. Schmid, ‘‘P-CNN: Pose-based CNN features
for action recognition,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 3218–3226.

[25] D. C. Luvizon, D. Picard, and H. Tabia, ‘‘2D/3D pose estimation and
action recognition using multitask deep learning,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5137–5146.

[26] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu, ‘‘Skeleton-
based action recognition with shift graph convolutional network,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2020,
pp. 180–189.

[27] J. Lee, M. Lee, D. Lee, and S. Lee, ‘‘Hierarchically decomposed graph
convolutional networks for skeleton-based action recognition,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis., Oct. 2023, pp. 10410–10419.

[28] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, ‘‘Actional-
structural graph convolutional networks for skeleton-based action recogni-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 3590–3598.

[29] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, ‘‘Disentangling
and unifying graph convolutions for skeleton-based action recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2020,
pp. 140–149.

[30] S. Yan, Y. Xiong, and D. Lin, ‘‘Spatial temporal graph convolutional
networks for skeleton-based action recognition,’’ inProc. AAAI Conf. Artif.
Intell., 2018, vol. 32, no. 1, pp. 7444–7452.

[31] M. Monisha and P. S. Mohan, ‘‘A real-time embedded system for human
action recognition using template matching,’’ in Proc. IEEE Int. Conf.
Electr., Instrum. Commun. Eng., Apr. 2017, pp. 1–5.

[32] M. Kocabas, N. Athanasiou, and M. J. Black, ‘‘VIBE: Video inference
for human body pose and shape estimation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2020, pp. 5252–5262.

[33] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel,
W. Xu, D. Casas, and C. Theobalt, ‘‘VNect: Real-time 3D human pose
estimation with a single RGB camera,’’ ACM Trans. Graph., vol. 36, no. 4,
pp. 1–14, Aug. 2017.

[34] H. Tu, C. Wang, and W. Zeng, ‘‘VoxelPose: Towards multi-camera 3D
human pose estimation in wild environment,’’ in Proc. Eur. Conf. Comput.
Vis., Aug. 2020, pp. 197–212.

[35] (2024). Pose—Ultralytics YOLOv8 Documentations. [Online]. Available:
https://docs.ultralytics.com/tasks/pose

[36] A. Shahroudy, J. Liu, T.-T. Ng, and G.Wang, ‘‘NTURGB+D: A large scale
dataset for 3D human activity analysis,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 1010–1019.

[37] T. Y. Lin, M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[38] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime tracking
with a deep association metric,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2017, pp. 3645–3649.

[39] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[40] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,’’ 2018, arXiv:1806.08342.

[41] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent
with warm restarts,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–24.

[42] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, ‘‘Accurate, large minibatch SGD: Training
ImageNet in 1 hour,’’ 2017, arXiv:1706.02677.

[43] E. Alam, A. Sufian, P. Dutta, and M. Leo, ‘‘Vision-based human fall detec-
tion systems using deep learning: A review,’’ 2022, arXiv:2207.10952.

[44] B. Kwolek and M. Kepski, ‘‘Human fall detection on embedded
platform using depth maps and wireless accelerometer,’’ Comput.
Methods Programs Biomed., vol. 117, no. 3, pp. 489–501,
Dec. 2014.

[45] (2020). AI Hub Senior Abnormal Behavior Video Dataset. [Online].
Available: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&
topMenu=100&aihubDataSe=realm&dataSetSn=167

112862 VOLUME 12, 2024



N. Noor, I. K. Park: Factorized 3D-CNN for Real-Time Fall Detection and Action Recognition

[46] J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu, ‘‘Cross-view action
modeling, learning, and recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 2649–2656.

[47] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau,
‘‘Multiple cameras fall data set,’’ Universite de Montreal, Montreal, QC,
Canada, Tech. Tech. Rep. 1350, 2010.

NADHIRA NOOR (Student Member, IEEE)
received the B.Comp.Sc. degree in computer sci-
ence from Bina Nusantara University, Indonesia,
in 2020. She is currently pursuing the Ph.D.
degree with Inha University. Her research interests
include computer vision and deep learning, with a
focus on human action recognition.

IN KYU PARK (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in elec-
trical engineering and computer science from
Seoul National University, in 1995, 1997,
and 2001, respectively. From September 2001 to
March 2004, he was a Member of the Technical
Staff with the Samsung Advanced Institute of
Technology. Since March 2004, he has been with
the School of Information and Communication
Engineering, InhaUniversity, where he is currently

a Full Professor. From January 2007 to February 2008, he was an
Exchange Scholar with Mitsubishi Electric Research Laboratories. From
September 2014 to August 2015, he was a Visiting Associate Professor
with MIT Media Lab. From July 2018 to June 2019, he was a Visiting
Scholar with the Center for Visual Computing, University of California
at San Diego. His research interests include the joint area of computer
vision and graphics, including 3D shape reconstruction from multiple
views, image-based rendering, computational photography, deep learning,
and GPGPU for image processing and computer vision. He is a member
of ACM.

VOLUME 12, 2024 112863


